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Abstract: Visual degradation of captured images caused by rainy streaks under rainy 

weather can adversely affect the performance of many open-air vision systems. Hence, it 

is necessary to address the problem of eliminating rain streaks from the individual rainy 

image. In this work, a deep convolution neural network (CNN) based method is 

introduced, called Rain-Removal Net (R2N), to solve the single image de-raining issue. 

Firstly, we decomposed the rainy image into its high-frequency detail layer and low-

frequency base layer. Then, we used the high-frequency detail layer to input the carefully 

designed CNN architecture to learn the mapping between it and its corresponding de-

rained high-frequency detail layer. The CNN architecture consists of four convolution 

layers and four deconvolution layers, as well as three skip connections. The experiments 

on synthetic and real-world rainy images show that the performance of our architecture 

outperforms the compared state-of-the-art de-raining models with respects to the quality 

of de-rained images and computing efficiency. 

Keywords: Deep learning, convolution neural networks, rain streaks, single image de-

raining, skip connection. 

1 Introduction 

In recent years, with the development of computer, network communication, image 

processing electronic and other related fields, the intelligent video surveillance system 

which based on video and image processing has achieved many promising progresses. 

The system plays an extremely role in maintaining public security. In such condition, 

some computer vision tasks that related to the intelligent surveillance system have 

become hot research topics, such as target tracking, track identity, and object detection 

[Garg and Nayar (2004)] etc. The algorithms designed for these tasks can work well on 

the high visibility image or video data, but obviously deteriorative when they are facing 

low-quality data. This is because of most of these algorithms are always trained on the 

high-quality dataset. However, in the real scene, bad weather such as rainy day is always 

not inevitable, which seriously degrades the color and content of the captured video and 
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image data. This condition may occur if some safe accidents happened in public areas are 

recorded by surveillance cameras or mobile phones in rainy days. In this circumstance, 

the captured video or image data contains a large number of rain streaks, which leads to 

the refractions and reflections of important contents and distorts the image signal as well 

as reduces the image quality. These negative impacts caused by rain streaks on the 

captured images or videos may significantly affect the performances of many vision-

oriented algorithms mentioned above [Huang, Kang, Wang et al. (2014); Kang, Lin and 

Fu (2012)]. In order to maintain the performances of the security-related outdoor 

monitoring systems and to enhance the visual quality of the degraded images, it is 

essential to remove rain streaks automatically from the single images captured under a 

rainy condition. 

Similar to the image denoising problem, the de-raining task can be formulated as:  

I R D− =                                                             (1)                                                                                                                                                                

where I, R and D represent the rainy image, rain streaks and clear image, respectively.  

In the past few years, many researchers have paid attention to address the de-raining issue 

and have proposed many efficient algorithms. According to different concerns, these 

proposed algorithms can be roughly divided into two categories, i.e., video-based 

algorithms and single-image based algorithms. Video-based methods recover rainy 

images from the video sequences [Bossu, Hautière and Tarel (2011); Brewer and Liu 

(2008)]. Single-image based methods consider the rain removal issue from the single 

image angle, by regarding the issue as an image layer decomposition problem [Chen and 

Hsu (2013); Huang, Kang, Wang et al. (2014); Kang, Lin and Fu (2012); Sun, Fan and 

Wang (2014)], or by learning an end-to-end mapping between the rainy images and their 

corresponding ground truths. These single-image based methods mainly including 

structural similarity constraints [Sun, Fan and Wang (2014)], generalized low-rank model 

[Chen and Hsu (2013)], morphological component analysis with sparse coding [Huang, 

Kang, Wang et al. (2014); Kang, Lin and Fu (2012)], and diffusion-based or filter-based 

method, e.g. the nonlocal means filter [Kim, Lee, Sim et al. (2013)]. 

Although the above-mentioned methods have achieved varying degrees of success, 

however, most of them exist several limitations due to the following aspects: (1) For the 

underlying operation of many methods is performed on a local receptive field or a small 

image patch, hence, the spatial information between the different local receptive fields or 

different image patches, which is important for de-raining, is generally neglected. (2) 

Because of the rain streaks and images texture are internally overlapping, texture details 

of non-rain regions may be removed by most methods, which leads to the recovered rainy 

image exists some over-smoothness regions [Huang, Kang, Yang et al. (2012)]. In order 

to overcome the limitations above, in this work, we aimed at designing a novel 

convolution neural network (CNN) that can remove rain streaks and keep the details of 

restored clean images simultaneously. Specially, we investigate a CNN model named 

“Rain-removal Net (R2N)” for the single image de-raining. The ideas of the model are as 

follows:  

(1) Similar to the work of Kang et al. [Kang, Lin and Fu (2012)], the raw rainy image is 

decomposed into its high-frequency detail layer and low-frequency base layer, in which 

the detail layer keeps the object’s details as well as the rain streaks and the base layer 
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maintains the whole structure of the image. The detail layer is used to input the deep 

model for de-raining. 

(2) We introduced a CNN model that can detect and remove rain streaks simultaneously. 

The CNN architecture with the convolution layers and deconvolution layers, in which the 

convolution layers serve as a feature extractor encoding the image contents while 

removing the rain streaks and the deconvolution layers recover the details of raw image. 

Moreover, for the purpose of helping the deconvolution layers recover more detail 

information, three skip connections between convolution and deconvolution operations 

are introduced.  

(3) By adding the output of the CNN model to the low-frequency base layer, we obtained 

the final de-rained image. 

To sum up, the contributions of this work are: 

(1) We introduced a CNN architecture to address the single image de-raining issue. The 

designed CNN architecture contains a stack of convolution layers and deconvolution 

layers. Between the convolution and deconvolution layers, three skip connections are 

added. Compared with previous CNN-based methods, the proposed network is more 

depth, and we use smaller filter kernel sizes, which is conducive for digging deeper 

features and eliminating rain streaks. Additionally, with fewer feature maps and smaller 

filter, our CNN model has the advantages of fewer parameters and less computing effort. 

Thus, the training convergence and testing speed are faster than the competitive methods. 

(2) Experiments on the publicly available synthesized dataset and real-world rainy 

images demonstrate the effectiveness of the proposed model. Our CNN architecture 

outperforms other recent state-of-the-art methods. 

The remainder of this work is organized as follows. Section 2 gives a brief review of 

existing methods for image de-raining. Section 3 presents the detailed discussion on the 

proposed single image de-raining method. The results on both synthetic images and real 

images are provided in Section 4. Section 5 concludes this work. 

2 Related works 

In recent years, a large number of methods have been proposed to address the image de-

raining problem. In this section, we give a review of the current methods used for image 

de-raining from the video sequences-based and single image-based perspectives. 

Video sequences-based methods. Image de-raining from the video sequences has been 

extensively investigated. In Garg et al. [Garg and Nayar (2004, 2007)], the authors 

presented a comprehensive investigation of the visual effects caused by rain on imaging 

system and developed a rain detection and removal algorithm from video sequences. The 

rain streaks detection has two constraints [Li, Tan, Guo et al. (2016)]: (1) firstly, due to 

dynamic rain, the intensity changes of them inside some frames are relatively high. (2) 

Second, since other objects in videos may be dynamic, through verifying whether the 

relationships of the intensity changes along the rain streaks and the background intensity 

are linear, the rain streaks could be distinguished. The false alarms caused by the first 

constraint will be reduced by second constraint. After the rain streaks are detected, by 

taking the average intensity of the pixels taken from the subsequent and previous frames, 
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the model removes the rain streaks. Zhang et al. [Zhang, Li, Qi et al. (2006)] introduced a 

rain removal model that integrates both chromatic and temporal properties of rain streaks 

for video sequence. Through the chromatic property, they found that the changes of the R, 

G and B channels are approximately the same for the pixels representing streaks. The 

algorithm uses the two properties to detect and remove the streaks captured under the 

dynamic or stationary scenes. Bossu et al. [Bossu, Hautière and Tarel (2011)] proposed a 

selection rule based on the photometry and size information properties to select the rain 

streaks. They used the Gaussian mixture model to separate rain later from the raw image 

sequences. 

Single image-based methods. Since there has no any temporal information can be 

exploited, compared with the video sequences-based rain removal issue, the single 

image-based de-raining (SIBD) problem is more challenging. Some literature regard the 

SIBD issue as a problem of image decomposition. Kang et al. [Kang, Lin and Fu (2012)] 

adopted a bilateral filter to decompose the original image into the low-frequency and 

high-frequency parts. By using sparse coding and dictionary learning, they decomposed 

the high-frequency part into “non-rain part” and “rain part”, and then the rain part can be 

removed. Through exploring the orientation and shape of the elliptical kernel, in [Kim, 

Lee, Sim et al. (2013)], the authors found that the shapes of the rain streaks are elongated 

ellipses with the vertical orientations. By analyzing the aspect ratio of the ellipses kernel 

and the rotation angle, the rain streak regions are detected. Then, these rain streaks were 

removed by using the non-local means filtering. Based on a nonlinear generative model, 

Luo et al. [Luo, Xu and Ji (2015)] introduced a dictionary learning-based method for 

single image de-raining. They used discriminative sparse coding to separate rain layer 

and de-rained image layer. Based on the assumption that rain streaks are low-rank, Chen 

et al. [Chen and Hsu (2013)] proposed a generalized low-rank model for single image de-

raining where the nice properties of low-rank pattern are adopted. In Li et al. [Li, Tan, 

Guo et al. (2016)], the authors presented a method that utilizes patch-based priors based 

on Gaussian mixture models for both rain layers and de-raining layers. 

Recently, deep learning technology has achieved significant successes in many computer 

vision domains, including image de-blurring [Schuler, Hirsch, Harmeling et al. (2016)], 

image de-noising [Zhang, Zuo, Gu et al. (2017)], super-resolution [Huang, He, Sun et al. 

(2017)], style transfer [Gatys, Ecker and Bethge (2016); Yan, Zhang, Wang et al. (2016)], 

and in-painting [Xie, Xu and Chen (2012)] etc. There also have some works employ the 

deep learning technology to address the single image de-raining problem. These deep 

learning-based methods attempt to learn a non-linear mapping between the rainy image 

and its corresponding ground truth. For example, Zhang et al. [Zhang, Sindagi and Patel 

(2017)] introduced a conditional generative adversarial model for SIBD. In order to have 

a better visual appeal of the final results, they defined a new loss function that combines 

Euclidean loss, adversarial loss and perceptual loss. Fu et al. [Fu, Huang, Ding et al. 

(2017)] proposed a convolution neural network named DrainNet for single image de-

raining, similar to some image decomposition methods, they first decompose the original 

rainy image into base and detail layers. Then they used the detail layer to train the 

designed CNN architecture. Yang et al. [Yang, Tan, Feng et al. (2016)] designed a 

region-dependent rain image model for additional rain streaks detecting. Based on this 

model, they proposed a fully CNN model to detect and remove the rain simultaneously. 
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3 Proposed method  

In this part, we have presented the detailed method proposed by this work. First, we have 

shown the proposed overall CNN architecture. Then, we have introduced the image 

decomposition approach. Finally, we described the training scheme of the proposed deep 

model. 

3.1 Network architecture 

The architecture of the proposed “Rain-removal Net (R2N)” is presented in Fig. 1. During 

the training phase, the original rainy image is first decomposed into detail and base layers 

and we use the detail layer as the input of the architecture. Then the detail layer passes 

through a set of convolution and deconvolution operations, in which the sizes of kernels 

of these convolution and deconvolution operations are comparatively small (the kernels 

of first convolution and last deconvolution layers with the size of 99, 11, respectively, 

and the kernels of rest of layers with the size of 33). Both the strides of convolution and 

deconvolution operations of the architecture are set to 1 pixel. After a stack of 

convolution and deconvolution layers, the output layer is following. Furthermore, we 

added three skip connections between convolution and deconvolution layers to enhance 

the recovery ability of the deconvolution operations. The detailed parameter settings of 

CNN architecture are presented in Tab. 1. Next, we presented the roles of the convolution 

and deconvolution layers in the designed deep architecture. 

Table 1: Layer parameters of the Rain-removal Net (R2N) 

Layer Name Parameters 

Image decomposed 

processing 

Base layer and detail layer 

Iuput Detail layer 

Layer 1 Conv. (9,9,128), stride=1; Tanh 

Layer 2 Conv. (3,3,128), stride=1; Tanh 

Layer 3 Conv. (3,3,128), stride=1; Tanh 

Layer 4 Conv. (3,3,128), stride=1; Tanh 

Layer 5 Deconv. (3,3,128), stride=1; Tanh 

Concatenate layer 1  Concatenate (layer 5, layer 3) 

Layer 6 Deconv. (3,3,128), stride=1; Tanh 

Concatenate layer 2 Concatenate (layer 6, layer 2) 

Layer 7 Deconv. (3,3,128), stride=1; Tanh 

Concatenate layer 3 Concatenate (layer 7, layer 1) 

Layer 8 Deconv. (1,1,3), stride=1; Null; 

Add layer Add (Layer 8, Base layer) 

Output Rain-removal image 
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Figure 1:  The proposed “R2N” architecture  

3.1.1 Convolution layers 

The proposed “R2N” network includes four convolution layers. In our network, the 

convolution layers are used as feature extractors, which maintains the primary 

components of the original images and removes the rain streaks simultaneously. We have 

set the kernel size of the first convolution layer to 99, for the larger kernel size can 

capture more spatial information of the raw image. Both the kernel sizes of the rest of 

three convolution layers are set to 33. Through using small kernel size, we can increase 

the depth of the network and embed more non-linear activation functions, which can 

enhance the discriminative ability of the leaned deep feature. Both the numbers of the 

feature map of these convolution layers are set to 128. Note that the designed architecture 

does not consist of un-pooling or pooling operations, for the un-pooling and pooling 

operations may discard some important information of the original image that is useful 

for the recovering phase. 

3.1.2 Deconvolution layers 

In the proposed architecture, the original detail layer is successively concentrated into a 

smaller size abstraction by the convolution operations, during which the critical details of 

the raw detail layer are discarded. In other words, the convolution operations reduce the 

resolution of the detail layer. In order to restore the details of the original detail layer, we 

introduced the deconvolution operations. After the four convolution layers, four 

deconvolution layers are added for recovering the details of the raw image. Similar to the 

convolution layers, both the kernel sizes of the first three deconvolution layers are set to 

33. For the purpose of improving the expressive ability of the proposed model, we set 

the kernel size of the last deconvolution layer to 11. Moreover, the numbers of the 

feature maps of each deconvolution layer are set to 128, 128, 128 and 3, respectively. 

After the four deconvolution layers, the network outputs the clean version of the detail 

layer. 
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3.1.3 Skip connections  

As shown in Fig. 1, the proposed network includes several convolution operations. These 

operations may seriously damage the details of the original detail layer, which makes it 

difficult for deconvolution layers recovering them. However, the feature maps produced 

by the convolution layers include many important details, adding these feature maps to 

the outputs of deconvolution layers can improve the restoring ability of deconvolution 

operations. Therefore, we introduced three skip connections between convolution layers 

and deconvolution layers. Moreover, analogous to the deep residual networks proposed 

by [He, Zhang, Ren et al. (2016)], the skip connections are helpful for back-propagating 

the gradients to the bottom layers, which makes the training process more steady. 

3.2 Training on detail layers  

Similar to the work of [Fu, Huang, Ding et al. (2017)], through using the guided filtering 

method proposed by [He, Sun and Tang (2013)], we first decomposed the original rainy 

image into its detail layer and base layer, in which the detail layer maintains high-

frequency components like rain streaks and other edge information and the base layer 

retains the low-frequency basic information. Given a rainy image I, the relationship 

between it, its detail and base layers can be written as:  

det ail base= +I I I                                                          (2) 

in which det ailI and baseI represent the detail layer and base layer, respectively.  

Then the detail layer is used to input the designed CNN architecture. Training on the 

detail layer has the following advantages: (1) since most regions of the detail layer are 

near to zero, compare with the original image, it is sparser. Thus, directly using the detail 

layer to train the architecture is helpful for reducing the computational resources. (2) 

Training on the detail layer can improve the convergent performance of the deep learning 

system [Fu, Huang, Ding et al. (2017)], which can reduce the time consumption of the 

training phase.  

After the model is trained, the de-rained detail layer can be produced by the output layer. 

Then we add the output to the base layer to generate the final de-rained result. This 

process can be formulated as:   

det= ( ) +W ail baseE f I I                                                     (3) 

where 
W
f  is the output of the designed deep architecture and E  represents the final 

de-rained image. 

3.3 Objective function 

We denote the corresponding clean image of the rainy image I  as G . Then the 

network architecture is trained to achieve the goal that minimizes the initial loss function 

as: 

2

1

1
 = ( )

=

−
N

n n
W

n F

L f I G
N

                                                (4) 
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where n represents the indices of the images, N  is the mini-batch size, F  denotes the 

Frobenius norm and W  are the parameters need to be learned. Since our architecture is 

trained on detail layer det ailI , then the loss function in (4) can be rewritten as: 

2
2

det det
1

1
 = ( ) +

=

−
N

n n
W ail ail

n F

L f I G W
N

                                    (5) 

in which det ailG  represents the detail layer of image G . In order to avoid overfitting, 

the L_2 penalty regularization is introduced to add the loss function.   is the balance 

coefficient. 

3.4 Training strategies and dataset 

We trained the proposed architecture on the synthesized dataset created by Fu et al. [Fu, 

Huang, Ding et al. (2017)]. The dataset consists of 350 clean open-air images selected 

from Google image search, UCID dataset [Arbelaez, Maire, Fowlkes et al. (2011)] and 

BSD dataset [Schaefer and Stich (2003)]. Each clean image is employed to synthesize 14 

rainy images with different orientations and intensity of rain streaks. Two hundred 

thousand 6464 rainy/clean patch pairs are randomly selected as training data. These 

training data are separated into mini-batches. Furthermore, we used stochastic gradient 

descent (SGD) to back-propagating the gradients for the network parameters and adopt 

tanh function as the inspirit function of the architecture. For each iteration (s), the 

parameters of the architecture are updated as followings: 

det
1 det det

( )
( ( ) )+


= − −



n
n n T W ail

s s W ail ail

f I
W W f I G

W
                              (6) 

1 det det( ( ) )+ = − −n n T
s s W ail ailb b f I G                                         (7) 

where T  is a transpose operator and   represents the learning rate. 

4 Experiments 

The Tensorflow framework was used to perform the experiments. We spend roughly 2-3 

hours on the convergence of training phase with two NVIDIA GTX Taitan-xp GPUs. The 

learning rate and batch size are set to 0.002 and 10, respectively. We set the training 

epoch to 6. Compared with the former deep learning-based models, our architecture 

needs fewer epochs for converging, and each epoch spends less time. We supposed that 

this is due to the following facts: (1) our network with fewer feature maps and smaller 

kernel sizes, which is helpful to reduce the parameters and calculation time. (2) We used 

fewer rainy/clean patch pairs for training, which further reduces the computing effort. 

4.1 Test data and evaluation protocol 

(1) Data: Both synthesized and real-world rainy images were used to evaluate the 

proposed architecture. During the test process, the newly rainy images from the 350 clean 

images are synthesized. As regards to the real-world rainy images, we selected the 

images with the different orientations and magnitudes of the rainy pixel from the Google 
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image search. 

(2) Evaluation Protocol: We used the structural similarity index (SSIM) [Wang, Bovik, 

Sheikh et al. (2004)] to estimate the performances of the proposed CNN architecture as 

well as the comparative models. The higher SSIM values, the closer to corresponding 

ground truths the de-rained images are. Note that the SSIM value of the ground truth is 1. 

4.2. Comparison with state-of-the-art 

We used the following representative single image de-raining models for comparisons: 

(1) DOR: a specialized convolution neural network-based approach [Eigen, Krishnan and 

Fergus (2013)]  

(2) DSC: the dictionary learning based/discriminative sparse coding-based model [Luo, 

Xu and Ji (2015)] 

(3) GMM-LP: simple patch-based priors model [Li, Tan, Guo et al. (2016)] 

(4) DrainNet: convolution neural network-based method [Fu, Huang, Ding et al. (2017)] 

 

Results on synthesized rainy images: In this set of experiments, we compared the 

proposed architecture with the four representative de-raining methods on the newly 

synthesized rainy images. Since the ground truths of these synthesized rainy images are 

known, the structure similarity index (SSIM) between the de-rained image and its 

corresponding ground truth can be calculated for quantitative measuring. The SSIM 

experiment results on four newly synthesized rainy images are presented in Tab. 2. From 

Tab. 2, we can see that the proposed architecture achieves the highest SSIM values on 

both four synthesized rainy images, which verifies the effectiveness of the proposed 

architecture. 

Table 2: SSIM results on synthesized test image 

Image 

 

Ground 

truth 

Rainy 

image 

DOR  

 

DSC  

 

GMM-

LP 

DrainNet Ours 

Dock 1 0.86 0.88 0.88 0.90 0.92 0.93 

Umbrella 1 0.75 0.83 0.83 0.86 0.88 0.90 

Rabbit 1 0.72 0.81 0.77 0.79 0.85 0.86 

Bird 1 0.57 0.79 0.62 0.75 0.82 0.85 

We also presented some visual comparisons for these synthesized images above. The 

visual results are shown as Fig. 2. From Fig. 2, we can observe that both DOR and DSC 

can reduce the denseness of the rain streaks as well as eliminate the partial rain streaks, 

but they cannot eliminate the rain streaks completely. GMM-LP could completely 

remove the rain streaks. However, their de-rained results contain over-smoothed regions 

and cannot retain the details of the ground truth. Compared with other single image de-

rain approaches, our architecture can eliminate the most rain steaks and reserve the 

details of the original clean image simultaneously. Note that the visual effects of the de-

rained images generated by DrainNet can be almost comparable to ours, but both the 
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SSIM values of our model on the four de-rained images are higher than theirs, which 

demonstrates the effectiveness of the proposed method. 
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Figure 2: Results comparison on four synthesized rainy images 

Results on Real-world data: We also used the real-world rainy images to evaluate the 

proposed method. The testing results on three real-world rainy images are presented in 

Fig. 3. From (a) in Fig. 3, we can see that both the de-rained results of DOR, GMM-LP 

and DSC can only remove partial rain streaks, and the de-rained results of them 

obviously contain many rain streaks. Even though the de-rained results of DrainNet are 

able to achieve good performance, compared with our method, it cannot retain the details 

of the de-rained images. For the purpose of having better visual comparisons, we present 

one specific regions-of-interest for both DrainNet and our model. From the regions-of-

interest, we can observe that our model can maintain more features and details related to 

the original images. In (b) and (c), we present one specific regions-of-interest for all 

methods. Through observing these regions-of-interests, we can see that our model 

achieves the best visual performances and is able to remove rain streaks and retain details 

simultaneously, which further verifies the validity of the proposed model. 
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(a) 

 

 

(b) 
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(c) 

Figure 3: Results on real-world rainy images 

5 Conclusions 

In this work, we have presented an end-to-end convolution neural network-based 

architecture for removing the rain from single rainy images. The proposed architecture 

contains a stack of convolution and deconvolution layers that can remove rain streaks and 

maintain the details of the background of the original image simultaneously. For the 

purpose of boosting the recovering ability of the deconvolution operations as well as 

improving the steady of training phase, we introduced three skip connections between the 

de-convolution and convolution operations. Moreover, compared with other deep de-

raining methods, the proposed deep architecture with deeper depth and smaller kernel 

sizes. Thus, the architecture can extract higher-level deep descriptors, which is helpful for 

improving the de-raining ability of the deep architecture. Experiments on real-world and 

synthetic rainy images demonstrate that the performances of the proposed architecture 

outperform other state-of-the-art models. 
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