
CMC, vol.58, no.3, pp.727-760, 2019

Yield Stress Prediction Model of RAFM Steel Based on the 
Improved GDM-SA-SVR Algorithm

Sifan Long1, Ming Zhao2,∗ and Xinfu He3

Abstract: With the development of society and the exhaustion of fossil energy, researcher
need to identify new alternative energy sources. Nuclear energy is a very good choice, but
the key to the successful application of nuclear technology is determined primarily by the
behavior of nuclear materials in reactors. Therefore, we studied the radiation performance
of the fusion material reduced activation ferritic/martensitic (RAFM) steel. The main
novelty of this paper are the statistical analysis of RAFM steel data sets through related
statistical analysis and the formula derivation of the gradient descent method (GDM) which
combines the gradient descent search strategy of the Convex Optimization Theory to get the
best value. Use GDM algorithm to upgrade the annealing stabilization process of simulated
annealing algorithm. The yield stress performance of RAFM steel is successfully predicted
by the hybrid model which is combined by simulated annealing (SA) with support vector
machine (SVM) as the first time. The effect on yield stress by the main physical quantities
such as irradiation temperature, irradiation dose and test temperature is also analyzed. The
related prediction process is: first, we used the improved annealing algorithm to optimize
the SVR model after training the SVR model on a training data set. Next, we established
the yield stress prediction model of RAFM steel. The model can predict up to 96% of the
data points with the prediction in the test set and the original data point in the 2σ range.
The statistical test analysis shows that under the condition of confidence level α=0.01, the
calculation results of the regression effect significance analysis pass the T-test.

Keywords: Convex optimization theory, simulated annealing algorithm, reduced activation
ferritic/martensitic steel, support vector regression.

1 Introduction
Reduced activation ferritic/martensitic (RAFM) has excellent thermal, physical and
mechanical properties, such as high irradiation swelling and thermal expansion coefficient
and high thermal conductivity. RAFM steel is often chosen as the preferred material for
future fusion power stations and experimental reactors [Kemp, Cottrell and Bhadeshia
(2006)].
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In application, the yield stress is a highly important performance parameter of the material.
Under certain conditions, the yield stress is a nonlinear function of the deformation
velocity, deformation temperature and degree of deformation [Barnes and Walters (1985)].
There are many related variables and many uncontrollable factors in the measurement
process. Therefore, it is difficult to describe the performance of RAFM steel in engineering
applications. In this paper, the yield stress prediction model of RAFM steel is established
by the support vector regression (SVR) model in the field of machine learning [Joachims
(1999)]. The effects and joint effects of different parameters on the yield stress can be
analyzed, obtaining further analysis of the correlation prediction curve change before and
after irradiation. Prediction in the range of data based on the training set can be performed.
This article uses SVR to establish the prediction model of yield stress for RAFM steel.
SVM has been applied successfully in the field of text classification since it was put
forward by Vapnik [Cortes and Vapnik (1995)]. Through the training of the efficient
sequential minimal optimization (SMO) algorithm which was designed by Platt [Platt
and John (1998)], SVM has been successfully promoted in industry. With the excellent
performance, whether it is to address regression or classification tasks, SVM is always
one of the best algorithms compared to other similar algorithms [Gain and Roy (2016);
Jian, Shen and Li (2017)]. At present, the main research direction for the algorithm is
the application combined with other algorithms and improvement [Keerthi, Shevade and
Bhattacharyya (2014)]. For example, Ghamisi used it for feature selection [Ghamisi,
Couceiro and Benediktsson (2015)], Ananthi and others have used it for voice recognition
[Ananthi and Dhanalakshmi (2015)], and Darmatasia combined it with the CNN algorithm
for handwriting recognition [Darmatasia, Fanany and Ivan (2017)]. Although the SVM
algorithm shows excellent performance, there are still several problems. For example, the
selection of the kernel function is a serious and outstanding problem. To date, there are
many relevant studies. For example, Peng et al. used multicore SVM emotion recognition
[Peng, Hu and Dang (2017)]. Tan et al. used SVM for hyperspectral image classification
[Kun and Peijun (2010)]. The SVM algorithm has been used for unmanned aerial vehicle
(UAV) fault diagnosis [Ye, Luo and Li (2014)]. For studies on the application of fusion
material RAFM steel, Kemp and others used a neural network to study the performance
of RAFM steel [Kemp, Cottrell and Bhadeshia (2006)]. Neelamegam et al. studied the
optimization parameters of RAFM steel based on a hybrid intelligent model to obtain the
desired weld bead shape parameters and heat affected zone (HAZ) width [Neelamegam,
Sapineni and Muthukumaran (2013)]. These researchers combined the genetic algorithm
to optimize parameters of the RAFM steel material on welding. In recent years, the research
tends to be purely physical like the neutron irradiation study carried out by Gaganidze et
al. [Gaganidze and Aktaa (2013)]. Babu et al. performed a fatigue crack propagation study
[Babu, Mukhopadhyay and Sasikala (2016)]. Compared with this study, previous studies
were too monotonous to establish a systematic model to describe the influence mechanism
of related variables on yield stress. Although a number of traditional hybrid algorithms,
combined heuristic algorithm with machine learning, like SVM, artificial neural network
(ANN), naive bayes (NB) and other hybrid model are applied to other research fields.
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For example, the hybrid model composed of genetic algorithm (GA) and SA algorithm
combined with ANN is used to predict the groundwater level [Bahrami, Ardejani and Baafi
(2016)]. DJ Armaghani use particle swarm optimization combined with neural network
to predict the ultimate bearing capacity of rock-socketed pile [Zhang and Zhou (2016)].
Faced with the same task, there are also significant differences between different heuristic
algorithms. For example, Jia F and others have compared the genetic algorithm and particle
swarm optimization algorithm in the first-order design of TLS network [Jia and Lichti
(2017)]. The global optimization algorithm has stronger search ability in the solution
space but it cannot search accurately in a small range. Therefore, the heuristic algorithm
combined with the fine search algorithm can effectively avoid the shortcomings of both and
can effectively play their advantages.
In the prediction of RAFM steel, no one has used the hybrid model composed of simulated
annealing algorithm and support vector machine to analyze and study the yield stress of
RAFM steel before. This research has been proved by a lot of experiments,such as outlier
detection, clustering analysis and feature selection. This study establishes the GDM-SA-
SVR model based on the improved annealing algorithm. Within the 2σ error range of the
test set, the prediction under the conditions of a given test temperature and radiation dose
can achieve a prediction accuracy of 96%. The T-test showed that there is 99% confidence
that the regression effect is significant.
This article is composed by 5 sections. Section 2 makes some necessary analysis on the
data set, this section explains that the characteristics of RAFM steel data set distribution a
relatively complex distribution. Section 3 is to improve the simulated annealing algorithm
and combine with SVR to form a hybrid prediction model for the yield stress of RAFM
steel. Section 4 is to compare the model proposed in this research and other similar models
on the test set, which is to illustrate the effectiveness of the hybrid model proposed in this
paper. Section 5 used the hybrid model proposed in this paper to analyze the effect of the
main parameters of RAFM steel on the yield stress, and finally gives the prediction results.

2 Dataset analysis
The dataset is a part of the result in a radiation experiment. In the field of data mining, the
quality of the data directly affects the result of the experiment. Therefore, in applications,
data processing often takes up 80% of the work of the data analysts [Witten and Frank
(2011)]. Using statistical methods and data visualization technology to analyze the original
data set represents a valuable feature trend that usually is a necessary indicator of a
successful selection for a suitable model.

2.1 RAFM steel dataset

The data used in this paper are data points on RAFM steel irradiation experiments when the
radiation dose is in the range of 0∼90 (dpa). The data used in this paper consist of a total
of 1811 experimental data points and 37 associated characteristic attribute parameters. In
other words, this paper addresses a multielement nonlinear function with 37 elements, and



the ordinary linear model cannot reach the actual requirements. Therefore, it is necessary to
find the appropriate model. The attribute distribution of the data is shown in the Appendix
A [Kemp, Cottrell and Bhadeshia (2006)].

2.2 Symmetry, correlation analysis and outlier detection

Tab.6 in Appendix A shows that the distribution of data samples in a single dimension
is asymmetrical and is accompanied by many outliers. That situation is not conducive to
the establishment of an accurate model. The predictability between the data sample and
the result label cannot be predicted. Therefore, a more comprehensive analysis is needed
from the microscopic perspective. To determine the predictability of data samples and
whether there is multicollinearity between attributes, it is necessary to use the statistical
Pearson correlation coefficient [Taylor (1990)] (simple correlation coefficient) to measure
the intimate degree among attributes. The calculation formula is as follows:

r =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)√∑n
i=1

(
Xi − X̄

)2√∑n
i=1

(
Yi − Ȳ

)2 (1)

The Pearson correlation coefficient can simply judge whether there is a linear relationship
between two attributes, that is, whether the attributes are collinear, where X and Y are two
one-dimensional data sets, X̄ is the mean of X, and Ȳ is the mean of Y. Because the Eq.
(1) is symmetric, the Pearson coefficient has no effect on the order of computation, that is,
rXY = rY X . Relevant criteria for evaluation are usually used to determine the degree of
correlation [Nicewander (1988)]. Given the significant level of α (generally α=0.05) and
the degree of freedom (n-2), where α is a confidence level, for example, when α=0.01, we
can get 99% probability to make decision inference. Then, we check the R distribution table
for Rα, if |r|> Rα, the correlation coefficient is significant. To facilitate the discrimination,
ensure that values of the |r| can meet the following relationship according to the simplified
criteria.

Table 1: Criteria for determining the correlation coefficient

Index |r| Degree of correlation

a 0.8-1 Extremely strong correlation
b 0.6-0.8 Strong correlation
c 0.4-0.6 Moderate degree correlation
d 0.2-0.4 Weak correlation
e 0-0.2 Extremely weak correlation or unrelated
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Attribute the Pearson coefficient between(1-17,18-37)
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(a) Attribute 1-17 and 1-37
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(b) Attribute 18-37 and 1-37

Figure 1: Correlation between attribute variables. The Pearson coefficient is calculated to
detect the collinear relationship between attributes to infer the impact of the final model.
Because of the properties between the Pearson coefficient and sequence independence, the
image map is symmetrical

In regression analysis, we need to understand the pure effect of each independent variable 
on the dependent variable. Multilinear means that there is a certain functional relationship 
between the independent variables. If there is a functional relationship between the two 
independent variables (x1 and x2), then x2 will change accordingly when x1 changes a



unit. At this time, you can not fix the other variables. Conditions, if we examine the
effect of x1 on dependent variable y alone, the effect of x1 you observe is always mixed
up with the effect of x2, which leads to analysis errors, making the analysis of the effects
of independent variables inaccurate, so we need to exclude the effect of multicollinearity
in regression analysis. Tab. 1 shows that some attributes do have multiple collinear
relationships, the relation coefficient between attributes is constructed into a matrix, similar
to the adjacency matrix used to describe the adjacent relations of edges in graph theory.
The (i, j) th element of the matrix represents the correlation coefficient between the i th
attribute and the j th attribute, and then draws these matrix elements onto the thermograph.
The diagonal correlation is the highest, and the overall image is axisymmetric because the
diagonal is more self-related to the attribute. Secondly, the Pearson correlation coefficient
is not in the order of calculation. In other words, R(i,j) is equal to R(j,i). the degree of
relevance is divided into 5 levels. When the correlation coefficient is above 0.8, we must
process the data set, such as removing duplicate data, normalizing data and data cleaning.
When the correlation coefficient is low, such as less than 0.4, we can not deal with it. Fig. 1
shows that there is no strong correlation between attributes except attribute 15 and attribute
28, which ensures that our model can be influenced by the collinearity of attributes.
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Box-plot of RAFM steel data set (normalization)

Figure 2: The box-plot of 37 attribute values of RAFM steel shows that most of the attribute
distributions are asymmetrical. In addition, there are many outliers

The distribution of data can affect the training process of the prediction model. Compared
with the skewed distribution, the symmetry of the data contains a lot of information, and
the distribution of information is more balanced, which will ease the learning task of the
prediction model. In order to comprehensively analyze the data sets of RAFM steel, we
use the box-plot in statistics to analyze it. It contains six data nodes, from which a set
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of data is arranged from large to small, respectively, to calculate the upper edge of the
data, the upper four digits Q3, the median, the lower four digits Q1, the lower edge, and
an exception value(outliers). The specific content of the box diagram can be referred to
the work of Robert Mcgill et al. [Mcgill, Tukey and Larsen (1978)]. Fig. 2 shows the data
symmetry and outliers by using box diagrams to display the original data. The graph shows
that the set of attributes presents asymmetrical distribution, and there are many outliers (’+’
representing outliers), which has a great challenge to the prediction results. Therefore, we
must be able to find a model with strong anti noise ability, strong robustness and high
generalization performance. It is difficult to use the traditional method, which will affect
the final stability of the model.

3 SVR yield stress model of RAFM steel
Among a large number of heuristic search algorithms, different algorithms have different
application scenarios. For example, the traditional genetic algorithm process is too complex
for prediction of yield stress of RAFM steel [Zhang and Zhou (2016)], particle swarm
optimization (PSO) algorithm is not good for solving discrete processing problem, it is
easy to fall into the local optimum [Du (2016); Zhu and Cai (2016)]. Simulated annealing
algorithm has many advantages, such as fast convergence speed and efficient algorithm. So,
it is often applied to various optimization methods [Chen, Zou and Wang (2016)]. Based on
these advantages, this study uses simulated annealing algorithm as the main optimization
tool. This section will introduce the improved annealing method and the model of yield
stress based on the SVR yield stress model of RAFM steel. Most search algorithms adopt
the heuristic search method, but the ability to use information is deficient. Therefore, it
is essential to improve the traditional annealing search algorithm by combining search
information.

3.1 GDM-SA search algorithm

To accurately adjust the parameters of the SVR model, the simulated annealing algorithm
must be improved to obtain the simulated annealing algorithm based on a smooth convex
optimization and the gradient descent search algorithm, known as the GDM-SA algorithm.
Compared with the traditional search algorithm, the GDM-SA algorithm can be used as a
global search, and the algorithm can address the problem that the exact algorithm cannot be
solved when the scale of the data is large. In the traditional simulated annealing algorithm,
the general process is as follows.

1. Initialization: Set a high enough initial temperature T0, and make T=T0, random
initialization solutionS1, markov chain length L.

2. A new solution S2 is generated from the current S1 random perturbation.

3. Calculating the increment of S2 ∆f=f(S1) -f(S2).



4. If ∆f<0, accept the current solution, otherwise the new solution can only be accepted
by the probability of exp(-∆f/T).

5. If the iterative condition is satisfied, save the optimal solution as is and end the
program. Otherwise, perform do cooling according to the decay function and return
to Step (2).

In the process of cooling, it is difficult to determine when the cooling achieves stable
status. The traditional method is to fix the length of a markov chain directly. The
problem is highly complex in that the objective functions in reality are always complex
functions with multiple stagnation points, multiple saddle points, non-smoothness and
other characteristics, and there are multiple local minima. Therefore, ordinary optimization
methods will face more severe challenges. This paper uses a gradient descent algorithm to
improve the range of the search region in the process of cooling. At the same time, this
paper uses gradient data to give the algorithm local directivity.
In the process of annealing, if the number of iterations times is k, try to find the solution
that meets the accuracy requirement in the K iterations. The algorithm tends to be stable at
current temperature, and then proceed to the next iteration.
Given the following sets of training samples
(X1,Y1),(X2,Y2),(X3,Y3),...,(Xk,Yk)
The error calculation formula used in the K iteration:

Ek =
1

2

ι∑
i=1

(
ŷki − yki

)2
(2)

After K times iteration, define the measure of overall cumulative error

< def
= E1 + E2 + E3 + E4 + ...+ Ek (3)

Satisfying

∂Ei
∂Ej

= ξij =

{
1, i = j
0, other

(4)

In fact,

< =
1

2

k∑
i=1

m∑
j=1

(
ŷij − yij

)2
(5)

The above statements shall satisfy the independence assumption. Certainly, it is impossible
to be completely independent in practice because there are overlapped parts of data samples
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on the training set, and there will be correlations between the trained learners depending
on the actual situation.
The error in the K iteration is Ek,∀Ek ∈[τk,ηk],∀ε−→0, according to the Hoeffding
inequality, it has

P

(
|< − E [<] | 6

√
2

2
ε

)
> 1− 2exp

[
− 1∑k

i=1

( τi−ηi
ε

)2
]

(6)

The above shows that the precision of system itself has an exponential increase after K
times [Ruxton (2010)], where K is a given number.
Considering that the mathematical properties of the cost function Ek are not good, use the
exponential loss function as an alternative function. Some researchers already proved the
consistency of the exponential loss function and the square loss function [Zhang (2004)].
Thus, use the exponential loss function as the optimization objective, and the original
formula becomes

ι(k) = Ek∼χ[exp(−g(k))] (7)

Where g(k)=Ek and Ek∼χ is the mathematical expectation of the characteristic space χ.
Then, use the method of smoothing convex optimization approach to optimize the new
target function [Bubeck and bastien (2015)], that is to minimize the new objective function
ι(k)

minι(k) (8)

subject to χ→ Ψ, k ∈ χ ⊂ Ψn (9)

where the χ is the characteristic space of the training sample set, and the ψ  is the 
characteristic space of the overall sample set.
There are many ways such as the Lagrangian multiplier method to optimize the objective 
function, coordinate the descent method, the Newton method, the gradient descent method, 
and the variant methods derived from them. Using different optimization methods will have 
different effects on search results. The cost function has been converted to the exponential 
loss function [Singh, Singh, Singh  et al. (2008)], therefore, use the gradient descent 
method to do optimization since the exponential loss function has good mathematical 
properties.
The gradient descent method requires that the following sequence can be constructed:

Ki+1 = Ki + µ∆Ki, i = 1, 2, 3, · · · (10)

And requiring

ι(ki+1) < ι(ki) (11)

In this instance, we used the idea of relaxation and approximation, and constructed a series
of relaxation variables to approach the real functions. With the increase in the iteration
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times, and the contracted sequences, we can finally guarantee algorithm convergence. In
practice, µ is a step factor. To ensure convergence quickly, the direction of the descent
should be in the negative direction of the gradient. The next section will deduce the
optimization problem for this study.
During the iterative process, given that the error of the i time is Ei, perform the second
order Taylor expansion here because when the error is very small, the higher term of the
Taylor expansion is the high order infinitesimal about the step factor µ which is also called
the learning rate in a neural network. The objective function can be approximately replaced
by the following quadratic polynomial.

ι(ki+1) ≈ ι(i) +

[
∂ι(ki)

∂ki

]>
(ki+1 − ki) +

1

2
(ki+1 − ki)>

∂(∂ι(ki)∂ki
)

∂ki
(ki+1 − ki) (12)

The upper form is the approximation function that is formed by the quadratic expansion
structure. For the optimization function ι(k), here further are:

ι(ki+1) ≈ exp(−g(ki)) · (1−∇g(ki) · (ki+1 − ki)) +
1

2
H [exp(−g(ki))] · (ki+1 − ki)2

(13)

Mark ∇ is a gradient operator,and H[f(x)] is the second order Hessian matrix of the f(x)
function [Powell (1979)]. For the definition of the Hessian matrix, please refer to convex
optimization theory [Bubeck (2014)], and the corresponding Hessian matrix here is:

H[exp(−g(ki))] = exp(−g(ki))
[
∇g(ki)

2 −H[g(ki)]
]

(14)

In actual operation, because the calculation of the Hessian matrix absorbs extensive
computing resources [Mcgill, Tukey and Larsen (1978)], the complexity grows
exponentially with the increase of scale of the problem. Therefore, the relatively simple
matrix (1/µ)I that is like the Hessian matrix is used to approximate the substitution and I
is the k identity matrix. From that, the new simplified formula is as follows:

ι(ki+1) ≈ exp(−g(ki)) · (1−∇g(ki) · (ki+1 − ki)) +
1

2µ
‖ki+1 − ki‖22 (15)

The gradient vector operator near point ki+1 is obtained by the quadratic approximation
method.

∇ι(ki+1) =
∂ι(ki+1)

∂ki+1
= −exp(−g(ki)) · ∇g(ki) +

1

µ
‖ki+1 − ki‖1 (16)

Refer to convex optimization theory for the second order gradient analysis of the real
variable function [Mcgill, Tukey and Larsen (1978)]. The necessary condition for the
existence of a first-order extreme point is to meet the requirement that the gradient is 0,
using the following formula:

ki+1 = ki + µ · ∇g(ki) · exp(−g(ki)) (17)
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The upper form is the updated iteration formula of this algorithm. If the search ability
cannot meet the specific data requirements, we can also use the second order gradient that
is the information of the Hessian matrix to find a faster descent direction. The optimized
objective function is as follows:

min
∆k

(k + ∆k) = ι(k) + (∇ι(k))> ·∆k +
1

2
(∆k)> · ∇2ι(k) ·∆k (18)

With reference to convex optimization theory, the necessary and sufficient conditions for
the second order gradient analysis of a real variable function shows that in order to obtain
the local optimal point of the original function (it is the minimum here), the first order
gradient of the iterative increment is 0 and the second order gradient is positive. The
Hessian matrix is required to be a positive definite matrix. Therefore, it is necessary to
find the constraint conditions.
The concept of a convex set, that is, for a given set S that is a convex set, two arbitrary
points A and B belong to S and the line segments connecting them are also in the set S. It
is as follows:

a, b ∈ S,∀τ ∈ [0, 1]⇒ τa+ (1− τ)b ∈ S (19)

For the objective function, there is:

H[ι(g(k))] = ∇(−∇g(k) · exp(−g(k))) = ∇g(k)2 · exp(−g(k)) > 0 (20)

The objective function ι is a lower convex function. Therefore, any convex function
satisfies the Jensen inequality

∀ki, ki+1 ∈ ℘,∀λ ∈ [0, 1] (21)

ι(λki + (1− λ)ki+1) ≤ λι(ki) + (1− λ)ι(ki+1)− µ

2
λ(1− λ)(ki −Ki+1)2 (22)

when µ>0,ι is a strong convex function. Therefore, the sufficient and necessary condition
for the strong convex function ι to be an objective function that is defined on R is that if
and only if ι can be a quadratic differential and the Hessian matrix is a positive definite
matrix.

Hkι(k) =
∂2ι(k)

∂k∂k>
� 0,∀k ⊂ ℘ (23)

From the above analysis, the objective function ι satisfies the constraints of the second order
convex optimization. After the above constraints are satisfied, the second order algorithm
of the smooth convex optimization can be used to analyze the second order gradient of the
objective function ι. Therefore, it has the following:

∂ι(k + ∆k)

∂∆k
= ∇ι(k) +∇2ι(k)∆k = 0 (24)

Thus, the second order iterative formula for this study is obtained.

∆knt = exp(−g(k)) · (∇2ι(k))−1 · ∇g(k) (25)
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The upper form is called the Newton method, which uses the information of the second
order gradient to optimize. The updated direction is more accurate, but the drawback
is the inverse calculation of the Hessian matrix and the iterative process will also take
up extensive of calculation resources. It is necessary to consider the actual situation for
screening and this study gives two optimization methods above.
Applied to the cooling process during annealing, searching the optimal value in the process
of cooling under the current temperature by the above algorithm, the algorithm will
converge to an optical point and end the search. The algorithm will reach the stable status
of the cooling process and start the next round of temperature cooling. The pseudo code of
the whole process is represented in reference Tab. 2.
Tab. 2 is the use of pseudo code to explain the main program of the combinative annealing
algorithm. The traditional annealing algorithm will set a fixed metropolis inner loop chain,
except the Steps 5∼16, as a short-term equilibrium constraint condition at the current
temperature. This balance is called a steady state under the current temperature. However,
this approach is relatively fixed, and it is difficult to know whether it reached the steady
state or not after the iteration. Therefore, the GDM algorithm is designed to automatically
adjust and optimize the algorithm to reach balance by the given precision value. Compared
with traditional SA algorithms, the GDM algorithm is more flexible and the scope of the
search space is also expended.

Table 2: Improved simulated annealing GDM-SA algorithm

Input Training data set D={(x1,y1),(x2,y2),...,(xn,yn)};

Main
pa-
ram-
eters

The annealing temperature T, the attenuation parameter R, Tolerance T_min, the maximum iteration
number Imax, learning rate step factor µ, and the stable precision ε are set.

1: Random initialization parameters
2: While T>T_min do
3: L(x)←− newL(x);
4: ∆ L(x)←− L(x)-newL(x)
5: If ∆ L ≤ 0
6: Accept new solutions and execute the GDM algorithm into the steady status
7: For ε′ >ε do//Execute GDM algorithm
8: K′←−K-µ∆K;
9: End for
10: Elseif rand()>exp(-∆L/T)
11: The new solution is accepted with a certain probability, and the GDM algorithm is executed into

steady status
12: For ε′ >ε do //Execute GDM algorithm
13: K′←−K-µ∆K;
14: End for
15: Else
16: Do not accept new solutions
17: T←− r * T; //Annealing and cooling
18: End while
19: output the best values;
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3.2 Comparison with unimproved algorithms

Compared with unimproved annealing algorithms, the simulated annealing algorithm of
GDM has the advantages of a wider search range and easing of the premature local
optimization. To verify the above advantages, chose the following complex functions as
the test target to search the minimum of function f(x1,x2). The function formula is

f(x1, x2) = (x2
1 + x2

2)0.4 · sin2(40(x2
1 + x2

2)0.1) + 1 (26)

This function has numerous local minimum points,and it is easy to find that the global
minimum of this function is x1=0, x2=0. At this point, f(x) takes the global minimum
value of 1, that is

f(x1, x2)min = 1 (27)

x1 = 0, x2 = 0 (28)

After selecting certain tasks, perform the comparison and analysis of the search capability
between the simulated annealing algorithm improved by the GDM algorithm and the
previous one. Set the same annealing parameters. The attenuation parameter is 0.95. The
step factor is 10 (force to control the disturbance). The initial temperature is 100, and
the tolerance is 0.0001. The learning rate of GDM is 0.001. The maximum number of
iterations is 4000. The minimum change curve of function f(x) obtained in the iterative
process is calculated as shown in Fig. 3 below.
Fig. 3 shows the results of calculating the minimum value of the given complex
function on the examples given in this study. Under the same conditions, we compare
the traditional simulated annealing algorithm, GDM-SA algorithm, particle swarm
optimization algorithm and artificial bee colony (ABC) algorithm [Gao, Suganthan and Pan
(2016)]. The average results of each algorithm are obtained by running several times, and
then the graph of search results changing with the number of iterations is drawn. It can be
seen that the traditional optimization algorithm falls into the local optimum after the search,
such as the traditional simulated annealing algorithm with an optimum value of 1.775,
particle swarm optimization with an optimum value of 1.996, artificial bee colony with an
optimum value of 2.063. The optimal value of GDM-SA algorithm is 1.498, and the search
space is wide. Our explanation is that in the process of searching, we can make full use of
the advantages of accurate search to find the best value after falling into the local optimal
value, and at the same time, we can jump out of the local optimal value by combining
the idea of annealing algorithm. Finally, our improved algorithm obtains better results
than a single heuristic algorithm. However, the improved annealing algorithm of GDM
can almost achieve a global optimal solution. Therefore, Fig. 3 shows that the improved
simulated annealing algorithm has a stronger searching ability, faster convergence speed
and wider search scope. The above experiment is only a method to compare under the same
conditions. When the temperature rises appropriately, the traditional simulated annealing
algorithm can also approach the global minimum.
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Figure 3: The search results of GDM-SA algorithm and traditional simulated annealing
algorithm, particle swarm optimization algorithm and artificial bee colony algorithm
on function extremum optimization problem. Each algorithm performs at least three
experiments, and then the search results are averaged to plot the optimal value and the
number of iterations.

The results above show that the SA algorithm combined with the GDM algorithm, known
as the GDM-SA algorithm, has a strong search ability. Next, the parameters of SVR are
optimized by the GDM-SA algorithm to get the spatial grid research results within the
interval range of optimal value. This paper introduces the SVR model of GDM-SA below
and later establishes the yield stress prediction model of SVR.

3.3 GDM-SA-SVR yield stress model

This study use the SVR model to establish the yield stress model [Huang and Tsai (2009)].
The principle of the SVR model is referred to the work of Vapnik [Cortes and Vapnik
(1995)].
Referring to the data distribution of RAFM steel in Appendix A, the magnitude difference
between different attributes is large. For example, carbon element content and the test
temperature have 10000 orders of magnitude difference. In scientific calculation, it is
necessary to prevent two very large numbers from calculating directly, which will lead to
the loss of calculation precision and data information. Therefore, the normalization process
is needed [Wang and Tang (2015)]. The minimum and maximum normalized normalization
formula is used here.

v
′

i =
vi −minA

maxA −minA
(newmaxA − newminA) + newminA (29)

The strategy used in this paper is using the improved simulated annealing algorithm GDM-
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SA to optimize the penalty factor C of SVR and the kernel function parameter G (gamma) to
get an approximate interval of extreme value. Meanwhile, for the regression error threshold
parameter epsilon (general experience value is 0.1), when the error is less than the modified
value, it will not be punished, and the value will be punished when the error is bigger than
the modified value. That is equivalent to the expected regression precision, so it has a
significant effect on the result. In order to obtain more accurate results, we set a more
subtle adjustment interval. Then, use the space grid search algorithm for accurate search
[Liu, Liu and Yang (2006)]. The combination of rough and precise search can effectively
approximate the global optimal solution.
Train the model on a training set by the annealing algorithm [Ginneken and Van (2016)].
Calculate the mean square error. The formula used in the K iteration is the mean square
error formula Ek , above. (Refer to the definition in the last chapter).
Combine with the above design model to design a preliminary algorithm to iterate and
optimize parameters C and G of SVR. To obtain more solutions, a more robust method is
used to save the number of m optimal solutions after each iteration. Next, the number of
M optimal solutions is sorted by the merging sort and stored in the matrix structure and
the final product is output. To date, the annealing algorithm SA was improved by the GDM
algorithm to optimize the SVR model, and saved the number of m best optimal solutions
of the SVR model. The whole flow chart is shown as the Fig. 4. The related attenuation
parameters are set to 0.95, the step factor is 10 (force to control disturbance), the initial
temperature is 80, the tolerance is 0.0001, the GDM learning rate is 0.001, the maximum
iteration number is 2000. Tab. 3 shows that 10 optimal values were selected after an iterated
annealing algorithm.

Table 3: The best parameter values from different groups in a certain iteration (here
epsilon = 0.1)

Index Best C Best G Error

1 25.29710369 17.08638799 0.008325685
2 23.93748805 15.58713842 0.008328292
3 25.31997575 14.78919021 0.008322496
4 25.29052213 14.68531137 0.008321027
5 23.89358021 14.84428247 0.008326067
6 25.44601581 17.68439861 0.008327954
7 24.66109982 15.72346235 0.008327622
8 25.36246968 15.13926097 0.008320294
9 25.10177947 15.10707552 0.008323473
10 24.96402485 17.34268876 0.008327509
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Figure 4: Flowchart of improved simulated annealing algorithm. The improved algorithm
process is more complex, and search ability is enhanced

Excessive penalty parameters will increase the accuracy of the training set but will lead to 
overfitting. In practice, we are inclined to choose relatively small parameter values. After 
many times of simulated annealing algorithm optimization, the final optimal value is 
C=16, G=8 and epsilon=0.0065. After initial determination of the optimal range, start the 
space grid search [Liu, Liu and Yang (2006)].

742 Copyright©c 2019 Tech Science Press CMC, vol.58, no.3, pp.727-760, 2019



Yield Stress Prediction Model of RAFM Steel

SVR Parameter selection error contour[GridSearchMethod]

Best c=11.3137 g=0.25

0.02

0.
02

0.025

0.025

0.03

0.03

0.03

0.035

0.035

0.
04

0.04

0.045

0.05

0.
05

0.055

0.06

0.
06

0.065

0.
06

5

-10 -5 0 5 10

log
2
c

-10

-5

0

5

10
lo

g
2
g

SVR Parameter selection error contour[GridSearchMethod]

Best c=4.7568 g=0.35355

0.018

0.02

0.02

0.02

0.022

0.022

0.024

0.024

0.026

0.026

0.028

0.028

0.03

0.
03

0 2 4 6 8 10

log
2
c

-6

-5

-4

-3

-2

-1

0

lo
g

2
g

(a) Error contour

0
10

0.02

5 10

0.04

m
ea

n 
sq

ua
re

 e
rr

or

SVR parameter selection error 3D view[GridSearchMethod]
Best c=11.3137 g=0.25

5

log2g

0

0.06

log2c

0
-5 -5

-10 -10

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.015

0.02

0.025

10

0.03

0.035
m

ea
n 

sq
ua

re
 e

rr
or

5

log2c

SVR parameter selection error 3D view[GridSearchMethod]
Best c=4.7568 g=0.35355

log2g

0 -6-5-4-3-2-10

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

(b) Error surface

Figure 5: Error contour and surface map after multiple iterations. Every iteration, the 
search area will be further reduced, and we can then determine the global optimal solution 
through repeated iterations

Take the sampling points of two dimensions in the optimal value interval calculated by the 
annealing algorithm, which is the test point of the parameters C and G. Taking the mean 
square error as the evaluation standard, make the three-dimensional coordinate diagram of 
the error of parameters C and G and draw the corresponding isogram. By analyzing the 
contour lines, the search range is further reduced and is repeatedly iterative to obtain the 
parameters that meet the requirements of the error precision and finally end the algorithm.
After repeated iteration through the above methods, the parameters C and G with small 
errors are finally approximated, and the value is assigned to the SVR model to retrain the 
model on the training set and finally obtain a relatively ideal model. Through the preceding 
analysis, for the extremum optimization problem of complex functions, find the optimal 
value by a heuristic algorithm (most are locally optimal) and then, after repeatedly iterative 
analysis, it can approach the global optimum infinitely [Zien, Kramer and Sonnenburg 
(2009)].
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To date, an SVR model of 37 attribute variables on yield strength YS has been established.
The following is the test and prediction analysis of the mode.

4 Test and analysis of the model
4.1 Model learning

When evaluating the performance of a model, a very important index is the learning
situation of the training samples. Lack of learning will lead to underfitting, and the
prediction results will reflect the high deviation characteristics. Overlearning will learn
some features of the sample itself (for example, sample noise), and there will be overfitting
at this time. The prediction results have a high variance characteristic. The ideal
situation is to make a compromise between underfitting and overfitting. The generalization
performance of the model is the best at this time. Overfitting and underfitting always
accompanied the whole process of machine learning. Many factors are needed to be
considered in the training model, and another important reason is that there is not a
complete theory to guide a model for meeting the main problems in the process of
establishing the model, such as training guidance and evaluating sample information. Even
so, there still are some computational learning theories that can be used to analyze the
learning model.
For a training set, we assume that learning satisfies the requirement by reaching a certain
precision, ε [Zeugmann (2016)], and it is recorded as time h, the number of samples is t,
and in the iterative training process, define the hypothesis space R. Next comes

P (∃h ∈ R→
∣∣∣E(h)− Ê(h)

∣∣∣ > ε) = P ((|Eh1
− Êh1

| > ε) ∨ · · · ∨ (|Ehj
− Êhj

| > ε))

(30)

≤
∑
h∈R

P (E(h)− Êh > ε) ≤ 2Rexp(−2tε2) (31)

when the number of samples t is big, the empirical error of H can be approximated to
replace the generalization error. Given the hypothetical space R, when t→∞, the right side
of the inequality is 0. There must be a hypothesis that the generalization error is minimal
to guarantee the learning process. The following Fig. 6 shows the learning of the sample
after the final model training.
The training set used in this paper selects 1711 data training models from a random disorder
sequence, and the remaining 100 data training models are used to verify the model. In the
process of training the model, Fig. 6(a) is over fitting learning the situation. Fig. 6(b) is the
learning situation between under fitting and over fitting, that is, learning the characteristics
of samples, and noisy data not learned here, so there are some large deviations. This
phenomenon is a normal. The data itself not only contains the noise data points but also
the contradictory data points.
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Figure 6: Overfitting and not overfitting sample learning

4.2 Model comparison

To verify the performance of the model, compare the model with other similar models 
including ANN, random forest, linear regression and general regression neural network 
(GRNN). Train these models on the same set of data and then test these models on the 
same test set. Get the absolute error (residual) and error distribution of the predicted results. 
Perform test results statistics with the similar models. Fig. 7 to Fig. 11 is the result of error 
analysis.
The Tab. 4 is a specific s t atistical analysis table. I n the filed of ma ch ine le ar ning, use 
statistical methods to test regression problems. and then, we obtain the residuals of 
prediction results and expected results on test sets. Perform statistical analysis of residual 
data by the commonly statistics including mean, maximum deviation, variance, standard 
deviation and mean square error (MSE) and goodness of fit ( a lso c a lled c o efficient of 
determination). In general, the mean value of error obeys a normal distribution, and the 
closer to 0, the better the mean value of error is. The smaller the value of the maximum 
deviation, variance, standard deviation and mean square error are, the better the parameters 
themselves are. When the goodness of fit, known as the coefficient of determination 
R2, is the closer to 1, the better the effect of the regression is. Tab. 4 is the BP neural 
network, random forest, linear regression, generalized regression neural network and the 
GDM-SA-SVR algorithm used in this paper. It is obvious that GDM-SA-SVR has much 
better performance than other similar algorithm models in addition to the relevant smaller 
disadvantages. Therefore, the GDM-SA-SVR algorithm model is effective.
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Figure 7: Absolute error and frequency distribution histogram of BP neural network

Table 4: Performance comparison of BP neural network, random forest, linear regression,
GRNN (generalized regression neural network) and GDM-SA-SVR algorithm on test set

Error S-
tatistics

BP
Neural
Network

Random
Forest

Linear
Regres-
sion

GRNN GDM-
SA-SVR

mean val-
ue

20.51900694 -2.350357661 -18.70689077 106.6010736 -1.5253643

maximum
deviation

-410.4 -367.6 -433.2 498.6 -317.2

variance 9.84E+03 6.70E+03 1.59E+04 1.38E+04 4.26E+03
standard
deviation

99.21 81.85 126.01 117.43 65.27

mean
square
error

1.02E+04 6.64E+03 1.61E+04 2.50E+04 4.35E+03

goodness
of fit

0.732619977 0.804896505 0.60397564 0.635439089 0.880247139
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Figure 8: Absolute error and frequency distribution histogram of random forest

4.3 Significance test of the regression effect

The content of the previous section has explored the learning situation of the model for
sample data and only assesses the ability of a model to store characteristic information
of a data sample. Since the partition of a training set is completely independent, the
performance of a test set is truly to show the predictability of the model when the model
is used to predict. Given a test set that is not trained, the prediction effect of the model is
different from the reality.
Fig. 12 shows that 96 of the 100 data points on the test set fall within the two times
sigma range of the prediction curve, and only four of the number are out of the range. The
regression effect is very obvious from preliminary judgment, but for further analysis, it is
necessary to test the results and the actual results by the T-test [Ruxton (2010)], it is uses
the t distribution theory to deduce the probability of occurrence of differences, so as to
compare whether the difference between the two averages is significant. Therefore, it is
possible to test whether there is a significant difference between the predicted result and
the actual result.
For the original problem, it is assumed that there is a linear relationship between the
predicted results and the actual results, and the regression coefficient set as b.

1. Putting forward the original hypothesis of regression coefficient
H0 : b = 0 (32)

747



0 10 20 30 40 50 60 70 80 90 100

sample

-500

0

500
er

ro
r

Scatter point of error µ µ+σ µ-σ µ+2σ µ-2σ

-500 -400 -300 -200 -100 0 100 200 300 400

interval

0

2

4

6

fr
eq

ue

Error distribution of linear regression

Frequency histogram Theoretical normal distribution

Figure 9: Absolute error and frequency distribution histogram of linear regression

2. Structural statistics T, and satisfy

T =
b̂

σ̂

√
Lxx

H0 true∼ t(n− 2) (33)

3. Given the significance level α(0<α<1) making

P (|T | > tα/2(n− 2)) = α (34)

4. Get a rejection region

|T | > tα/2(n− 2) (35)

Calculate T statistics through the experimental results and the test results. Accept
the original hypothesis if the rejection region is not satisfied, that means the predicted
effect does not have a linear relationship. Otherwise, the prediction effect has a linear
relationship. The effect of regression is remarkable.
For a given confidence level α=0.01, calculate the results T1= 35.7328. There are 100
data points in the test set. When the degree of freedom is greater than 45, the T statistic
is approximates the standard normal distribution, where T≈Z. Therefore, in the α=0.01
confidence level, check the table to get Z=2.57, that is, T1>T. Therefore, reject the original
hypothesis, and there is 99% confidence that the predictive value and the actual value of
the regression effect is obvious.
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Figure 12: The predictive effect of the GDM-SA-SVR model on the test set. From the 
graph, we can see that in the 100 training sets, (assuming that the error obeys normal 
distribution), only 4 points fall outside the prediction interval of 2σ

In addition, there is another method (the correlation coefficient method used previously) 
that can test the effect of regression. This article does not make a detailed introduction 
about the correlation coefficient method and only gives the final result. Through 
calculation, the correlation coefficient fluctuates within the range of more than 0.8. At 
that point, the quantitative model set by statistical analysis evaluates that the SVR model 
has a significant regression effect on the test set.

5 Results and discussion
5.1 Prediction of test temperature

The test set data (100 pieces) is remarked before and after irradiation, and a scatter plot is 
drawn. The data are influenced by the mutual influence of different at tributes. Therefore, 
the data have a certain dispersion, but the overall trend is more obvious. Extrapolation 
prediction is carried out within the extrapolated range of [100,1000] and a test temperature 
(K) [Aktaa and Schmitt (2006)]. Use the trained SVR model to make the prediction curves
of Fig. 13 with the constraints before and after irradiation. Compared with the true scatter
point data of the test set, the prediction curve has a better prediction effect.
The model prediction shows that in the temperature range of 100 K to 1000 K, when the 
temperature increases, the yield stress decreases as the curve in the Fig. 13. The contrast 
of before irradiating and after irradiating indicates that doing the experiment in the test 
temperature range, within a given dose (the different effects from different doses, the size
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of irradiation dose in the curve diagram is approximately 0.024 dpa), the yield strength
difference will decrease before and after irradiation [Wang, Zhang and Zhao (2017)]. Since
the sample of the training set includes a variety of alloy materials, the prediction of the
RAFM steel alloy material is in line with the test set.

5.2 Prediction of radiation temperature

Below is the introduction of the reduced activation ferritic martensitic steel SCRAM steel,
which was developed by a university with vacuum induction electric furnace smelting
and argon protective atmosphere electroslag re-melting technology. The main chemical
components are shown in Tab. 5.
For the above SCRAM steel, give the same test temperature and irradiation dose to
investigate the effect of different irradiation temperatures on the yield strength (YS) of
SCRAM steel.

Table 5: Chemical composition of SCRAM steel (wt%)

Element Si P Ti

Content 0.28 0.0056 0.011

Element V Cr S

Content 0.094 9.3 0.002

Element Mn W C

Content 0.5 2.28 0.088

Element N/ppm O/ppm Fe

Content 150 38 Remnant

Fig. 14 is the prediction interval of SCRAM steel in 2σ. In the irradiation temperature 
range [300,900] (unit K), the yield strength variation interval slowly increases first in the 
range of [200, 800], and then decreases (MPa). Most of the radiation temperature range 
of the training set is arranged in 273 K to 900 K, so the prediction of extrapolation to 
SCRAM steel has a certain reliability. More accurate analysis needs to be compared with 
real experimental data.
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Figure 15: The prediction line of radiation temperature of SCRAM steel at different
doses.The radiation dose was 0.05, 0.18, 1.3, 10.1, 22.3, 43.3 and 88.6, respectively, and
the corresponding prediction curve was calculated by GDM-SA-SVR model

0 10 20 30 40 50 60 70 80

Irradiation dose /dpa

450

500

550

600

650

700

750

800

850

900
The prediction effect of irradiated dose of different steel species on yield strength YS

Steel 1
Steel 2
Steel 3
Steel 4
Steel 5
Steel 6
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Fig. 15 is the change of the yield strength of radiation at several doses in 0.05, 0.18, 1.3, 
10.1, 22.3, 43.3, and 88.6 (dpa) [Gaganidze and Aktaa (2013)]. The prediction curve of 
the irradiation temperature in the range of [300, 900] shows that the mutual influence 
of the physical mechanism of the two attributes is very complex, and in the studied 
dose range and a given range of irradiation temperature, the effect of the yield strength 
is not monotonic as there are many maximum or minimum values. If the physical 
background test is verified, the test points can be selected at the intersection point 
given by the forecast line.

The different irradiation doses have different effects on the yield strength. For example, 
the yield strength of the zirconium alloy will increase under irradiation, but the ductility 
will decrease [Lucon (2002)]. This paper presents a research method to study the effects of 
different materials. First, the irradiation dose is evenly divided in a certain range, and then 
the SVR yield stress model is used to make the corresponding curve, so it can further study 
the effect of irradiation dose on the different results. This method can be evaluated and 
contrasted in reference to the study of yield stress [Virgil’Ev, Kalyagina and Makarchenko 
(1979)].

5.3 Prediction of temperature

The effect of different steels on the irradiation dose is also different. Fig. 16 is the 
prediction curve made through the SVR prediction model under the conditions of extracting 
6 types of RAFM steels with different chemical compositions from the test data set and a 
given dose in range of [0, 80] (dpa). The prediction curves all are first increased and 
then decreased, and different chemical compositions have different effects. Most of the 
data used in this dataset are in the range of [0, 50]. Therefore, a comparative analysis 
should be performed with the future experimental points if the over-dose prediction is 
done. In practical engineering applications, generally, there are no standard experimental 
data points as a contrast indication, so the method needs to be studied in combination with 
other methods [Lucon (2002)].

5.4 Combination prediction of test temperature and irradiation dose

The previous analysis of the original data shows that there are multiple collinear 
dependencies among some attributes. To study the effect of this dependency on the model, 
a three-dimensional graph must be made to do visualization analysis of the SVR model. In 
Fig. 17, 350 K, 436 K, 600 K and 783 K are taken as irradiated temperature points 
corresponding to the combined influence of radiation dose and test temperature on the 
predicted surface. Clearly, the images of different irradiated surfaces have changed greatly. 
At the same time, it is worthy noticing that there are few data points in the boundary 
range, so the model will cause a deviation in the process of learning.
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Figure 17: The combined effect of test temperature and irradiation dose.The irradiation
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6 Conclusions
In this paper, we use data mining technology, through statistical analysis of data distribution 
symmetry to further prepare for our screening model. Correlation can describe the 
collinearity of attributes and analyze the stability of the model. Next, we uses the technique 
of convex optimization theory to improve the traditional SA algorithm. Then, get the GDM-
SA algorithm is obtained with stronger search ability. After tests with complex optimal 
problems test, compared with the traditional SA algorithm under the same conditions, 
the GDM-SA algorithm has faster convergence speed, less falling into local optima and 
wider search ability. Therefore, use the improved simulated annealing algorithm (GDM-
SA) to optimize the parameters of the SVR model. Finally, a GDM-SA-SVR yield stress 
prediction model is derived for RAFM steel yield strength.
By comparison, the RAFM steel yield strength prediction model is better than ANN, 
linear regression, random forest and GRNN. In summary, it is concluded that the hybrid 
model composed of simulated annealing algorithm and support vector machine can achieve 
superior performance for compared with ANN, linear regression, GRNN, and random 
forest. The possible reason is that, from the distribution of the dataset, the data distribution 
is sparsely presented, which fits the prediction mechanism of the support vector machine. 
Because of data dispersity and sparsity, SVM can classify data better when it is mapped 
to the feature space. The soft interval is small, and the error is also small. Therefore, it 
is also very important to do data mining for original data, which is helpful for subsequent 
research. These results may help to guide the development direction of the model in the 
future as follows.
The SVR model uses a single kernel model while the best kernel function in the experiment 
is the Gauss kernel or the sigmoid kernel. Therefore, the use of multi-core models will 
achieve better results in facing of different data sets, which is also a heavily studied research 
field in SVR. In addition to the nature of the model itself, the data sets shall also be 
considered. If there are new data in the future, adding the new data into the data set to 
retrain the model can get better prediction ability than the current dataset, and the model is 
more accurate.
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Appendix A. Statistic information of sample data
Reference Tab. 6.

Table 6: Basic information of the input parameters

Index Input
Variable

Minimum Maximum Average Variance Standard
Deviation

1 Processing
parame-
ters(%)

0 10 0.0828 0.8836 0.94

2 C (Wt%) 0.087 0.2 0.0971 0.000169 0.013
3 Cr(Wt%) 2.25 12 8.3269 1.054729 1.027
4 W (Wt%) 0 3 1.4843 0.605284 0.778
5 Mo(Wt%) 0 1 0.1592 0.131769 0.363
6 Ta (Wt%) 0 0.54 0.0635 0.010404 0.102
7 V (Wt%) 0 0.3 0.1822 0.002916 0.054
8 Si(Wt%) 0 0.37 0.0546 0.002704 0.052
9 Mn

(Wt%)
0 0.13 0.1445 0.041616 0.204

10 N (Wt%) 0 0.06 0.0025 0.006561 0.081
11 Al (Wt%) 0 0.054 0.0008 0.001369 0.037
12 As (Wt%) 0 0.005 0 0.00000009 0.0003
13 B (Wt%) 0 0.0085 0.0007 0.00000169 0.0013
14 Bi (Wt%) 0 0.005 0 0.00000009 0.0003
15 Ce (Wt%) 0 0.036 0.0001 0.00000484 0.0022
16 Co (Wt%) 0 0.01 0.0002 0.00000081 0.0009
17 Cu (Wt%) 0 0.035 0.0006 0.00001024 0.0032
18 Ge (Wt%) 0 1.2 0.0132 0.016384 0.128
19 Mg

(Wt%)
0 0.01 0 0.00000036 0.0006

20 Nb (Wt%) 0 0.16 0.00164 0.000121 0.011
21 Ni (Wt%) 0 2 0.0566 0.0961 0.31
22 O (Wt%) 0 0.009 0.0002 0.00000121 0.0011
23 P (Wt%) 0 0.007 0.0013 0.00000196 0.0014
24 Pb (Wt%) 0 0.005 0 0.00000009 0.0003
25 S(Wt%) 0 0.005 0.0012 0.00000121 0.0011
26 Sb(Wt%) 0 0.003 0 0.00000004 0.0002
27 Se(Wt%) 0 0.003 0 0.00000004 0.0002
28 Sn(Wt%) 0 0.003 0 0.00000004 0.0002
29 Te(Wt%) 0 0.005 0 0.00000009 0.0003
30 Ti(Wt%) 0 0.25 0.01 0.002116 0.046
31 Zn(Wt%) 0 0.005 0 0.00000009 0.0003
32 Zr(Wt%) 0 0.059 0.003 0.00001296 0.0036
33 Irradiation

tempera-
ture(Wt%)

273 925 401.0928 32148.49 179.3

34 Irradiation
dose(dpa)

0 90 3.4287 100.8016 10.04

35 Irradiated
He(dpa)

0 5000 35.697 129456.04 359.8

36 He_dpa(dpa) 0 6315.7895 56.1696 343119.8151 585.7643
37 Test

tempera-
ture(k)

123 973 549.78 43848.36 209.4
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