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Abstract: This paper presents a direct traction boundary integral equation method 
(DTBIEM) for two-dimensional crack problems of materials. The traction boundary 
integral equation was collocated on both the external boundary and either side of the 
crack surfaces. The displacements and tractions were used as unknowns on the external 
boundary, while the relative crack opening displacement (RCOD) was chosen as 
unknowns on either side of crack surfaces to keep the single-domain merit. Only one side 
of the crack surfaces was concerned and needed to be discretized, thus the proposed 
method resulted in a smaller system of algebraic equations compared with the dual 
boundary element method (DBEM). A new set of crack-tip shape functions was 
constructed to represent the strain field singularity exactly, and the SIFs were evaluated 
by the extrapolation of the RCOD. Numerical examples for both straight and curved 
cracks are given to validate the accuracy and efficiency of the presented method. 
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displacement, stress intensity factor. 

1 Introduction 
The boundary element method (BEM) has been a well-established numerical technique 
for many engineering problems in the past decades [Brebbia, Dominquez and Tassoulas 
(1991)]. It has certain advantages over the domain-based method, such as the finite 
element method (FEM). The most significant feature of the BEM is that it only requires 
discretization of the boundary rather than the whole domain. For the crack simulation of 
linear elastic materials (e.g. rock materials), stress intensity factors (SIFs) play an 
important role in cracked structures. The high singularity of stresses near the crack-tip 
has been challenging for all the previous numerical methods, even FEM [Yan, Feng, Pan 
et al. (2014, 2013); Rabczuk, Bordas and Zi (2010)] and BEM [Cruse (2012); Aliabadi 
(1997)]. The conventional BEM encounters difficulties as the existence of degenerated 
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geometries, which results in a singular system of equations. Some particular methods 
[Pan (1997)] have been proposed to overcome these difficulties, such as the Green’s 
function method [Snyder and Cruse (1975)], the multi-domain technique [Wang, Zheng, 
Miao et al. (2011); Miao and Wang (2005, 2006)], the displacement discontinuity method 
(DDM) [Portela, Aliabadi and Rooke (1992)] and the dual reciprocity method (DRM) 
[Miao, Wang and Wang (2009a); Miao, He, Luo et al. (2012); Miao, Chen, Wang et al. 
(2014); Miao, Wang, Liao et al. (2009b); Ren, Zhuang and Rabczuk (2017); Ren, Zhuang, 
Cai et al. (2016)]. For example, the Green’s function method can eliminate crack surface 
modelling and produces the results with an excellent accuracy. However, the method is 
limited to very simple crack geometries for which analytical Green’s function can be 
obtained [Konyukhov and Schweizerhof (2010); Rabczuk and Belytschko (2004); 
Rabczuk and Ren (2017)]. The multi-domain technique introduces artificial boundaries to 
divide the problem of the domain into sub-regions, thus resulting in a large system of 
equations. The DDM utilizes the crack opening displacement (COD) as an unknown 
parameter, which can be used to calculate the stress intensity factors directly. Another 
promising method is the so-called dual boundary element method (DBEM). The DBEM 
employs both the displacement and the traction boundary integral equations. The 
displacement boundary integral equation is considered on the external boundary and one 
side of the crack surface, while the traction boundary integral equation is designated on 
the other crack surface to eliminate the singularity of the equation system. Singular 
integrals in DBEM are treated as Cauchy or Hadamard principal value integrals on piece-
wise smooth crack paths and can be evaluated accurately using the singularity subtraction 
method [Guiggiani (1998); Sur and Altiero (1988); Miao, Li, Lv et al. (2013); Lv, Miao 
and Zhu (2014)]. In the DBEM formulation, displacements on both sides of the crack 
surface are considered as unknown. Thus, the resulting algebraic equations are doubled 
along the crack surface, which may be unnecessary for the evaluation of SIFs. Therefore, 
some improved single-domain BEM formulations are applied to the displacement integral 
equation on the external boundary. For the crack surfaces, the relative crack opening 
displacement (RCOD) [Ammons and Vable (1996); Chang and Mear (1996)] or the 
tangential derivative of the RCOD [Xie, Zhang, Huang et al. (2013)] can be chosen as 
unknowns therefore the traction boundary integral equation only needs to be considered 
on either side of crack surfaces. Recently, Mi et al. [Mi and Aliabadi (1994)] proposed a 
promising single-domain method named direct traction boundary integral method for 
three-dimensional crack problems. In this study, a direct traction boundary integral 
method for two-dimensional crack problems is presented as a complementary formulation. 
The traction boundary integral equation is applied to both the external boundary and 
either side of the crack surfaces. The displacements and tractions are used as unknowns 
on the external boundary, while the RCOD is chosen as unknowns on either side of crack 
surfaces to keep the single-domain merit. A new set of crack-tip shape functions is 
introduced to represent the strain field singularity exactly, and the SIFs are evaluated by 
the extrapolation of the RCOD. The outline of our study is as follows. In Section 2, the 
DTBIM formulations are described in detail. Section 3 explains the modelling strategy 
and crack-tip shape functions. The evaluation of the SIFs is illustrated in Section 4. Some 
numerical examples are listed in Section 5, and finally, the study ends with conclusions in 
Section 6. 
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2 Direct traction boundary integral method  
Considering a finite domain Ω  is surrounded by the boundary Γ  with a crack as shown 
in Fig. 1 while +Γ  and −Γ  are the upper and lower crack surfaces, respectively. By 
differentiation of the displacement boundary integral equation, followed by the 
application of Hooke’s law, the traction boundary integral equation on a smooth boundary 
is given by: 
1 ( ) ( ) ( , ) ( )d ( ) ( , ) ( )d
2 j i ijk k i ijk kt n D t n S u

+ − + −Γ+Γ +Γ Γ+Γ +Γ

= Γ − Γ∫ ∫y y x y x y x y x                             (1) 

where it  is the traction components and ( )in y  denotes the thi component of the unit 
outward normal to the boundary at source point. ( , )ijkD x y  and ( , )ijkS x y  are linear 
combinations of derivatives of the Kelvin fundamental solutions, ( , )ijU x y  and ( , )ijT x y , 
respectively.  
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Figure 1: A finite domain with a crack 

The detailed expressions are given as: 
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x y                     (3) 

where r  is the distance between y  and x . E  and v  represent the Young’s modulus and 
Poisson’s ratio, respectively. in  is the unit outward normal at the field point x  on the 
boundary and , /i ir r x= ∂ ∂ . 

Based on the traction equilibrium assumed on the crack surfaces and the properties of 
fundamental solutions, the following formula can be obtained. 
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                                                         (4) 

where +x  and -x  are points on the upper and lower crack surfaces, respectively. 
Substituting Eq. (4) into Eq. (1), the first term on the right side can be reduced as: 
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Similarly, the second term on the right side in Eq. (1) can be rewritten as: 
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                            (6) 

where ( )ku +x  and ( )ku −x  denote the displacements on the upper and lower crack surface, 
and ( )ku∆ x  represents the components of RCOD, i.e., ( ) ( ) ( )k kku u u∆ = −+ −x x x . 
Substituting Eqs. (5) and (6) into Eq. (1), the traction boundary integral equation can be 
rewritten as: 
1 ( ) ( ) ( , ) ( )d ( ) ( , ) ( )d
2

( ) ( , ) ( )d

j i ijk k i ijk k

i ijk k

t n D t n S u

n S u
+

Γ Γ

Γ

= Γ − Γ

− D Γ

∫ ∫

∫ +

y y x y x y x y x

y x y x
                                       (7) 

When the source point y  is on the upper crack surface, using the relationship 
( ) ( ) ( ) 2 ( )jt t t t= − =+ − +y y y y , the traction boundary integral equation is modified as: 

( ) ( ) ( , ) ( )d ( ) ( , ) ( )d

( ) ( , ) ( )d

j i ijk k i ijk k

i ijk k

t n D t n S u

n S u
+

Γ Γ

Γ

= Γ − Γ

− D Γ

∫ ∫

∫

+ + + + +

+ + +

y y x y x y x y x

y x y x
                                (8) 

Eqs. (7) and (8) constitute the base of the direct traction boundary integral method for 
crack problems. When the source point is located in the integration element, the integrand 
will become highly singular, usually be treated as Cauchy or Hadamard principal value 
integrals depending on different kernels. In this study, the singular subtraction method 
developed by Guiggiani is utilized to evaluate the singular integrals. The details of the 
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singularity subtraction method can be found in Miao et al. [Miao, He, Luo et al. (2012)]. 
It should be noted that in this method only either crack surface is involved and needs to 
be discretized. The proposed method results in a smaller system of algebraic equations 
compared with the DBEM and also the proposed integral equation cannot obtain the full 
solution. 

3 Modelling strategy 
The existence of the principal value integrals in the traction boundary integral equation 
imposes special restrictions on the choice of elements required for the discretization of 
crack surfaces. These restrictions are due to the continuity requirements of the field 
variables for the existence of Cauchy and Hadmard principal value integrals. For 
convenience and simplicity, discontinuous quadratic elements as shown in Fig. 2 are used 
to discretize both the external boundary and the either crack surface. 

x

y

x
Element end point

Element collocation node

l l

(a) Global coordinate (b) Local coordinate

1− 1+1 2 3

 

Figure 2: Discontinuous quartic elements 

The crack tip is modelled with special crack-tip elements that exactly represent the strain 
field singularity 1 / r . A detailed deduction for the crack-tip element shape functions is 
given as follows, which is similar to the 3D crack-tip elements proposed by Miao et al. 
[Miao, Li, Lv et al. (2013)]. It should be pointed that the previous “quarter-point” 
element represents the singularity by translating the middle point of quadratic element. 
The proposed special crack-tip element is constructed by including the singularity into 
the displacement approximate. Assuming the crack tip lies at the local coordinate 1ξ = − , 
the distance | ( ) ( 1) |ξ= − −r ξξ   is proportion to 1ξ +  in local coordinate system. The 
RCOD ∆u  over the element adjacent to the crack front can be written as: 

2
0 1 2( ) ( )ξξ ∆ = ∆ = + +i iu u N I I r I r                                                                                    (9) 

where ( )ξiN  are discontinuous quadratic shape functions. To accurately model the 
singularity, Eq. (9) should be modified as: 
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                                                                   (10) 

The shape function ( )iM ξ  should be of the form of: 

1 2 3( ) 1i i i
iM a a aξξξ  = + + +                                                                                           (11) 

The shape functions in Eq. (11) must satisfy ( ) ( , 1,2,3)i j ijM i jξ δ= =  for each collocation 
node, and a set of 3 3×  linear system of equations can be obtained. By solving this 
system of equations, the shape functions for discontinuous crack-tip elements are 
obtained as:  
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(1 1 ) 1
( )
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λλξλξλλλ      
ξ

λλλ 

λξλξλ   
ξ

λλλ 

− + + + −
= −

− + − −

− − + + + − − + +
=

− + − −

− − − + +
=

− + − −

                                     (12) 

where λ  is the parametric position of collocation nodes and 0 1λ< <  (see Fig. 2). This 
formulation can represent exactly the strain field singularity, because 

3

1

( 1)( 1)i i
i

l

u Mu ξξ
ξξ =

∂∆ ∂ = −
= − = ∆ = ∞

∂ ∂∑                                                                       (13) 

Similarly, when the crack tip locates at 1ξ = , the singular shape functions are given as: 

1

2

3

(1 1 ) 1
( )

(2 1 1 )

( 1 1 ) 2 1 ( 1 1 )
( )

(2 1 1 )

(1 1 ) 1
( )
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M

λξλξλ   
ξ
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λλξλξλλλ      
ξ

λλλ 

λξλξλ   
ξ

λλλ 

− − + − −
= −

− + − −

+ − − + − − − + +
=

− + − −

− + − − +
=

− + − −

                                   (14) 

4 Stress intensity factor evaluation 
SIFs play an important role of characterizing fracture behavior in linear elastic fracture 
mechanics [Ghorashi, Valizadeh, Mohammadi et al. (2015); Areias, Msekh and Rabczuk 
(2016); Areias and Rabczuk (2017); Areias, Rabczuk and Dias-Da-Costa (2013)]. Only 
the crack element on the discretized crack surface is employed to evaluate the SIF. In our 
implementation, the RCOD can be obtained directly from the algebraic system. 
Considering a local polar coordinate system centered at the crack tip, the SIFs can be 
expressed as follows: 
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where IK  and IIK  are the SIFs for the deformation modes I and II, nu∆  and tu∆  are the 
normal and tangent components of the RCOD, respectively.  

3r

Crack tip P

2r2P

3P

 

Figure 3: Crack-tip boundary element 

By means of a linear extrapolation from points 2P  and 3P  as depicted in Fig. 3, the SIFs 
can be evaluated by 

3 32 2

3 2

P PP P
P

P P
r K r KK

r r
−

=
−

                                                                                                   (16) 

where 2PK  and 3PK  are the SIFs evaluated by Eq. (15) at points 2P  and 3P , respectively, 
and 2Pr  and 3Pr  denote the distance to the crack tip from points 2P  and 3P . 
The proposed method is based on the crack tip element, and compared with other 
methods, such as the J contour integral and M domain integral, is easier to implement. 

5 Numerical examples 
5.1 Rectangular plate with a central slant crack 
The first example considers a rectangular plate with a central slant crack in Miao et al. 
[Miao and Wang (2006)], as depicted in Fig. 4. The width of the plate is denoted by 2w  
and the height by 2h . The crack has the length 2a  with slant angle of θ . The plate is 
loaded with a uniform traction t , symmetrically applied at the ends. The ratio between 
the height and the width of the plate is / 2h w = . To compare with results of the DBEM, a 
mesh of 30 quadratic boundary elements was used, in which 6 discontinuous elements 
were uniformly distributed on the either crack side. As only one crack surface was needed 
to be discretized, the mesh in this example was 6 elements less than that of the DBEM. 



 
 
 
768   Copyright © 2019 Tech Science Press             CMC, vol.58, no.3, pp.761-775, 2019 

2w

2h
2a

θ

t
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Figure 4: Rectangular plate with a central slant crack ( / 2h w = ) 

Table 1: Normalized SIFs for a central slant crack in a rectangular plate 
( / 2h w = , 45θ =  )  [Portela, Aliabadi and Rooke (1992)] 

 I / ( )K t aπ  II / ( )K t aπ  

/a w  Our results DBEM Reference Our results DBEM Reference 
0.2 0.514 0.531 0.518 0.503 0.519 0.507 
0.3 0.536 0.554 0.541 0.512 0.528 0.516 
0.4 0.568 0.588 0.572 0.524 0.541 0.529 
0.5 0.609 0.632 0.612 0.541 0.558 0.546 
0.6 0.675 0.686 0.661 0.550 0.579 0.567 

First, the angle θ  was set as 45°. The accurate results at Tab. 1 for this problem were 
published by Murakami et al. [Lv, Miao and Zhu (2014)]. Five cases were considered 
with / 0.2 ~ 0.6a w = , respectively. The results obtained are presented in Tab. 1, as well as 
the results of the DBEM obtained by the displacement extrapolation method. The results 
are superior to those of the DBEM. When / 0.6a w = , the result is not accurate possibly 
due to the coarse mesh. The mesh refinement and convergence study were performed. It 
was found that if the mesh is refined around the crack, the results would be more accurate. 
For consistent and comparisons with the results in Portela et al. [Portela, Aliabadi and 
Rooke (1992)], the same mesh were employed without any refinement. Then, the graph 
of variation of normalized SIFs with slant angle θ  from 0° to 60° with /a w =0.2 was 
plotted as shown in Fig. 5. From Fig. 5, it can be observed that IK  decreases along with 
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the increase of θ  and reaches the maximum value at 0θ =  . On the other hand, IIK  
firstly increases and then decreases, which is in accordance with Laham et al. [Laham and 
Branch (1999)]. 
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Figure 5: Variation of stress intensity factors along with θ ( / 0.2a w = ) 

5.2 Rectangular plate with a single edge crack 
The second example considers a rectangular plate with a single edge crack as shown in 
Fig. 6. The width of the plate is w , with a height of 2h and a length of the edge crack a  
with a slant angle of θ . The plate is subjected to the action of a uniform traction t , 
symmetrically applied at the ends. In order to compare with the results of the DBEM, a 
horizontal edge crack ( 0θ =  ) was considered with / 0.5h w = . Five cases were 
considered, with / w 0.2 ~ 0.6a = , in which 2, 3, 4, 5 and 6 discontinuous quadratic 
boundary elements were utilized to discretize the crack surface, respectively. A total of 24 
discontinuous quadratic boundary elements were used to discretize the external boundary. 

Table 2: Normalized SIF I / ( )K t aπ  for a single horizontal edge crack in a rectangular 
plate ( 0θ =  ) [Portela, Aliabadi and Rooke (1992)] 

/a w  Our results DBEM Reference 
0.2 1.468 1.618 1.488 
0.3 1.693 2.014 1.848 
0.4 2.120 2.537 2.324 
0.5 2.813 3.292 3.010 
0.6 3.977 4.558 4.152 
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w

2ha
θ

t

t  
Figure 6: Rectangular plate with a single edge crack ( / 0.5h w = ) 

The results obtained with the proposed method and the DBEM are presented in Tab. 2. In 
the table, the reference solutions were published by Civelek and Erdogan [Irwin, Paris 
and Tada (2000)]. From Tab. 2, it can be seen that the results for the edge crack are less 
accurate than those of the central crack as shown in the first example. In contrast, the 
proposed method results are more accurate and conservative compared with DBEM 
results. the graph of variation of normalized stress intensity factors with slant angle θ  
from 0° to 55° with /a w  equal to 0.2 was plotted as shown in Fig. 7. From Fig. 7, it can 
be observed that IK  decreases along with θ , and IIK  first increases and then decreases, 
which is similar to the central slant crack. 
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Figure 7: Variation of stress intensity factors along with θ  ( / 0.2a w = ) 
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5.3 Circular/Elliptical arc crack in infinite domain 
The last example considers about curved cracks. First, a circular arc crack in infinite 
domain is taken into account as depicted in Fig. 8. The radius of the circle is 1.0R =  and 
2θ  denotes the central angle of the circular arc crack. Unit vertical traction is applied at 
infinity. The circular arc crack is discretized into 3 discontinuous quadratic boundary 
elements each 15 degrees. The exact solutions can be found in Civelek et al. [Civelek and 
Erdogan (1982)] as follows. Assuming θ  varies from 15-75 degrees, the results obtained 
for the SIFs are listed in Tab. 3. It can be seen from Table 3 that the results are in high 
agreement with the exact solutions. 

Table 3: SIFs for a circular arc crack in infinite domain under vertical traction 

θ  IK  Reference IIK  Reference 
15 0.844 0.849 0.226 0.229 
30 0.975 0.975 0.584 0.586 
45 0.813 0.811 0.907 0.906 
60 0.467 0.464 1.110 1.093 
75 0.055 0.053 1.107 1.101 

Then, a semi-elliptical arc crack in infinite domain as shown in Fig. 9 is taken as another 
example. a  and b  denote the semi-major and semi-minor axis, respectively. Unit 
horizontal traction is applied at infinity. When /a b  varies from 0.5 to 10, the results for 
the normalized SIFs are plotted in Fig. 10. Results have the same trend with the results 
reported by Narendran et al. [Narendran and Cleary (1984)]. 
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Figure 8: Circular arc crack in infinite domain under vertical traction 
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Figure 9: Semi-Elliptical arc crack in infinite domain under horizontal traction 
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Figure 10: Normalized SIFs for a semi-elliptical arc crack in infinite domain under 
horizontal traction 

6 Conclusions 
In this study, a direct traction boundary integral method for two-dimensional crack 
problems was presented as an alternative single-domain formulation. The traction 
boundary integral equation was collocated on both the external boundary and either side 
of the crack surfaces. The displacements and tractions were used as unknowns on the 
external boundary, while the RCOD was chosen as unknowns on either side of crack 
surfaces to keep the single-domain properly. Only one side of the crack surfaces was 
concerned and needed to be discretized. The proposed method resulted in a smaller 
system of algebraic equations compared with the DBEM. The existence of the principal 
integrals in the traction equation required continuity of the strain at the collocation node, 
thus both the external boundary and either of the crack surfaces were discretized with 
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discontinuous quadratic boundary elements. For the crack-tips, a new set of shape 
functions was utilized to represent the strain field singularity exactly, and the SIFs were 
evaluated by the extrapolation of the RCOD. Both straight and curved cracks were taken 
as numerical examples, and the results of the presented method showed a lower 
Normalized SIFs, compared with those of the DBEM. It can be concluded that, the 
proposed method which is based on the crack tip element, is very straightforward in 
compared with other methods, such as the J contour integral and M domain integral.  
In addition, applications of the BIEs to nonlinear problems need domain integrals or 
translating the domain integrals into boundary, which would be complicated and time-
consuming. Therefore, the BIEs is an optimal choice only for linear elastic fracture 
problem. Besides, the extension of applications to three dimensional will be considered in 
the future. Also, authors will investigate the detailed comparisons with the scaled 
boundary finite element method [Song, Ooi and Natarajan (2017)]. 
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