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Abstract: To reduce the transmission latency and mitigate the backhaul burden of the 
centralized cloud-based network services, the mobile edge computing (MEC) has been 
drawing increased attention from both industry and academia recently. This paper focuses 
on mobile users’ computation offloading problem in wireless cellular networks with 
mobile edge computing for the purpose of optimizing the computation offloading 
decision making policy. Since wireless network states and computing requests have 
stochastic properties and the environment’s dynamics are unknown, we use the model-
free reinforcement learning (RL) framework to formulate and tackle the computation 
offloading problem. Each mobile user learns through interactions with the environment 
and the estimate of its performance in the form of value function, then it chooses the 
overhead-aware optimal computation offloading action (local computing or edge 
computing) based on its state. The state spaces are high-dimensional in our work and 
value function is unrealistic to estimate. Consequently, we use deep reinforcement 
learning algorithm, which combines RL method Q-learning with the deep neural network 
(DNN) to approximate the value functions for complicated control applications, and the 
optimal policy will be obtained when the value function reaches convergence. Simulation 
results showed that the effectiveness of the proposed method in comparison with baseline 
methods in terms of total overheads of all mobile users.  
 
Keywords: Mobile edge computing, computation offloading, resource allocation, deep 
reinforcement learning.  

1 Introduction 
As smartphones are getting more and more popular, a variety of new mobile applications 
such as face recognition, natural language processing, augmented reality are becoming an 
increasing part of daily life, and thus people need high rate computation and high amount 
of computational resource [Wang, Liang, Yu et al. (2017)]. As we all know, cloud 
computing depends on its powerful centralized computing capability which meets the 
demands of resource-limited end users for effective computation. However, moving all 
the distributed data and high demand computation applications to the cloud server will 
result in heavy burden on network performance and the long latency for resource 
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transmission between users and cloud computing devices, which will degrade the quality 
of service [Shi, Cao, Zhang et al. (2016); Bao and Ding (2016)].  
In order to further reduce the latency and enhance the network performance while 
provide powerful computational capability for end users, the mobile edge computing 
(MEC) has been proposed to deploy computing resources closer to the end users. As a 
remedy to the problem which cloud computing exists, mobile edge computing makes the 
function of cloud at the edge of the networks which obtains a tradeoff between 
computation-intensive and latency-critical for mobile users [Mao, You, Zhang et al. 
(2017)]. Mobile edge computing enables the mobile user’s equipment (UEs) execute 
computation offloading by sending computation tasks to the MEC server through 
wireless cellular networks [Wang, Liang, Yu et al. (2017)], which means the MEC server 
executes the computational task on behalf of the UE. In mobile edge computing, network 
edge devices such as base stations, access points and routers, are empowered with 
computing and storage capabilities to serve users’ requests as a substitute of clouds [Patel, 
Naughton, Chan et al. (2014)]. In this paper, we consider an edge system as the 
combination of an edge device (macro-cell) and the associated edge servers which 
provides IT services, environments and cloud computing capabilities to meet mobile 
users’ low-latency and high-bandwidth service requirements.  
The survey of computation offloading illustrated two objectives for computation 
offloading: reduce the execution time and mitigate the energy consumption [Kumar, Liu, 
Lu et al. (2013)]. Computation offloading decisions are classified into two parts: what 
computation to offload, and where to offload computation. The decision in regard to what 
computation to offload is generally considered as the partitioning problem which 
computation task are partitioned into different components and make decision of whether 
to offload each component or not [Huang, Wang and Niyato (2012); Alsheikh, Hoang, 
Niyato et al. (2015)]. Another decision of where to offload computation tasks focuses on 
the binary decision of local computation or offloading the computation task to computing 
devices, which is similar to the decision of what to offload.  
A number of previous works have discussed the computation offloading and resource 
allocation problem in mobile edge computing scenarios [Yu, Zhang and Letaief (2016); 
Mao, Zhang, Song et al. (2017); Mao, Zhang and Letaief (2016)]. Wang et al. [Wang, 
Liang, Yu et al. (2017)] considered the computation offloading decision, physical 
resource block (PRB) allocation, and MEC computation resource allocation as 
optimization problems in wireless cellular networks by graph coloring method. Xu et al. 
[Xu and Ren (2017)] presented the optimal policy of dynamic workload offloading and 
edge server provisioning to minimize the long-term system cost (including both service 
delay and operational cost) by using online learning algorithm which including value 
iteration and reinforcement learning (RL). While Liu et al. [Liu, Mao, Zhang et al. (2016)] 
proposed a two-timescale stochastic optimization problem as the Markov decision 
process in MEC scene and solved the problem using linear programming problem.  
In this paper, we focus on the computation offloading decision making problem of whether 
to compute on local equipment or to offload the task to the MEC server for cloud computing 
and propose an efficient deep reinforcement learning (DRL) scheme. By making the right 
decision of computation offloading, mobile user can enhance the computation efficiency and 



 
 
 
Deep Q-Learning Based Computation Offloading Strategy                                     91 

decrease the energy consumption. Each agent learns through interactions with the 
environment and evaluates its performance in the form of value function. Since wireless 
network states and computing requests have stochastic properties which causes the value 
function is intractable to evaluate by traditional RL algorithm, we apply the deep neural 
network (DNN) to approximate the action-value function with a reinforcement learning 
method deep Q-learning. Each agent chooses action in state and receives an immediate 
reward, then it uses DNN to approximate the value functions. After the value functions reach 
convergence, the user is capable to select the overhead-aware optimal computation 
offloading strategy based on its state and learning results. We aim to minimize the total 
overheads in terms of computational time and energy consumption of all users. Simulation 
results have proved that the proposed deep reinforcement learning based computation 
offloading policy performances effectively compared with baseline methods in this work.  

2 System models and problem formulation  
In this section we will introduce the system models including network model, 
communication model and computation model adopted in this work.  

2.1 Network model  
An environment of one macrocell and N small cells in the terminology of LTE standards 
is considered here. An MEC server is placed in the macro eNodeB (MeNB), and all the 
small cell eNodeBs (SeNBs) are connected to the MeNB as well as the MEC server. In 
this paper, it is assumed that the SeNBs are connected to the MeNB in wired manner 
[Jafari, López-Pérez, Song et al. (2015)]. The set of small cells is denoted as

{1,2, , }N= … , and we let {1,2, , }M= … denotes the set of mobile user equipment 
and define that each single-antenna UE is associated with one SeNB. We assume that 
each UE has a computation-intensive and latency-sensitive task to be completed at each 
time slot t . Each UE can execute the computation task locally, or offload the computation 
task to the MEC server via the SeNB with which it is connected.  

 
Figure 1: Network model 
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MEC server can handle all computing tasks because of its multi-tasking capability. 
Similar to many previous works in mobile cloud computing [Barbera, Kosta, Mei et al. 
(2013)] and mobile networking [Iosifidis, Gao, Huang et al. (2013)] to get tractable 
analysis, we consider a quasi-static scenario where the set of mobile users m remain 
unchanged during a computation offloading period (e.g., within several seconds), 
whereas may change during different periods. The network model is shown in Fig. 1. 

2.2 Communication model  
Because every SeNB is connected to the MEC server, UE can offload computation tasks 
to the MEC server through the SeNB with which it is connected. The computation 
offloading decision of UE m is denoted as {0,1},ma m∈ ∀ . Specifically, we set = 0ma when 
UE m decides to compute its task on its local equipment and = 1ma when UE decides to 
offload its computation task to MEC server by wireless manner. There are K orthogonal 
FDM (Frequency Division Multiplexing) sub-channels without interference to each other 
between UEs and SeNBs, and each sub-channel bandwidth is assumed as w . By given the 
computation offloading decision profile of all the UEs as 1 2{ , , , }ma a a a= … , we describe 
the Signal to Interference plus Noise Ratio (SINR) ( )m tγ and uplink data rate ( )mr t of UE
m at time slot t as  

( ) ( ) ( )
( ) ( ) ( )

,

\{ }: ,

,
i m

m m n
m

i m a a i i n

p t G t
t

t p t G t
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                                                                      (1) 

( ) ( ) ( ) ( )( )2log 1 ,m m m mr t a t k t w tγ= +                                                                         (2) 

where ( ) [0,1,..., ]mk t K∈ denotes the number of sub-channels allocated by SBS to users 
and ( )mp t is transmission power of UE m . ( ),m nG t , ( ),i nG t denote the channel gain 
between UE m and SeNB n , UE i and SeNB n . And ( )tσ is the additive white Gaussian 
noise. For the sake of simplicity, we omit ( )t in the following expressions, e.g., mr stands 
for ( )mr t , unless time slot t is emphasized. 

2.3 Computation model  

We consider each mobile user m  has a computational task ( ), , max
m m m mJ B D T

∆

=  at each 

time slot t , which can be computed either locally on the mobile user's equipment or 
remotely on the MEC server by computation offloading, as in Chen [Chen (2014)]. mB (in 
KB) denotes the computation input data which including program codes and input 
parameters and mD (in Megacycles) stands for the total number of CPU cycles to 
complete the computational task mJ . max

mT stands for the maximum tolerable delay for 
executing the computation task mJ . A user can apply the methods in [Yang, Cao, Tang et 
al. (2012)] to obtain the information of mB , mD and max

mT . Next we will discuss the 
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overhead in terms of computation time and energy consumption for both local 
computation and MEC computation offloading cases. 

2.3.1 Local computing  

In this case, the computational task mJ is executed on local mobile equipment. ( )l
mf

represents the computational capacity (e.g., CPU cycles per second) of UE m . The 
situation is allowed here that different UEs may have different computational capabilities. 
The computational time executed locally by UE m is expressed as  

( )
( ) ,ml

m l
m

DT
f

=                                                                                                                          (3) 

and the energy consumption for computation is given as 
( ) ,m
l

m mE Dρ=                                                                                                            (4) 

where mρ is the coefficient representing the energy consumed by each CPU cycle. 
According to the realistic measurements in Wen et al. [Wen, Zhang, Luo et al. (2012)], 

we set ( )( )11 2
10 l

mm fρ −= . 

According to the computational time in Eq. (3) and energy consumption in Eq. (4), we 
can describe the total overheads of the local computation by UE m as 

( ) ( ) ( )(t) (e) ,l l l
m m m m mK T Eλ λ= +                                                                                              (5) 

where (e)
mλ , (e)

mλ denote the weighting factor of computational time and energy 
consumption for mobile user's decision making, respectively. On account of modeling 
flexibility and meeting user-specific demands, it is considered that a user can take both 
computational time and energy consumption into decision making at the same time. For 
latency-sensitive task, we can increase the proportion of (e)

mλ . While for energy-sensitive 
task, the value of (e)

mλ should be set high. 

2.3.2 MEC server computing  
We will state the case where the computational task mJ is offloaded to the MEC server in 
this section. UE m would generate the extra overhead of transmission time and energy 
consumption for offloading the computation input data to MEC server and downloading 
the computation outcome data to local equipment. The transmission time and energy 
consumption of UE m are computed respectively as 

( )
, ,c m
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=                                                                                                                    (7) 

When the computation input data are uploaded to the MEC server, MEC server will 
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execute the computation task on behalf of UE. Let ( )c
mf denotes the computational 

capability (i.e., CPU cycles per second) of the MEC server assigned to UE m . We assume 
that ( )c

m c
m M

f f
∈

≤∑ for computing resources allocated to all users can not exceed the 

computational capability of the MEC server cf . So the computation time and 
corresponding energy consumption of the MEC server on task mJ are given as 
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=                                                                                                                        (8) 
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After the completion of the computing task executing by MEC server, the computation 
outcome data Bo

m needs to be transmitted back to the mobile users. Therefore, the 
downlink transmission time ( )

,m dow

cT and energy consumption ( )
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cT are given as  
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where d
mr is the download data rate of UE m , and

m

rp denotes the received power of UE m . 

Similar to the study in Chen [Chen (2014)], the downlink transmission time and energy 
consumption for offloading computation outcome data from MEC server to UE m is not 
considered in this work. Owing to the size of computation outcome data is much smaller 
than size of computation input data and the download data rate is very high in general. 
According to the transmission time in Eq. (6), offloading energy consumption in Eq. (7) , 
computation time in Eq. (8) and executing energy consumption in Eq. (9), the time and 
energy consumption generated by offloading the computational task of UE m to MEC 
server as  

( ) ( ) ( )
m , , ,c c c

m off m exeT T T= +                                                                                                          (12) 
( ) ( ) ( )
m , , ,c c c

m off m exeE E E= +                                                                                                        (13) 

we can compute the total overheads by offloading the computational task of UE m to 
MEC server as 

( ) ( ) ( )(t) (e) .c c c
m m m m mK T Eλ λ= +                                                                                                    (14) 

2.4 Problem formulation  
Our goal is to optimize expected long-term utility performance of all users, and at each 
time slot t which is a decision step each user has only one task to perform. Specifically, 
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we aim at minimizing the total overheads of all the users which can execute tasks on local 
mobile users' equipment or perform computation offloading with mobile edge computing. 
By minimizing the total overheads, users can make the overhead-aware optimal decision 
of computation offloading which of great importance in augmenting the computational 
efficiency and reducing the latency. We can model the optimization formulation of the 
problem as follows: 

( ) ( ) ( ) ( ) ( )
0

min 1
T

l c
m m m ma t m m

a K t a K t
= ∈ ∈

 
− + 

 
∑ ∑ ∑

 

                                                            (15) 

subject to 
{0,1},ma m∈ ∀ ∈  

( ) ( ) ( ) ( ) ( ) ( )max1 ,l c
m m m m ma T t a T t T t m− + ≤ ∀ ∈  
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m

c
m cf t f m

∈
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

  

( ) ,
m

mk t w W m
∈
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

  

The first term of Eq. (15) is the overheads generated by local computing and the second 
term is the overheads due to the computation offloading. The first constraint ensures that 
an overhead-aware solution can be obtained by finding the optimal values of the 
offloading decision profile a . The second constraint means that the delay for performing 
each calculation task cannot exceed the maximum tolerance delay. The third constraint 
manifests that the computing resources allocated to all users for offloading computation 
tasks cannot exceed the total amount of computing resources of the MEC server. And the 
last constraint specifies that the bandwidth allocated to all users cannot exceed the total 
spectrum bandwidthW . However, objective formula is difficult and impractical to solve 
due to the fact that a is binary variable, the feasible set of problem is non-convex and the 
optimization formulation is not a convex function. From another perspective, the problem 
can be viewed as sequence decision problem which need make continuous decisions to 
achieve the ultimate goal. In the following section, we will propose deep reinforcement 
learning algorithm to optimize the computation offloading problem. 

3 Computation offloading algorithm based on deep RL  
The reinforcement learning algorithm aims at solving the sequential decision problem 
and general sequential decision problems can be expressed in the framework of the 
Markov decision process (MDP). The MDP describes a stochastic decision process of an 
agent interacting with an environment or system. At each decision time, the system stays 
in a certain state s and the agent chooses an action a that is available at this state. After the 
action is performed, the agent receives an immediate reward R and the system transits to a 
new state s′ according to the transition probability ,

a
s sP ′ . The goal of an MDP or RL is to 

find an optimal policy which is a mapping from state to action to maximize or minimize a 
certain objective function [Alsheikh, Hoang, Niyato et al. (2015)]. 
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3.1 Definitions using RL  
To model this problem using RL, we set the following definitions: 
Agent: the mobile user m who has computation-intensive and delay-sensitive tasks to 
complete. 

State: ( )( ),m m
l

ms fγ= stands for the state of the agent m which constitutes SINR and 

computational capability of agent m . Let ts  denotes the system state at time slot t , 
where ( ) ( ) ( ) ( ){ }1 2, , ns t s t s t s t= … . 

Action: {0,1}ma ∈ where = 0ma represents for the UE m chooses to compute task on local 
equipment, while = 1ma means the UE m chooses to offload the computation task to MEC 
server. And ( ) ( ) ( ){ }1 2, ,t na a t a t a t= … denotes the computation offloading decision 
profile of all UEs at time slot t . 
Reward: The reward of all mobile users with computation tasks at time slot t denotes as

( ) ( ) ( ) ( ) ( ) ( )1 l c
t m m m m

m m
R a a K t a K t

∈ ∈

= − − −∑ ∑
 

. The first term denotes the minus of the 

total overheads of local computation by UE m , and second term denotes the minus of the 
total overheads of computation offloading of UE m with MEC. 
An agent chooses an action a  at a particular state s , and evaluates its performance in the 
form of state-value function based on the received immediate reward R and its estimate 
value of the state to which it is taken. After the convergence of state-value functions, it 
learns the optimal policy *π judged by long-term discounted reward [Watkins and Dayan 
(1992)]. The discounted expected reward is defined by Bellman expectation equation as 
follows [Wei, Yu and Song (2010); Wei, Yu, Song et al. (2018)] 

( ) ( )( ) ( , ) , ,
s s

V s R s a P s s a V sγ
′∈

′ ′= + ∑                                                                                (16) 

where ( ),R s a is the immediate reward received by the agent when it selects action a at 

state s and ( )0,1γ ∈ is a discount factor, ( ),P s s a′ is the transition probability from state s

to s′when the agent chooses the action a . The discounted expected reward for taking 
action a includes the immediate reward and the future expected return. 

According to the theory of Bellman's optimal equation, if we denote the *( )V s as the 
maximum total discounted expected reward at every state and it can be solved recursively 
by solving the following equation: 

( ) ( )* ( ) max ( , ) ,
a s s

V s R s a P s s a V sγ
′∈

 ′ ′= + 
 

∑ ，                                                                  (17) 

then the optimal policy *π can be obtained when the total discounted expected reward is 
maximum as follows: 
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( ) ( )* arg max ( , ) , .
a s s

R s a P s s a V sπ γ
′∈

 ′ ′= + 
 

∑                                                                  (18) 

However, the reward and probability are unknown in RL method which means it is a 
model-free based policy. For finite state MDP, action-value functions are usually stored 
in a lookup table and can be recursively learned. So we have to learn the Q-value which 
is defined as 

( ) ( )( , ) ( , ) , .
s s

Q s a R s a P s s a V sγ
′∈

′ ′= + ∑                                                                         (19) 

The Q-value stands for the discounted expected reward for taking action a at state s and 
following policy π thereafter. The update of Q-values for an optimal policy *π in 
conventional RL method Q-learning is performed as 

( )1max , ,t
ta

Q r Q s aγ += +                                                                                              (20) 

( ) ( ) ( )( ), , , .t
t t t t t tQ s a Q s a Q Q s aα← + −                                                                        (21) 

where tQ is the target value including current reward r and the maximum Q-value

( )1max ,ta
Q s a+ in next state and the ( ),t tQ s a is estimated value. [ ]0,1α ∈ is the learning rate. 

3.2 Value function representation and approximation using DNN  
In conventional RL method Q-learning, Q-table can be used to store the Q-value of each 
state action pair when the state and action spaces are discrete and the dimension is not 
high. However the state spaces are high-dimensional in our work, it's unrealistic to use Q-
table mentioned in the previous section. Accordingly, function ( , )Q s aw is used to 
represent and approximate value function ( ),Q s a in RL to reduce the dimension in our 
work. Deep neural network has the advantage of extracting complex features in feature 
learning or representation learning [Bengio, Courville and Vincent (2013); Khatana, 
Narang and Thada (2018)], so we use DNN which is a nonlinear approximation to 
approximate the value function and improve the Q-learning method. 
Deep reinforcement learning combines RL with deep learning (DL). The Q-value can be 
represented as ( , )Q s aw using DNN with two convolutional layers and two fully connected 
layers that are parameterized by a set of parameters 1 2{ , , , }nw w w=w  . Each hidden 
layer is composed of nonlinear analog neurons which can transform linear combination 
into an output value using non-linear activation functions (e.g., sigmoid, tanh, ReLU, etc). 
The output of the j th neuron in layer i can be formulated as 

( ) ( ) ( ) ( )( ),i i i i
j a ja f b= ⋅ +w x                                                                                                   (22) 

where ( )i
ja is the output value in layer i , af is the activation function. ( ) ( ) ( )i i i

jb⋅ +w x is the 

linear combination of input vector ( )ix with corresponding weights vector ( )iw and bias ( )i
jb

of neuron j in layer i . The DNN input is the original state, and the output y is the value 
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function (Q-value) corresponding to each action, 
( ) ( ) ( ) ( )( ).= = ⋅ +i i i i

ay a f w x b                                                                                              (23) 

The DNN can be trained to update the value function by updating the parameters w

including weights w and biases b . And the best fitting weights optw can be learned by 
iteratively minimizing the loss function ( )L w , which is the mean-squared error (MSE) 
between the estimated value and the target value, i.e., 

1 1 1max ( , ),
t

t
t a t tQ r Q s aγ

+ + += +w w                                                                                        (24) 
2

( ) ( , ) ,t
t tL E Q Q s a = − w ww                                                                                            (25) 

where w are the parameters of the neural network, and tQw is the target value. The error 
between the target value and the estimated value ( , )t tQ s aw is called temporal-difference 
(TD) error, denoted as ( , )t

t tQ Q s a−w w . 
Since DNN may cause the training of RL algorithm unstable and diverge due to the non-
stationary targets and the correlations between samples. We adopt target network with 
fixed parameters −w updated in a slower cycle, and experience replay which stores 

experience 1, , ,t t t ts a r s + in a replay buffer D and randomly sample a mini-batch of the 
experience to train the network, so the target value and loss function become: 

1 1 1max ( , ),
t

t
t a t tQ r Q s aγ− −

+ + += +
w w                                                                                     (26) 

2
( ) ( , ) ,t

D t tL E Q Q s a− = − ww
w                                                                                         (27) 

where the parameters w used for approximating the estimated value updates at every step 
while the fixed parameters −w for approximating target value updates at each fixed steps. 
Stochastic gradient descent method is applied to minimize the loss function, and the 
update of the parameters w defined as follows: 

1 ( , ) ( , ),t
t t t t t tQ Q s a Q s aωω ω α −+  = + − ∇ w ww                                                                    (28) 

where ( , )t tQ s aω∇ w  is the gradient of ( , )t tQ s aw . 
The deep reinforcement learning algorithm performed by mobile users for computation 
offloading decision making is presented in Tab. 1. For each state, the agent chooses 
action randomly with the probability of 1 ε− and with the probability of ε chooses the 
action with maximum action value function which called ε greedy strategy. When the 
agent performs the action in state ts and receives the immediate reward r , it will observes 
the subsequent state 1ts + and approximate the action-value function ( , )t tQ s aw by DNN. 
After the convergence of action-value functions, each mobile user can select the 
overhead-aware optimal computation offloading action based on its state to minimize the 
total overheads of all users. 
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Table 1: Deep reinforcement learning based computation offloading algorithm 

Initialization: experience replay buffer D , action-value function Q with random 
parametersω , target network parametersω ω− =  
1. For episode=1, maxE do 

2.     Initialize state 0s and reset reward 0r =   

3.     For step=1, maxT do 

4.         With the probability1 ε− choose a random action ta   

5.         Otherwise choose the action with the maximum action-value function ( , )t tQ s aw   

6.         Execute action ta , receive an immediate reward r and observe the next state 1ts +   

7.         Replay buffer stores the tuple 1, , ,t t t ts a r s + in D   

8.         Sample a random mini-batch of tuple 1, , ,t t t ts a r s + from D   

9.         
1

max

1 1 max
max ( , )

t

tt

t t ta

r t T
Q r Q s a t Tγ−

−
+

+ +

 ==  + <
w

w
  

10.       Perform a gradient descent on ( )2
( , )t

t tQ Q s a− − ww
with the parameterω   

11.       Every C steps, update the target network parametersω ω− =   
12.     End For 
13. End For 

4 Simulation results and discussion  
In this section, we assess the performance of the proposed deep RL based computation 
offloading decision method compared with two baseline schemes. Simulation scenarios 
are presented that there are 10 small cells randomly deployed. The transmission power of 
UE m is set to be 100mp = mWatts. The spectrum bandwidth is set as 10W =  MHZ, 
while the additive white Gaussian noise 100σ = − dBm. The channel gain model 
presented in 3GPP standardization is adopted here. We applied the face recognition as the 
computation task here [Soyata, Muraleedharan, Funai et al. (2012)]. The size of 
computation input data mB (KB) and the total number of CPU cycles mD (Megacycles) 

randomly distributed in the range[ ]1000,  10000 . The computational capability ( )l
mf of a 

mobile user m is assigned from the set { }0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 GHz at 
random which reveals the heterogeneity of mobile user’s computational capability. The 
total computational capability of the MEC server is 100cf = GHz. We assume that the 

weighting factor of computation time as ( )t 0.5mλ = and ( )
m

eλ for energy weighting factor 
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correspondingly.  
Firstly, we demonstrate the convergence of the proposed deep RL algorithm. Fig. 2 
shows the total rewards of all UEs at every episode with different learning rates. As we 
can see, the proposed learning strategy with learning rate of 0.01 obtain the reward per 
episode fluctuates around -400 after 1000 episodes, while algorithm with learning rate of 
0.001 and 0.0001 obtain the rewards per episode fluctuates around -500 and -450 after 
1000 episodes. As expected, different learning rates result in different convergence 
performance, and the algorithm with 0.01 learning rate outperforms compared with other 
learning rates. The fluctuation of the curve after algorithm converges is for theε greedy 
strategy adopted here which users not always choose the action with maximum action 
value function and have the possibility to choose action randomly. 

 
Figure 2: The total rewards of each episode with different learning rates 

 
Figure 3: Computational capability versus total overheads with different schemes 

We will show the performance of proposed scheme in comparison with baseline methods, 
including the local computation policy, which executes all the computational task on 
local mobile user’s equipment, and the edge computation policy which offloads all the 
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tasks of UEs to the MEC server for edge computing. Fig. 3 demonstrates that with the 
increase of computational capability, the total overheads for edge computation policy and 
proposed learning algorithm decreases due to the change of MEC server’s computational 
capability will influence the computation offloading policy of mobile users. With the 
increasing computational capability of MEC server, edge computation strategy performs 
better than local computation due to its multi-tasking capability. However, baseline 
methods are not effective than proposed learning method on account of proposed method 
can obtain the optimal overhead aware policy according to its learning result. 
Fig. 4 shows the relationship between the number of mobile users and the total overheads 
of all the mobile users. The total overheads increase gradually with the number of users 
grows. The overhead generated by edge computation method is less than overhead of 
local computation method gradually due to the increasing of number of users with more 
computation tasks to execute. While local computation policy consumes more time and 
energy than the baseline schemes on account of the limited computational capability 
when the number of users increases. Contrasted with baseline methods, the proposed 
learning algorithm always obtains the minimum overhead which means the proposed 
scheme can achieve the optimal computation offloading decision for reducing the latency, 
energy consumption and improving the efficiency. 

 
Figure 4: Number of mobile users versus total overheads with different schemes 

The assignment of weighting factor which will represent different states of users. Mobile 

user which is sensitive to delay will take more proportion of ( )t
mλ into account while user 

in low-battery state will consider more proportion of ( )e
mλ for the overhead computation. 

Fig. 5 presents that when the weighting factor of time increases from 0 to 1 (while the 
proportion of energy decreases from 1 to 0 accordingly), total overheads rise due to the 
fact that the computational and transmission time occupy more proportion in total 
overheads. As we can see from the above results, the decision-making performance of the 
proposed learning algorithm performances better than baseline methods in terms of total 
overheads of all the mobile users. 
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Figure 5: Weighting factor of time versus total overheads with different schemes 

5 Conclusion  
In this paper, we propose a deep reinforcement learning approach for computation 
offloading decision issue with mobile edge computing. The problem is formulated as 
minimizing the total overheads of all the users which can execute tasks on local mobile 
users’ device or offload the computation to MEC server. In order to solve this problem, 
we apply deep neural network in RL framework to approximate action-value action and 
obtain the overhead-aware optimal computation offloading strategy based on deep Q-
learning method. The performance evaluation of proposed method is compared with two 
baseline methods. Simulation results showed that the proposed policy can achieve better 
performance than baseline methods in terms of total overheads which reduces the latency, 
energy consumption and enhances the computation efficiency.  
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