

Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.89-104, 2019

CMC. doi:10.32604/cmc.2019.04836 www.techscience.com/cmc

Deep Q-Learning Based Computation Offloading Strategy for
Mobile Edge Computing

Yifei Wei1, *, Zhaoying Wang1, Da Guo1 and F. Richard Yu2

Abstract: To reduce the transmission latency and mitigate the backhaul burden of the
centralized cloud-based network services, the mobile edge computing (MEC) has been
drawing increased attention from both industry and academia recently. This paper focuses
on mobile users’ computation offloading problem in wireless cellular networks with
mobile edge computing for the purpose of optimizing the computation offloading
decision making policy. Since wireless network states and computing requests have
stochastic properties and the environment’s dynamics are unknown, we use the model-
free reinforcement learning (RL) framework to formulate and tackle the computation
offloading problem. Each mobile user learns through interactions with the environment
and the estimate of its performance in the form of value function, then it chooses the
overhead-aware optimal computation offloading action (local computing or edge
computing) based on its state. The state spaces are high-dimensional in our work and
value function is unrealistic to estimate. Consequently, we use deep reinforcement
learning algorithm, which combines RL method Q-learning with the deep neural network
(DNN) to approximate the value functions for complicated control applications, and the
optimal policy will be obtained when the value function reaches convergence. Simulation
results showed that the effectiveness of the proposed method in comparison with baseline
methods in terms of total overheads of all mobile users.

Keywords: Mobile edge computing, computation offloading, resource allocation, deep
reinforcement learning.

1 Introduction
As smartphones are getting more and more popular, a variety of new mobile applications
such as face recognition, natural language processing, augmented reality are becoming an
increasing part of daily life, and thus people need high rate computation and high amount
of computational resource [Wang, Liang, Yu et al. (2017)]. As we all know, cloud
computing depends on its powerful centralized computing capability which meets the
demands of resource-limited end users for effective computation. However, moving all
the distributed data and high demand computation applications to the cloud server will
result in heavy burden on network performance and the long latency for resource

1 Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing

University of Posts and Telecommunications, Beijing, 100876, China. 
2 Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.
* Corresponding Author: Yifei Wei. Email: weiyifei@bupt.edu.cn.

90 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.89-104, 2019

transmission between users and cloud computing devices, which will degrade the quality
of service [Shi, Cao, Zhang et al. (2016); Bao and Ding (2016)].
In order to further reduce the latency and enhance the network performance while
provide powerful computational capability for end users, the mobile edge computing
(MEC) has been proposed to deploy computing resources closer to the end users. As a
remedy to the problem which cloud computing exists, mobile edge computing makes the
function of cloud at the edge of the networks which obtains a tradeoff between
computation-intensive and latency-critical for mobile users [Mao, You, Zhang et al.
(2017)]. Mobile edge computing enables the mobile user’s equipment (UEs) execute
computation offloading by sending computation tasks to the MEC server through
wireless cellular networks [Wang, Liang, Yu et al. (2017)], which means the MEC server
executes the computational task on behalf of the UE. In mobile edge computing, network
edge devices such as base stations, access points and routers, are empowered with
computing and storage capabilities to serve users’ requests as a substitute of clouds [Patel,
Naughton, Chan et al. (2014)]. In this paper, we consider an edge system as the
combination of an edge device (macro-cell) and the associated edge servers which
provides IT services, environments and cloud computing capabilities to meet mobile
users’ low-latency and high-bandwidth service requirements.
The survey of computation offloading illustrated two objectives for computation
offloading: reduce the execution time and mitigate the energy consumption [Kumar, Liu,
Lu et al. (2013)]. Computation offloading decisions are classified into two parts: what
computation to offload, and where to offload computation. The decision in regard to what
computation to offload is generally considered as the partitioning problem which
computation task are partitioned into different components and make decision of whether
to offload each component or not [Huang, Wang and Niyato (2012); Alsheikh, Hoang,
Niyato et al. (2015)]. Another decision of where to offload computation tasks focuses on
the binary decision of local computation or offloading the computation task to computing
devices, which is similar to the decision of what to offload.
A number of previous works have discussed the computation offloading and resource
allocation problem in mobile edge computing scenarios [Yu, Zhang and Letaief (2016);
Mao, Zhang, Song et al. (2017); Mao, Zhang and Letaief (2016)]. Wang et al. [Wang,
Liang, Yu et al. (2017)] considered the computation offloading decision, physical
resource block (PRB) allocation, and MEC computation resource allocation as
optimization problems in wireless cellular networks by graph coloring method. Xu et al.
[Xu and Ren (2017)] presented the optimal policy of dynamic workload offloading and
edge server provisioning to minimize the long-term system cost (including both service
delay and operational cost) by using online learning algorithm which including value
iteration and reinforcement learning (RL). While Liu et al. [Liu, Mao, Zhang et al. (2016)]
proposed a two-timescale stochastic optimization problem as the Markov decision
process in MEC scene and solved the problem using linear programming problem.
In this paper, we focus on the computation offloading decision making problem of whether
to compute on local equipment or to offload the task to the MEC server for cloud computing
and propose an efficient deep reinforcement learning (DRL) scheme. By making the right
decision of computation offloading, mobile user can enhance the computation efficiency and

Deep Q-Learning Based Computation Offloading Strategy 91

decrease the energy consumption. Each agent learns through interactions with the
environment and evaluates its performance in the form of value function. Since wireless
network states and computing requests have stochastic properties which causes the value
function is intractable to evaluate by traditional RL algorithm, we apply the deep neural
network (DNN) to approximate the action-value function with a reinforcement learning
method deep Q-learning. Each agent chooses action in state and receives an immediate
reward, then it uses DNN to approximate the value functions. After the value functions reach
convergence, the user is capable to select the overhead-aware optimal computation
offloading strategy based on its state and learning results. We aim to minimize the total
overheads in terms of computational time and energy consumption of all users. Simulation
results have proved that the proposed deep reinforcement learning based computation
offloading policy performances effectively compared with baseline methods in this work.

2 System models and problem formulation
In this section we will introduce the system models including network model,
communication model and computation model adopted in this work.

2.1 Network model
An environment of one macrocell and N small cells in the terminology of LTE standards
is considered here. An MEC server is placed in the macro eNodeB (MeNB), and all the
small cell eNodeBs (SeNBs) are connected to the MeNB as well as the MEC server. In
this paper, it is assumed that the SeNBs are connected to the MeNB in wired manner
[Jafari, López-Pérez, Song et al. (2015)]. The set of small cells is denoted as

{1,2, , }N= … , and we let {1,2, , }M= … denotes the set of mobile user equipment
and define that each single-antenna UE is associated with one SeNB. We assume that
each UE has a computation-intensive and latency-sensitive task to be completed at each
time slot t . Each UE can execute the computation task locally, or offload the computation
task to the MEC server via the SeNB with which it is connected.

Figure 1: Network model

92 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.89-104, 2019

MEC server can handle all computing tasks because of its multi-tasking capability.
Similar to many previous works in mobile cloud computing [Barbera, Kosta, Mei et al.
(2013)] and mobile networking [Iosifidis, Gao, Huang et al. (2013)] to get tractable
analysis, we consider a quasi-static scenario where the set of mobile users m remain
unchanged during a computation offloading period (e.g., within several seconds),
whereas may change during different periods. The network model is shown in Fig. 1.

2.2 Communication model
Because every SeNB is connected to the MEC server, UE can offload computation tasks
to the MEC server through the SeNB with which it is connected. The computation
offloading decision of UE m is denoted as {0,1},ma m∈ ∀ . Specifically, we set = 0ma when
UE m decides to compute its task on its local equipment and = 1ma when UE decides to
offload its computation task to MEC server by wireless manner. There are K orthogonal
FDM (Frequency Division Multiplexing) sub-channels without interference to each other
between UEs and SeNBs, and each sub-channel bandwidth is assumed as w . By given the
computation offloading decision profile of all the UEs as 1 2{ , , , }ma a a a= … , we describe
the Signal to Interference plus Noise Ratio (SINR) ()m tγ and uplink data rate ()mr t of UE
m at time slot t as

() () ()
() () ()

,

\{ }: ,

,
i m

m m n
m

i m a a i i n

p t G t
t

t p t G t
γ

σ ∈ =

=
+∑ 

 (1)

() () () ()()2log 1 ,m m m mr t a t k t w tγ= + (2)

where () [0,1,...,]mk t K∈ denotes the number of sub-channels allocated by SBS to users
and ()mp t is transmission power of UE m . (),m nG t , (),i nG t denote the channel gain
between UE m and SeNB n , UE i and SeNB n . And ()tσ is the additive white Gaussian
noise. For the sake of simplicity, we omit ()t in the following expressions, e.g., mr stands
for ()mr t , unless time slot t is emphasized.

2.3 Computation model

We consider each mobile user m has a computational task (), , max
m m m mJ B D T

∆

= at each

time slot t , which can be computed either locally on the mobile user's equipment or
remotely on the MEC server by computation offloading, as in Chen [Chen (2014)]. mB (in
KB) denotes the computation input data which including program codes and input
parameters and mD (in Megacycles) stands for the total number of CPU cycles to
complete the computational task mJ . max

mT stands for the maximum tolerable delay for
executing the computation task mJ . A user can apply the methods in [Yang, Cao, Tang et
al. (2012)] to obtain the information of mB , mD and max

mT . Next we will discuss the

Deep Q-Learning Based Computation Offloading Strategy 93

overhead in terms of computation time and energy consumption for both local
computation and MEC computation offloading cases.

2.3.1 Local computing 

In this case, the computational task mJ is executed on local mobile equipment. ()l
mf

represents the computational capacity (e.g., CPU cycles per second) of UE m . The
situation is allowed here that different UEs may have different computational capabilities.
The computational time executed locally by UE m is expressed as

()
() ,ml

m l
m

DT
f

= (3)

and the energy consumption for computation is given as
() ,m
l

m mE Dρ= (4)

where mρ is the coefficient representing the energy consumed by each CPU cycle.
According to the realistic measurements in Wen et al. [Wen, Zhang, Luo et al. (2012)],

we set ()()11 2
10 l

mm fρ −= .

According to the computational time in Eq. (3) and energy consumption in Eq. (4), we
can describe the total overheads of the local computation by UE m as

() () ()(t) (e) ,l l l
m m m m mK T Eλ λ= + (5)

where (e)
mλ , (e)

mλ denote the weighting factor of computational time and energy
consumption for mobile user's decision making, respectively. On account of modeling
flexibility and meeting user-specific demands, it is considered that a user can take both
computational time and energy consumption into decision making at the same time. For
latency-sensitive task, we can increase the proportion of (e)

mλ . While for energy-sensitive
task, the value of (e)

mλ should be set high.

2.3.2 MEC server computing
We will state the case where the computational task mJ is offloaded to the MEC server in
this section. UE m would generate the extra overhead of transmission time and energy
consumption for offloading the computation input data to MEC server and downloading
the computation outcome data to local equipment. The transmission time and energy
consumption of UE m are computed respectively as

()
, ,c m

m ff
m

o
B
r

T = (6)

()
, .c m m

m
m

off
p BE

r
= (7)

When the computation input data are uploaded to the MEC server, MEC server will

94 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.89-104, 2019

execute the computation task on behalf of UE. Let ()c
mf denotes the computational

capability (i.e., CPU cycles per second) of the MEC server assigned to UE m . We assume
that ()c

m c
m M

f f
∈

≤∑ for computing resources allocated to all users can not exceed the

computational capability of the MEC server cf . So the computation time and
corresponding energy consumption of the MEC server on task mJ are given as

()
(), ,c

m exe c
m

mDT
f

= (8)

()
(),exe .c m m

m c
m

p DE
f

= (9)

After the completion of the computing task executing by MEC server, the computation
outcome data Bo

m needs to be transmitted back to the mobile users. Therefore, the
downlink transmission time ()

,m dow

cT and energy consumption ()
,m dow

cT are given as

()
,

B ,
m dow

o
c m

d
m

T
r

=

 (10)

()
,

B
,m

m dow

r o
mc

d
m

p
E

r
= (11)

where d
mr is the download data rate of UE m , and

m

rp denotes the received power of UE m .

Similar to the study in Chen [Chen (2014)], the downlink transmission time and energy
consumption for offloading computation outcome data from MEC server to UE m is not
considered in this work. Owing to the size of computation outcome data is much smaller
than size of computation input data and the download data rate is very high in general.
According to the transmission time in Eq. (6), offloading energy consumption in Eq. (7) ,
computation time in Eq. (8) and executing energy consumption in Eq. (9), the time and
energy consumption generated by offloading the computational task of UE m to MEC
server as

() () ()
m , , ,c c c

m off m exeT T T= + (12)
() () ()
m , , ,c c c

m off m exeE E E= + (13)

we can compute the total overheads by offloading the computational task of UE m to
MEC server as

() () ()(t) (e) .c c c
m m m m mK T Eλ λ= + (14)

2.4 Problem formulation
Our goal is to optimize expected long-term utility performance of all users, and at each
time slot t which is a decision step each user has only one task to perform. Specifically,

Deep Q-Learning Based Computation Offloading Strategy 95

we aim at minimizing the total overheads of all the users which can execute tasks on local
mobile users' equipment or perform computation offloading with mobile edge computing.
By minimizing the total overheads, users can make the overhead-aware optimal decision
of computation offloading which of great importance in augmenting the computational
efficiency and reducing the latency. We can model the optimization formulation of the
problem as follows:

() () () () ()
0

min 1
T

l c
m m m ma t m m

a K t a K t
= ∈ ∈

 
− + 

 
∑ ∑ ∑

 

 (15)

subject to
{0,1},ma m∈ ∀ ∈

() () () () () ()max1 ,l c
m m m m ma T t a T t T t m− + ≤ ∀ ∈

() ,
m

c
m cf t f m

∈

≤ ∀ ∈∑




() ,
m

mk t w W m
∈

≤ ∀ ∈∑




The first term of Eq. (15) is the overheads generated by local computing and the second
term is the overheads due to the computation offloading. The first constraint ensures that
an overhead-aware solution can be obtained by finding the optimal values of the
offloading decision profile a . The second constraint means that the delay for performing
each calculation task cannot exceed the maximum tolerance delay. The third constraint
manifests that the computing resources allocated to all users for offloading computation
tasks cannot exceed the total amount of computing resources of the MEC server. And the
last constraint specifies that the bandwidth allocated to all users cannot exceed the total
spectrum bandwidthW . However, objective formula is difficult and impractical to solve
due to the fact that a is binary variable, the feasible set of problem is non-convex and the
optimization formulation is not a convex function. From another perspective, the problem
can be viewed as sequence decision problem which need make continuous decisions to
achieve the ultimate goal. In the following section, we will propose deep reinforcement
learning algorithm to optimize the computation offloading problem.

3 Computation offloading algorithm based on deep RL
The reinforcement learning algorithm aims at solving the sequential decision problem
and general sequential decision problems can be expressed in the framework of the
Markov decision process (MDP). The MDP describes a stochastic decision process of an
agent interacting with an environment or system. At each decision time, the system stays
in a certain state s and the agent chooses an action a that is available at this state. After the
action is performed, the agent receives an immediate reward R and the system transits to a
new state s′ according to the transition probability ,

a
s sP ′ . The goal of an MDP or RL is to

find an optimal policy which is a mapping from state to action to maximize or minimize a
certain objective function [Alsheikh, Hoang, Niyato et al. (2015)].

96 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.89-104, 2019

3.1 Definitions using RL
To model this problem using RL, we set the following definitions:
Agent: the mobile user m who has computation-intensive and delay-sensitive tasks to
complete.

State: ()(),m m
l

ms fγ= stands for the state of the agent m which constitutes SINR and

computational capability of agent m . Let ts denotes the system state at time slot t ,
where () () () (){ }1 2, , ns t s t s t s t= … .

Action: {0,1}ma ∈ where = 0ma represents for the UE m chooses to compute task on local
equipment, while = 1ma means the UE m chooses to offload the computation task to MEC
server. And () () (){ }1 2, ,t na a t a t a t= … denotes the computation offloading decision
profile of all UEs at time slot t .
Reward: The reward of all mobile users with computation tasks at time slot t denotes as

() () () () () ()1 l c
t m m m m

m m
R a a K t a K t

∈ ∈

= − − −∑ ∑
 

. The first term denotes the minus of the

total overheads of local computation by UE m , and second term denotes the minus of the
total overheads of computation offloading of UE m with MEC.
An agent chooses an action a at a particular state s , and evaluates its performance in the
form of state-value function based on the received immediate reward R and its estimate
value of the state to which it is taken. After the convergence of state-value functions, it
learns the optimal policy *π judged by long-term discounted reward [Watkins and Dayan
(1992)]. The discounted expected reward is defined by Bellman expectation equation as
follows [Wei, Yu and Song (2010); Wei, Yu, Song et al. (2018)]

() ()() (,) , ,
s s

V s R s a P s s a V sγ
′∈

′ ′= + ∑ (16)

where (),R s a is the immediate reward received by the agent when it selects action a at

state s and ()0,1γ ∈ is a discount factor, (),P s s a′ is the transition probability from state s

to s′when the agent chooses the action a . The discounted expected reward for taking
action a includes the immediate reward and the future expected return.

According to the theory of Bellman's optimal equation, if we denote the *()V s as the
maximum total discounted expected reward at every state and it can be solved recursively
by solving the following equation:

() ()* () max (,) ,
a s s

V s R s a P s s a V sγ
′∈

 ′ ′= + 
 

∑ ， (17)

then the optimal policy *π can be obtained when the total discounted expected reward is
maximum as follows:

Deep Q-Learning Based Computation Offloading Strategy 97

() ()* arg max (,) , .
a s s

R s a P s s a V sπ γ
′∈

 ′ ′= + 
 

∑ (18)

However, the reward and probability are unknown in RL method which means it is a
model-free based policy. For finite state MDP, action-value functions are usually stored
in a lookup table and can be recursively learned. So we have to learn the Q-value which
is defined as

() ()(,) (,) , .
s s

Q s a R s a P s s a V sγ
′∈

′ ′= + ∑ (19)

The Q-value stands for the discounted expected reward for taking action a at state s and
following policy π thereafter. The update of Q-values for an optimal policy *π in
conventional RL method Q-learning is performed as

()1max , ,t
ta

Q r Q s aγ += + (20)

() () ()(), , , .t
t t t t t tQ s a Q s a Q Q s aα← + − (21)

where tQ is the target value including current reward r and the maximum Q-value

()1max ,ta
Q s a+ in next state and the (),t tQ s a is estimated value. []0,1α ∈ is the learning rate.

3.2 Value function representation and approximation using DNN
In conventional RL method Q-learning, Q-table can be used to store the Q-value of each
state action pair when the state and action spaces are discrete and the dimension is not
high. However the state spaces are high-dimensional in our work, it's unrealistic to use Q-
table mentioned in the previous section. Accordingly, function (,)Q s aw is used to
represent and approximate value function (),Q s a in RL to reduce the dimension in our
work. Deep neural network has the advantage of extracting complex features in feature
learning or representation learning [Bengio, Courville and Vincent (2013); Khatana,
Narang and Thada (2018)], so we use DNN which is a nonlinear approximation to
approximate the value function and improve the Q-learning method.
Deep reinforcement learning combines RL with deep learning (DL). The Q-value can be
represented as (,)Q s aw using DNN with two convolutional layers and two fully connected
layers that are parameterized by a set of parameters 1 2{ , , , }nw w w=w  . Each hidden
layer is composed of nonlinear analog neurons which can transform linear combination
into an output value using non-linear activation functions (e.g., sigmoid, tanh, ReLU, etc).
The output of the j th neuron in layer i can be formulated as

() () () ()(),i i i i
j a ja f b= ⋅ +w x (22)

where ()i
ja is the output value in layer i , af is the activation function. () () ()i i i

jb⋅ +w x is the

linear combination of input vector ()ix with corresponding weights vector ()iw and bias ()i
jb

of neuron j in layer i . The DNN input is the original state, and the output y is the value

98 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.89-104, 2019

function (Q-value) corresponding to each action,
() () () ()().= = ⋅ +i i i i

ay a f w x b (23)

The DNN can be trained to update the value function by updating the parameters w

including weights w and biases b . And the best fitting weights optw can be learned by
iteratively minimizing the loss function ()L w , which is the mean-squared error (MSE)
between the estimated value and the target value, i.e.,

1 1 1max (,),
t

t
t a t tQ r Q s aγ

+ + += +w w (24)
2

() (,) ,t
t tL E Q Q s a = − w ww (25)

where w are the parameters of the neural network, and tQw is the target value. The error
between the target value and the estimated value (,)t tQ s aw is called temporal-difference
(TD) error, denoted as (,)t

t tQ Q s a−w w .
Since DNN may cause the training of RL algorithm unstable and diverge due to the non-
stationary targets and the correlations between samples. We adopt target network with
fixed parameters −w updated in a slower cycle, and experience replay which stores

experience 1, , ,t t t ts a r s + in a replay buffer D and randomly sample a mini-batch of the
experience to train the network, so the target value and loss function become:

1 1 1max (,),
t

t
t a t tQ r Q s aγ− −

+ + += +
w w (26)

2
() (,) ,t

D t tL E Q Q s a− = − ww
w (27)

where the parameters w used for approximating the estimated value updates at every step
while the fixed parameters −w for approximating target value updates at each fixed steps.
Stochastic gradient descent method is applied to minimize the loss function, and the
update of the parameters w defined as follows:

1 (,) (,),t
t t t t t tQ Q s a Q s aωω ω α −+  = + − ∇ w ww (28)

where (,)t tQ s aω∇ w is the gradient of (,)t tQ s aw .
The deep reinforcement learning algorithm performed by mobile users for computation
offloading decision making is presented in Tab. 1. For each state, the agent chooses
action randomly with the probability of 1 ε− and with the probability of ε chooses the
action with maximum action value function which called ε greedy strategy. When the
agent performs the action in state ts and receives the immediate reward r , it will observes
the subsequent state 1ts + and approximate the action-value function (,)t tQ s aw by DNN.
After the convergence of action-value functions, each mobile user can select the
overhead-aware optimal computation offloading action based on its state to minimize the
total overheads of all users.

Deep Q-Learning Based Computation Offloading Strategy 99

Table 1: Deep reinforcement learning based computation offloading algorithm

Initialization: experience replay buffer D , action-value function Q with random
parametersω , target network parametersω ω− =
1. For episode=1, maxE do

2. Initialize state 0s and reset reward 0r =

3. For step=1, maxT do

4. With the probability1 ε− choose a random action ta

5. Otherwise choose the action with the maximum action-value function (,)t tQ s aw

6. Execute action ta , receive an immediate reward r and observe the next state 1ts +

7. Replay buffer stores the tuple 1, , ,t t t ts a r s + in D

8. Sample a random mini-batch of tuple 1, , ,t t t ts a r s + from D

9.
1

max

1 1 max
max (,)

t

tt

t t ta

r t T
Q r Q s a t Tγ−

−
+

+ +

 ==  + <
w

w

10. Perform a gradient descent on ()2
(,)t

t tQ Q s a− − ww
with the parameterω

11. Every C steps, update the target network parametersω ω− =
12. End For
13. End For

4 Simulation results and discussion
In this section, we assess the performance of the proposed deep RL based computation
offloading decision method compared with two baseline schemes. Simulation scenarios
are presented that there are 10 small cells randomly deployed. The transmission power of
UE m is set to be 100mp = mWatts. The spectrum bandwidth is set as 10W = MHZ,
while the additive white Gaussian noise 100σ = − dBm. The channel gain model
presented in 3GPP standardization is adopted here. We applied the face recognition as the
computation task here [Soyata, Muraleedharan, Funai et al. (2012)]. The size of
computation input data mB (KB) and the total number of CPU cycles mD (Megacycles)

randomly distributed in the range[]1000, 10000 . The computational capability ()l
mf of a

mobile user m is assigned from the set { }0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 GHz at
random which reveals the heterogeneity of mobile user’s computational capability. The
total computational capability of the MEC server is 100cf = GHz. We assume that the

weighting factor of computation time as ()t 0.5mλ = and ()
m

eλ for energy weighting factor

100 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.89-104, 2019

correspondingly.
Firstly, we demonstrate the convergence of the proposed deep RL algorithm. Fig. 2
shows the total rewards of all UEs at every episode with different learning rates. As we
can see, the proposed learning strategy with learning rate of 0.01 obtain the reward per
episode fluctuates around -400 after 1000 episodes, while algorithm with learning rate of
0.001 and 0.0001 obtain the rewards per episode fluctuates around -500 and -450 after
1000 episodes. As expected, different learning rates result in different convergence
performance, and the algorithm with 0.01 learning rate outperforms compared with other
learning rates. The fluctuation of the curve after algorithm converges is for theε greedy
strategy adopted here which users not always choose the action with maximum action
value function and have the possibility to choose action randomly.

Figure 2: The total rewards of each episode with different learning rates

Figure 3: Computational capability versus total overheads with different schemes

We will show the performance of proposed scheme in comparison with baseline methods,
including the local computation policy, which executes all the computational task on
local mobile user’s equipment, and the edge computation policy which offloads all the

Deep Q-Learning Based Computation Offloading Strategy 101

tasks of UEs to the MEC server for edge computing. Fig. 3 demonstrates that with the
increase of computational capability, the total overheads for edge computation policy and
proposed learning algorithm decreases due to the change of MEC server’s computational
capability will influence the computation offloading policy of mobile users. With the
increasing computational capability of MEC server, edge computation strategy performs
better than local computation due to its multi-tasking capability. However, baseline
methods are not effective than proposed learning method on account of proposed method
can obtain the optimal overhead aware policy according to its learning result.
Fig. 4 shows the relationship between the number of mobile users and the total overheads
of all the mobile users. The total overheads increase gradually with the number of users
grows. The overhead generated by edge computation method is less than overhead of
local computation method gradually due to the increasing of number of users with more
computation tasks to execute. While local computation policy consumes more time and
energy than the baseline schemes on account of the limited computational capability
when the number of users increases. Contrasted with baseline methods, the proposed
learning algorithm always obtains the minimum overhead which means the proposed
scheme can achieve the optimal computation offloading decision for reducing the latency,
energy consumption and improving the efficiency.

Figure 4: Number of mobile users versus total overheads with different schemes

The assignment of weighting factor which will represent different states of users. Mobile

user which is sensitive to delay will take more proportion of ()t
mλ into account while user

in low-battery state will consider more proportion of ()e
mλ for the overhead computation.

Fig. 5 presents that when the weighting factor of time increases from 0 to 1 (while the
proportion of energy decreases from 1 to 0 accordingly), total overheads rise due to the
fact that the computational and transmission time occupy more proportion in total
overheads. As we can see from the above results, the decision-making performance of the
proposed learning algorithm performances better than baseline methods in terms of total
overheads of all the mobile users.

102 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.89-104, 2019

Figure 5: Weighting factor of time versus total overheads with different schemes

5 Conclusion
In this paper, we propose a deep reinforcement learning approach for computation
offloading decision issue with mobile edge computing. The problem is formulated as
minimizing the total overheads of all the users which can execute tasks on local mobile
users’ device or offload the computation to MEC server. In order to solve this problem,
we apply deep neural network in RL framework to approximate action-value action and
obtain the overhead-aware optimal computation offloading strategy based on deep Q-
learning method. The performance evaluation of proposed method is compared with two
baseline methods. Simulation results showed that the proposed policy can achieve better
performance than baseline methods in terms of total overheads which reduces the latency,
energy consumption and enhances the computation efficiency.

Acknowledgement: This work was supported by the National Natural Science
Foundation of China (61571059 and 61871058).

References
Alsheikh, M. A.; Hoang, D. T.; Niyato, D.; Tan, H. P.; Lin, S. (2015): Markov
decision processes with applications in wireless sensor networks: a survey. IEEE
Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1239-1267.
Bao, L.; Ding, S. (2016): Cloud computing: a new computing paradigm. International
Journal of High Performance Computing and Networking, vol. 1, no. 3, pp. 167.
Barbera, M. V.; Kosta, S.; Mei, A.; Stefa, J. (2013): To offload or not to offload? the
bandwidth and energy costs of mobile cloud computing. Proceedings IEEE INFOCOM,
pp. 1285-1293.
Bengio, Y.; Courville, A.; Vincent, P. (2013): Representation learning: a review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
35, no. 8, pp. 1798-1828.
Chen, X. (2014): Decentralized computation offloading game for mobile cloud
computing. IEEE Transactions on Parallel & Distributed Systems, vol. 26, no. 4, pp.

Deep Q-Learning Based Computation Offloading Strategy 103

974-983.
Patel, M.; Naughton, B.; Chan, C.; Sprecher, N.; Abeta, S. et al. (2014): Mobile-edge
computing-Introductory technical white paper. ETSI White Paper.
Huang, D.; Wang, P.; Niyato, D. (2012): A dynamic offloading algorithm for mobile
computing. IEEE Transactions on Wireless Communications, vol. 11, no. 6, pp. 1991-1995.
Iosifidis, G.; Gao, L.; Huang, J.; Tassiulas, L. (2013): An iterative double auction for
mobile data offloading. International Symposium on Modeling & Optimization in Mobile,
Ad Hoc & Wireless Networks, pp. 154-161.
Jafari, A. H.; López-Pérez, D; Song, H.; Claussen, H.; Ho, L.; Zhang, J. (2015):
Small cell backhaul: challenges and prospective solutions. Eurasip Journal on Wireless
Communications & Networking, vol. 2015, no. 1, pp. 206.
Khatana, A.; Narang, V.; Thada, V. (2018): A review of optimization methods in deep
learning. International Journal of Computer Sciences and Engineering, vol. 6, no. 4, pp.
440-447.
Kumar, K.; Liu, J.; Lu, Y. H.; Bhargava, B. (2013): A survey of computation
offloading for mobile systems. Mobile Networks & Applications, vol. 18, pp. 129-140.
Liu, J.; Mao, Y.; Zhang, J.; Letaief, K. B. (2016): Delay-optimal computation task
scheduling for mobile-edge computing systems. IEEE International Symposium on
Information Theory, pp. 1451-1455.
Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K. B. (2017): A survey on mobile
edge computing: the communication perspective. IEEE Communications Surveys &
Tutorials, vol. 19, no. 4, pp. 2322-2358.
Mao, Y.; Zhang, J.; Letaief, K. B. (2016): Dynamic computation offloading for mobile-
edge computing with energy harvesting devices. IEEE Journal on Selected Areas in
Communications, vol. 34, no. 12, pp. 3590-3605.
Mao, Y.; Zhang, J.; Song, S. H.; Letaief, K. B. (2017): Stochastic joint radio and
computational resource management for multi-user mobile-edge computing systems.
IEEE Transactions on Wireless Communications, vol. 16, no. 9, pp. 5994-6009.
Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. (2016): Edge computing: vision and
challenges. IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646.
Soyata, T.; Muraleedharan, R.; Funai, C.; Kwon, M.; Heinzelman, W. (2012):
Cloud-vision: real-time face recognition using a mobile-cloudlet-cloud acceleration
architecture. Computers and Communications.
Wang, C.; Liang, C.; Yu, F. R.; Chen, Q.; Tang, L. (2017): Computation offloading
and resource allocation in wireless cellular networks with mobile edge computing. IEEE
Transactions on Wireless Communications, vol. 16, no. 8, pp. 4924-4938.
Watkins, C. J. C. H.; Dayan, P. (1992): Technical note: Q-learning. Machine Learning,
vol. 8, no. 3-4, pp. 279-292.
Wei, Y.; Yu, F. R.; Song, M. (2010): Distributed optimal relay selection in wireless
cooperative networks with finite-state markov channels. IEEE Transactions on Vehicular
Technology, vol. 59, no. 5, pp. 2149-2158.

104 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.89-104, 2019

Wei, Y.; Yu, F. R.; Song, M.; Han, Z. (2018): User scheduling and resource allocation
in hetnets with hybrid energy supply: an actor-critic reinforcement learning approach.
IEEE Transactions on Wireless Communications, vol.17, no. 1, pp. 680-692.
Wen, Y.; Zhang, W.; Luo, H. (2012): Energy-optimal mobile application execution:
taming resource-poor mobile devices with cloud clones. Proceedings IEEE INFOCOM,
pp. 2716-2720.
Xu, J.; Ren, S. (2017): Online learning for offloading and autoscaling in renewable-
powered mobile edge computing. Global Communications Conference, pp. 1-6.
Yang, L.; Cao, J.; Tang, S.; Li, T.; Chan, A. T. S. (2012): A framework for
partitioning and execution of data stream applications in mobile cloud computing. IEEE
International Conference on Cloud Computing, pp. 23-32.
Yu, Y.; Zhang, J.; Letaief, K. B. (2016): Joint subcarrier and CPU time allocation for
mobile edge computing. Global Communications Conference, pp. 1-6.

	Deep Q-Learning Based Computation Offloading Strategy for Mobile Edge Computing
	Deep Q-Learning Based Computation Offloading Strategy for Mobile Edge Computing
	5 Conclusion
	5 Conclusion
	Acknowledgement: This work was supported by the National Natural Science Foundation of China (61571059 and 61871058).
	Acknowledgement: This work was supported by the National Natural Science Foundation of China (61571059 and 61871058).
	References
	References

