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Abstract: Image retrieval for food ingredients is important work, tremendously tiring, 
uninteresting, and expensive. Computer vision systems have extraordinary advancements 
in image retrieval with CNNs skills. But it is not feasible for small-size food datasets 
using convolutional neural networks directly. In this study, a novel image retrieval 
approach is presented for small and medium-scale food datasets, which both augments 
images utilizing image transformation techniques to enlarge the size of datasets, and 
promotes the average accuracy of food recognition with state-of-the-art deep learning 
technologies. First, typical image transformation techniques are used to augment food 
images. Then transfer learning technology based on deep learning is applied to extract 
image features. Finally, a food recognition algorithm is leveraged on extracted deep-
feature vectors. The presented image-retrieval architecture is analyzed based on a small-
scale food dataset which is composed of forty-one categories of food ingredients and one 
hundred pictures for each category. Extensive experimental results demonstrate the 
advantages of image-augmentation architecture for small and medium datasets using deep 
learning. The novel approach combines image augmentation, ResNet feature vectors, and 
SMO classification, and shows its superiority for food detection of small/medium-scale 
datasets with comprehensive experiments. 
 
Keywords: Image augmentation, small-scale dataset, deep feature, deep learning, 
convolutional neural network. 

1 Introduction 
In human life, food ingredients have always been essential they frequently draw the 
masses’ much more interesting than before. At present, food-ingredient suppliers detected 
abundant categories of food ingredients and labeled them properly with the human visual 
system. This process is very tiring, uninteresting, and expensive [Chen, Xu, Xiao et al. 
(2017)]. Therefore, it becomes urgent to construct a food-ingredient recognition system, 
which can intelligently recognize food-ingredient images and label correct food categories.  
Recently, image recognition implements great growth in many fields [Li, Qin, Xiang et al. 
(2018); Pouyanfar and Chen (2016); Chen, Zhu, Lin et al. (2013); Liu, Wang, Liu et al. 
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(2017)], such as remote sensing, digital telecommunications, medical imaging, and so on. 
A variety of work have shown that deep learning and machine learning technologies can 
be exploited to retrieve food images intelligently [Chen, Xu, Xiao et al. (2017); Pan, 
Pouyanfar, Chen et al. (2017); Yanai and Kawano (2015); Joutou and Yanai (2009)]. 
While most food recognition methods concentrate on diet [Joutou and Yanai (2009); 
Hoashi, Joutou and Yanai (2010); Kagaya, Aizawa and Ogawa (2014)], and food datasets 
are mainly made up of food meal images. Fig. 1 shows six kinds of food meals. 
Nowadays, few food-ingredient datasets (as shown in Fig. 2) are obtainable, and thus, the 
multi-category detection of food ingredients is limited in existing literature [Chen, Xu, 
Xiao et al. (2017); Pan, Pouyanfar, Chen et al. (2017)] and the size of obtained food-
ingredient images is commonly small scale or medium. To effectively classify small and 
medium food-ingredient datasets, this study presents an image augmentation-based food 
recognition architecture utilizing deep learning. 
 

  

Figure 1: Food meals 

  

Figure 2: Food ingredients 

The study [Hinton and Salakhutdinov (2006)] showed that high-dimensional data could 
be transformed into low-dimensional codes using a multilayer neural network. From then 
on, CNNs have been used in numerous fields such as medical, security, forestry, and 
gained ongoing attention in both literature and business [Krizhevsky, Sutskever and 
Hinton (2012); He, Zhang, Ren et al. (2016); Lin, Chen and Yan (2014)]. Because deep 
learning has strong advantages in image recognition, this document makes use of deep 
learning to recognize food-ingredient images. Notably, ResNet beat other CNNs 
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including VGG, GoogLeNet, and gained the best scores on the ILSVRC (ImageNet Large 
Scale Visual Recognition Competition) 2015 recognition work. The depth and width of 
CNNs are extended rapidly, that means the more high-level and richer features are 
available using deep networks [Pouyanfar, Chen and Shyu (2017)]. 
One important issue is that CNNs need a large-scale image dataset to train a CNN 
module, while a small-scale dataset cannot be trained on CNNs because of overfitting. So 
far, two important methods have been applied to resolve the problem. One skill is fine-
tuning that utilizes an already trained module, adjusts the CNN’s framework, and restarts 
training from the module [Yanai and Kawano (2015)]. Another solving technique is using 
a pre-trained CNN module with a large-scale dataset as a deep-feature extractor of a 
small-scale dataset. The approach [Chen, Xu, Xiao et al. (2017)] applied a trained deep 
learning model to detect different types of food ingredients, and its best accuracy is close 
to 60%. Another problem is whether high-dimension feature vectors from a pre-trained 
CNN model on a different dataset (e.g., ImageNet) enhances accuracy of food-ingredient 
recognition. Several kinds of literature have demonstrated the usefulness of deep features 
for image detection [Pan, Pouyanfar, Chen et al. (2017); Yanai and Kawano (2015); 
Zhang, Isola, Efros et al. (2018)]. 
To resolve the aforementioned problems, this report presents an image augmentation-
based food recognition technique for small and medium-scale datasets with CNNs. The 
new method utilizes image transformation and pretrained CNN models to overcome the 
problem of small dataset limitation, extracts high-level and valid image features using 
deep learning, and recognizes food ingredients. The extensive experimental results prove 
that the presented image augmentation-based food recognition architecture outstandingly 
promotes food detection accuracy compared to the existing methods. 
The rest of this study is organized as follows. Section 2 introduces an overview of the 
state-of-the-art research in food recognition and CNNs. The details of the presented food 
recognition framework based on image augmentation are described in Section 3. Section 
4 analyzes the experimental results on different image augmentation datasets, deep 
learning benchmarks with F1-measure accuracy and time cost of food recognition based 
on various deep-feature sets. Finally, Section 5 provides the concluding remark of the 
whole report. 

2 Related work 
This document will describe the relevant research including food detection and 
Convolutional Neural Networks as follows.  

2.1 Food classification 
Recently, food classification gained rapid development in machine learning. Such as: He 
et al. [He, Xu, Khanna et al. (2014)] and Nguyen et al. [Nguyen, Zong, Ogunbona et al. 
(2014)] extracted both local and global features for food detection. The former used the 
k-nearest neighbors and vocabulary trees, while the latter combined the partial figure and 
structural characteristics of food contents for food recognition.  In paper Farinella et al. 
[Farinella, Moltisanti and Battiato (2014)], visual word distributions (Bag of Textons) 
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was regarded as food images and a Supported Vector Machine (SVM) was used to detect 
them. In document Bettadapura et al. [Bettadapura, Thomaz, Parnami et al. (2015)], the 
context of where a food image was exploited to represent food features for food-meal 
recognition. These food images were comprised of actually existing foods that were 
labeled as follows: American, Indian, Italian, Mexican, and Thai. A Japanese food dataset 
was made use of food classification on paper Joutou et al. [Joutou and Yanai (2009)]. 
This literature presented a multiple kernel learning method that mixed different image 
features including color, texture, and Scale Invariant Feature Transform (SIFT), and the 
food dataset which was composed of 50 categories of manually collected pictures from 
the Internet. Hoashi et al. [Hoashi, Joutou and Yanai (2010)] applied several kernel 
learning for feature fusion, and obtained 62.5% accuracy rate for image classification 
based on a dataset composed of 85 kinds of food pictures. The Pittsburgh Fast-food 
Image Dataset (PFID) [Chen, Dhingra, Wu et al. (2009)] involved 101 kinds of foods and 
three pictures for each class, which was the first open food dataset. Chen et al. [Chen, 
Yang, Ho et al. (2012)] used a food dataset composed of 50 kinds of Chinese foods. 
Another food recognition technique was presented with picking up dissimilar parts with 
Random Forest, and evaluated on the Food-101 dataset (downloaded from 
foodspotting.com) which obtained 50.76% average accuracy. 
Currently, CNNs has been extremely valid for large-scale image classification and applied 
to food detection. A rapid auto-clean deep learning model was presented for food 
recognition [Chen, Xu, Xiao et al. (2017)]. This arcticle constructed a fine-tuning 
technology using deep learning for food recognition. Another DeepFood framework [Pan, 
Pouyanfar, Chen et al. (2017)] was proposed that used deep learning to extract deep 
features and selected deep feature sets with Information Gain selector. The architecture 
improved the classification accuracy. Kagaya et al. [Kagaya, Aizawa and Ogawa (2014)] 
leveraged deep learning for food classification with a dataset including ten kinds of foods 
from an open food-logging program. Kagaya et al. [Kagaya and Aizawa (2015)] recognized 
food/non-food pictures using deep learning on three datasets. A deep-learning food 
classification was presented utilizing both a patch-wise manner and a voting technique with 
a six-layer CNN [Christodoulidis, Anthimopoulos and Mougiakakou (2015)]. Ciocca et al. 
[Ciocca, Napoletano and Schettini (2017)] proposed a food recognition algorithm on an 
UNIMIB2016 food dataset including 73 food categories and a whole of 3616 food images. 
This work applied several features to detect food, and their experimental conclusion proved 
that the deep-learning features got a higher classification accuracy. 

2.2 Convolutional neural networks 
Deep learning is making unbelievable improvements in computer vision, speech 
recognition, natural language processing, and so on. Significantly, CNNs are exploited 
for computer vision, and deep convolutional neural networks have attained eminent 
advancements in image recognition [Krizhevsky, Sutskever and Hinton (2012); He, 
Zhang, Ren et al. (2016)]. 
AlexNet [Krizhevsky, Sutskever and Hinton (2012)] is the first framework using deep 
convolutional layers for image recognition. The architecture has eight layers including 
five convolutional layers and three fully connected layers, which contains multiple 
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convolutional and pooling layers put on top of each other rather than an individual 
convolutional layer followed by a pooling layer. In ILSVRC (ImageNet Large Scale 
Visual Recognition Challenge) 2012, AlexNet remarkably achieved better performance 
than the other high-ranking techniques.  
Nowadays, Deep Residual Learning [He, Zhang, Ren et al. (2016)] acts as the benchmark 
of CNNs. Residual Network (ResNet) created by He et al. [He, Zhang, Ren et al. (2016)] 
from Microsoft who gained the champion of ILSVRC 2015 and COCO (Common Objects 
in Context) 2015 competitions on ImageNet recognition and localizations, as well as 
COCO segmentation and recognition. The CNN’s outstanding accomplishment is the 
reconstructed learning process that directs the deep neural network information flow and 
decreases the degradation. ResNet is extremely deeper than other CNNs, and the residual 
framework has been demonstrated to construct a deeper CNN than before comfortably. 
Recently, a novel CNN called “DenseNet” [Huang, Liu, Maaten et al. (2017)] was 
designed with dense connections. In DenseNet, connection of each layer utilizes a feed-
forward fashion. Especially, DenseNet encourages feature reuse using the connection of 
features on the channel. 
All the above mentioned deep learning frameworks, including other popular CNNs, have 
brought about numerous advancements in computer vision. As we all know, large-scale 
datasets are necessary for training a deep learning model. However, a large-scale dataset 
means that a large number of images and diversities of objects, which is not easy to 
obtain, while small datasets are very widespread and easy to be collected. Consequently, 
this document proposes an image augmentation-based food recognition architecture for 
small and medium-scale food datasets with CNNs. 

3 The image augmentation-based food recognition framework 
This report proposes a novel architecture of food-ingredient recognition utilizing image 
augmentation and CNNs. The framework is depicted in Fig. 3, which is composed of 
three major modules: (1) Image augmentation using rotation and flipping, (2) the last 
pooling-layer feature extraction using ResNet, (3) classification with SMO (Sequential 
Minimal Optimization). 

3.1 Image augmentation 
A CNN has numerous parameters that need to be trained, and the number of images is a 
key factor of deep learning using CNNs because the small datasets easily result in 
overfitting. A normal approach is image augmentation that artificially enlarges the size of 
a dataset [Krizhevsky, Sutskever and Hinton (2012)]. Classic augmentation techniques on 
images have affine transformations including translation, rotation, scaling, flipping, to 
name a few [Roth, Lu, Liu et al. (2016)]. In order to both enlarge the size of the food-
ingredient dataset and preserve food characteristics, the framework utilizes both rotation 
and flipping to augment food images. 
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Figure 3: The image augmentation-based food recognition framework 
 

 

Figure 4: An original food image and its augmentation with rotation and flipping 

Firstly, each image is flipped  times (Vertical, Horizontal, and Horizontal & Vertical). 
Then, the original and flipped food images are rotated times at random angles 

. After the image-augmentation process, the size of food dataset at 
least will be scaled (1+Nf+Nr) times of the original size, even  
times. A food image and its augmentations are shown in Fig. 4. 
Algorithm 1 shows the image augmentation for food-ingredient images. During the 
image-augmentation process, the original food pictures are rotated a flipped so that one 
larger food-ingredient dataset will be gained. In our architecture, the original food 
pictures are defined P={(pi), i=1, 2, …, Np}, where pi is denoted as the ith image and Np is 
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the number of the original food images. Flipping involves three ways denoted as 
FW={Vertical, Horizontal, and Horizontal & Vertical}, and rotation is defined as 
RW={(rwk), k=1, 2, …, rwNr}, where rwk is the k’s rotation angle. Line 2 to Line 7 show 
that each image in P will be rotated and flipped, and both the rotated food dataset RP and 
the flipped food set FP are output in Line 9. 
Algorithm 1. the image augmentation for food ingredients  
Input: Food images P={(pi), i=1, 2, …, Np}, flipping FW={Vertical, Horizontal, and 

Horizontal & Vertical}, and rotation RW={(rwk), k=1, 2, …, rwNr} that rwk is the 
rotation angle. 

Output: Rotated food images RP and flipped food images FP 
1:    for each image pi ∈ P do  
2:        for k=1 to Nr do 
3:            Rotating at the angle rwk 
4:        end for 
5:        for FW ={Vertical, Horizontal, and Horizontal & Vertical} 
6:            Flipping  
7:        end for 
8:    end for 
9:    return two food datasets both RP and FP 

3.2 The last pooling layer for feature extraction using ResNet 
Recognizing a small-size image dataset is universal in the real world, while training a 
CNN model using a small-size dataset is impossible from scratch owing to overfitting. 
Alternatively, transfer learning is a well-liked method for recognizing medium and small-
scale datasets. In deep learning field, transfer learning is the procedure of utilizing a pre-
trained deep learning model such as a CNN model which is initially trained on a large-
scale dataset (e.g., ImageNet) and acted as a fixed feature extractor for any size of 
datasets, including small or medium sets. The original pictures are granted as the input of a 
pre-trained CNN model and then CNN vectors are attained from its middle layers. The 
activation vectors are spread into the upper layers and the produced high-level vectors can 
be treated as the image description. Generally, the image deep features are extracted from 
the last output layers of the pre-trained deep model. On document [Pan, Pouyanfar, Chen 
et al. (2017)], experimental results showed that the second last layer of the pre-trained 
CNN had better performance than the last layer for food-ingredient classification. 
Therefore, our framework uses the last pooling layer of a pre-trained ResNet model to 
extract deep features. 
A CNN is a multilayer artificial neural network that combines both unsupervised 
feature extraction and image recognition. In Fig. 3, the high-level features are extracted 
from the last pooling layer of RestNet. ResNet [He, Zhang, Ren et al. (2016)] is an 
extremely powerful CNN and shows superior recognition compared to other CNNs. It 
contains amazing residual connections and widely exploits batch normalization. Till 
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now, Resnet becomes a milestone of CNNs and brings superior improvements on visual 
image applications. 
In Fig. 3, plenty of features will be generated when local areas of the whole input are 
iteratively operated with a function in a convolutional layer. As shown in Eq. (1), the  
CNN vector at the  layer is noted as  where k is the assigned layer, i and j are 
dimensions of the input data,  is input data of the kth layer from output of the k-1 
layer, λ is an activation function such as Relu, and the filters of the  layer are defined as 

 (weights) and  (bias). A pooling layer is a nonlinear down-sampling following by 
each convolutional layer. The pooling layer takes a small part from the preceding 
convolutional layer and produces an individual vector as depicted in Eq. (2), where  is a 
multiplicative bias and down(.) is a subsampling function like average pooling and max 
pooling. 

                  (1) 
                                                                                           (2) 

In our architecture, the deep-feature extraction benefits from transfer learning using 
ResNet. First, the dataset is divided into training set T and testing set T′. T is denoted as  
T={(t1, cq), (t2, cq), …, (tN, cq)}, where ti is the ith training sample, N is the size of training 
samples, and  is the one certain category of food ingredients, where q is less than 
Nc. Classes C={c1, c2, …, cNc} and Nc is the total kinds of food ingredients. Second, the 
pre-trained ResNet model and its last pooling layer are used as a deep feature extractor for 
unsupervised features. In addition, the extracted feature vectors are stored in  F={f1, f2, …, 
fNs}, where  fi is the ith feature vector from the last pooling layer, and Ns is the number of 
extracted feature vectors from the last pooling layer of ResNet. 
In Fig. 3, utilizing the presented ResNet feature extractor will generate high-level, 
prosperous and valid deep features of food ingredients. 

3.3 Image recognition 
How to train an excellent recognized model and detect food images is a key problem 
when feature vectors are extracted. For the goal, our architecture uses SMO to train 
classification models (shown in Fig. 3). SMO is an ameliorated algorithm of Support 
Vector Machines (SVM) on detection assignments. It is constructed to get a valid 
solution of the expensive Quadratic Programming (QP) issue by splitting it into smallest 
probable sub-problems [Platt (1998)].    
The recognition component includes two major procedures: training and testing. First, the 
image dataset is divided into training T and testing T′ using three-fold cross validation. T 
has been denoted in Section III (2). T′ ={(t1, cx), (t2, cx), …, (tNt, cx)}, where ti is the ith  
testing samples, Nt is the size of testing images, and  but the cx is an unlabeled 
category. For the testing set, the ti is a testing instance with unknown food type. 
In the training process, several SMOs are trained for food-ingredient recognition using 
the training dataset T and the deep features F extracted during the feature extraction 
phase depicted in Section III (2). During the testing stage, the category of each testing 
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sample is predicted using the trained SMO models as shown in Algorithm 2. The inputs 
of the testing algorithm are composed of testing instances T′ and its feature vectors F, as 
well as all the trained models SMOs. Its outputs are a predicted food category set PL, and 
an accuracy array Acc. In Algorithm 2, the accuracy is computed for each trained SMO 
model. The jth testing sample is forecasted as PCij exploiting the ith trained model SMOi in 
Line 1. The testing samples whose types correctly predicted using SMOi  are amounted as 
PCi in Line 5. Then, the accuracy of each trained SMOi  is counted as the corresponding 
Acci in Line 6. Finally, all of the predicted testing-instance classes and the average 
accuracies are output in Line 8. 
Algorithm 2. the predicted classes of testing samples 
Input: Testing instances  and the last pooling layer features 
F={f1, f2, …, fNs}, Trained models SMOs 
Output: Predicted each instance’s class PCij  and average accuracy Acci   
1:    for each trained model  ∈ SMOs do  
2:        for each test instance  
3:             
4:        end for 
5:         
6:        Acci = PCi /Nt 
7:    end for 
8:    return PCij, Acci 

4 Experimental analysis 
4.1 Food-ingredient dataset 
The study involves the MLC-41 dataset [Pan, Pouyanfar, Chen et al. (2017)] which is a 
small-scale set of food-ingredient images originated from a large food supply chain 
platform in China (Mealcome dataset) [Chen, Xu, Xiao et al. (2017)]. The raw food-
ingredient images were gathered in a sophisticated scene which mixed different 
backgrounds and food ingredients. Most of the initial images are clear to be distinguished 
by the human eye, while some are hard to be detected as the labeled food-ingredient 
categories because of blurriness, noise, illumination, overexposure, or some other reasons. 
Consequently, the noisy images were removed and obviously recognized images were 
reserved and labeled into the corresponding food-ingredient categories. Finally, a small-
scale food dataset is constructed called the MLC-41 dataset which contains forty-one 
kinds of food ingredients and each category includes one hundred pictures, and each 
picture resolution is adjusted to 640*480 pixels to get a more efficient feature extraction 
and food-ingredient classification. MLC-41 dataset is a balanced set, but the size of 
categories is a bit high compared with the size of pictures in each category. This makes the 
training task more challenging. Fig. 5 shows several instances of the MLC-41 dataset as 
below, like Carrot, Red Pepper, Cabbage, to name a few. 
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4.2 Experimental setup 
For image recognition, how to evaluate our proposed architecture is very significant. 
Generally, evaluation metrics like F1, Precision, and Recall are appropriate for 0-1 
detection, particularly imbalanced data. The MLC-41 dataset is a balanced set and the 
recognition task is multiclass detection. Consequently, the accuracy metric is exploited to 
evaluate the image-augmentation framework presented on this study.  
Normal affine transformations include translation, rotation, shearing, flipping, and so on. 
In order to evaluate our presented framework, translation and shearing are utilized for 
image augmentation. Caffe [Jia, Shelhamer, Donahue et al. (2014)] is a common deep 
learning platform which was created by Yangqing Jia, evolved by Berkeley AI Research 
(BAIR) and community contributors. Caffe involves plentiful pre-trained CNN models 
including AlexNet, CaffeNet [Jia, Shelhamer, Donahue et al. (2014)], and ResNet-50 and 
so on. In experiments, the novel presented feature extractor is compared with AlexNet 
and CaffeNet models. In this work, feature vectors are extracted from the second last 
layer of each CNN model. For example, the second last layer of CaffeNet and AlexNet is 
the layer “fc7”, which produces a 4096-dimension feature vector, and of ResNet-50 is the 
“pool5” which outputs a 2048-dimension feature vector. Additionally, the average 
accuracy of the image-augmentation dataset is compared with that of various food 
datasets utilizing three-fold cross validation. 

 

Figure 5: Image samples of MLC-41dataset 

4.3 Experimental results 
The framework based on image augmentation for food-ingredient classification is analyzed 
on the MLC-41 dataset. This experiment utilizes various affine translations to augment 
images, such as flipping, rotation, translation. The second last layer of CNNs is exploited as 
a deep-feature extractor. The SMO classifier is adjusted to achieve to its best capability on 
all evaluated food datasets, and measured with the three-fold cross validation. 
This experiment uses classic augmentation techniques including rotation, flipping, 
translation and shearing. Tab. 1 shows the sizes of original and different image-

http://daggerfs.com/
http://daggerfs.com/
http://bair.berkeley.edu/
http://bair.berkeley.edu/
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augmentation datasets. In Tab. 1, the original food dataset has 4100 images. All image-
augmentation datasets are built based on affine transformation of the original dataset. The 
Rot. Dataset uses rotation and flipping and it is five times that of the original dataset. The 
Tra. dataset uses translation and shearing and includes 4100*8 images. The Rot. & Tra. 
dataset has 4100*13 pictures combined with the Rot. and Tra. Datasets. The Tra. & Ori. 
dataset includes 4100*9 images and that is the combination of Tra. and Ori. datasets. The 
Rot. & Tra. & Ori. dataset is fourteen times that of the original set because it combines 
the three datasets of Rot., Tra. and Ori. The dataset of Rot. & Ori has 4100*6 images. 

Table 1: Different sizes of the original and image-augmentation datasets 

Dataset Ori. Rot. Tra. Rot. & 
Tra. 

Tra. & 
Ori. 

Rot. & 
Tra. & 

Ori. 

Rot. &  
 Ori. 

Size 4100 4100*5 4100*8 4100*13 4100*9 4100*14 4100*6 

Table 2: Average accuracy difference between various CNN models and datasets 
Deep 

Learning 
Model 

Cross 
Val. Ori. Rot.   Tra.  Rot. &  

Tra. 
Tra. & 

Ori. 

Rot. &  
Tra. & 

Ori. 

Rot. & 
Ori. 

AlexNet 

Fold1 79.84  80.13  76.26  79.48  77.91  79.34  80.56  
Fold2 81.08  79.97  77.90  79.97  79.38  80.49  81.08  
Fold3 79.75  80.41  79.75  81.30  80.41  81.37  81.60  
Avg. 80.22  80.17  77.97  80.25  79.23  80.40  81.08  

CaffeNet 

Fold1 78.55  79.41  76.83  79.05  78.26  79.27  79.12  
Fold2 81.60  81.61  74.65  81.67  80.86  81.37  81.52  
Fold3 80.86  80.78  79.45  80.78  80.56  81.08  81.15  
Avg. 80.33  80.60  76.98  80.50  79.89  80.57  80.60  

ResNet 

Fold1 86.15  87.37  85.15  87.23  86.30  87.37  88.09  
Fold2 88.40  89.43  87.80  88.40  88.17  88.25  89.43  
Fold  87.95  88.25  86.84  89.36  88.10  89.36  88.99  
Avg. 87.63  88.35  86.60  88.33  87.52  88.33  88.84  

The average accuracy of different image augmentation datasets integrated with various 
CNN modules are shown in Tab. 2. From Tab. 2, the deep features extracted with CNNs 
from different food datasets promote the detection accuracy of the 41-kinds of food 
ingredients. Specifically, the combination food dataset of Rot. & Ori. beats other sets 
including original, translation and other combination datasets when their features are 
extracted from the last pooling layer of ResNet. The average accuracy corresponding to 
the food dataset constructed by the image-augmentation framework with RestNet reaches 
the highest, where the average accuracy of 41-kinds of food recognition gains 88.84%. 
From Tab. 2, we observe that the deep features extracted from the Ori. dataset keep a 
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better average accuracy than the translation deep features. The average performance of 
the Rot. dataset is extremely near to the Ori. dataset. However, using our presented 
framework with the combination of Rot. & Ori. datasets gains the most outstanding deep-
feature vectors and reaches the best performance utilizing ResNet. From Tab. 2, the 
accuracy of Rot. & Tra. & Ori. dataset is not better than the Rot. & Ori. set in 
classification. It means that more deep features don’t indicate the better average accuracy 
of food classification. Consequently, the experiment results prove that the combinational 
dataset of rotation, flipping, and original is more effective to extract image features than 
other food sets including original datasets. The main reason is referred that rotation and 
flipping techniques both enrich the food-ingredient images, and preserve the original 
image characteristics. 
In the image-augmentation architecture, deep features are extracted from the last pooling 
layer of ResNet. From Tab. 2, it can be noted that ResNet achieves much better 
recognition accuracy (nearly 10%) than other CNNs. The almost identical difference has 
also produced in Tab. 3. Therefore, it is proved again that ResNet defeats AlexNet and 
CaffeNet for food-ingredient recognition. 

Table 3: Average accuracy difference between various CNNs and classifiers 

               Classifier 
Model 

Random 
Forest Bagging 

Multi-Class 
Classifier 

Updateable 
BayesNet SMO 

AlexNet 70.14  58.61  68.76  68.17  81.08  
CaffeNet 69.37  57.59  68.89  67.66  80.60  
ResNet 81.72  72.82  80.75  76.81  88.84  

Tab. 3 shows the average accuracy difference between various CNN models and classifiers 
using the Rot. & Ori. dataset. These experimental results reveal that the image-
augmentation architecture is advanced to other approaches for multi-category classification 
of food ingredients, which combines the dataset of Rot. & Ori., ResNet deep learning, SMO 
recognition. As we can see from Tab. 3, the highest recognition effects have the average 
accuracy of 81.08%, 80.60%, and 88.84%, which are totally generated using the framework 
both SMO and deep-feature vectors. The another better average accuracy reach to 70.14%, 
69.37% and 81.72% utilizing the Random Forest classifier. From Tab. 2 and Tab. 3, a 
conclusion can be inferred that the image-augmentation architecture which obviously 
promotes the correctness of the food recognition. The best architecture is obtained when 
combining the image augmentation both rotation and flipping, ResNet deep feature dataset, 
and SMO classifier, which beats other techniques and gets the best accuracy for multi-class 
recognition of the MLC-41 dataset.  
Tab. 4 lists time cost used to build SMO models with different sizes of food sets. From 
Tab. 4, we can see that the building time is longer when the size of the dataset is larger. 
This major reason is that a larger dataset including more images needs more time to build 
the SMO classifier models. Tab. 5 shows the testing time on the same size of food-
ingredient datasets with the trained SMO models. It takes only 3.32 seconds with the 
trained SMO model on the Rot. & Ori. dataset and ResNet, which is a little longer than 



 
 

Image Augmentation-Based Food Recognition                                                        309 

3.15 seconds with the trained SMO model on the Tran. dataset and ResNet. This shows 
our proposed framework is very efficient and it reduces the classifying time of SMO 
models on the same dataset. 

Table 4: Time (Seconds) taken to build SMO models with datasets  

Deep 
Learning 

Model  

Cross 
Val. Ori. Rot. Tra. Rot. & 

Tra. 
Tra. & 

Ori. 

Rot. & 
Tra. & 

Ori. 

Rot. &  
 Ori. 

AlexNet 

# 1 23.22  194.84  574.30  1046.35  648.11  1127.06  264.95  
# 2 23.42  205.77  598.77  1112.36  669.97  1209.45  254.84  
# 3 23.00  206.44  607.75  1124.43  688.39  1211.66  255.90  

Avg. 23.21  202.35  593.61  1094.38  668.82  1182.72  258.56  

CaffeNet 

# 1 23.05  195.06  552.26  996.77  633.31  1122.28  238.32  
# 2 26.33  205.66  190.07  550.04  668.09  909.04  249.61  
# 3 23.46  204.75  596.33  1072.89  659.62  1191.08  249.76  

Avg. 24.28  201.82  446.22  873.23  653.67  1074.13  245.90  

ResNet 

# 1 10.93  77.73  158.25  282.70  177.08  299.89  101.43  
# 2 12.53  79.73  163.76  13.33  184.28  316.68  98.03  
# 3 14.90  80.01  164.84  324.59  184.52  319.49  101.67  

Avg. 12.79  79.16  162.28  206.87  181.96  312.02  100.38  

Table 5: Time (Seconds) taken to test SMO models on the same size of food sets 

Deep 
Learning 

Model 

Cross 
Val. Ori. Rot. Tra. Rot. & 

Tra. 
Tra. & 

Ori. 

Rot. & 
Tra. & 

Ori. 

Rot. &  
 Ori. 

AlexNet 

# 1 7.79  6.59  6.71  8.36  6.86  10.71  6.57  
# 2 7.51  6.99  6.70  10.69  10.04  6.57  6.87  
# 3 11.02  7.27  6.73  7.71  5.86  5.90  7.07  

Avg. 8.77  6.95  6.71  8.92  7.59  7.73  6.84  

CaffeNet 

# 1 10.47  11.06  28.63  28.03  7.93  10.99  6.84  
# 2 7.51  6.64  26.71  27.75  7.56  7.66  10.01  
# 3 13.47  6.43  29.18  28.03  7.79  7.63  7.76  

Avg. 10.48  8.04  28.17  27.94  7.76  8.76  8.20  

ResNet 

# 1 4.40  5.62  3.45  5.74  5.59  3.08  3.58  
# 2 3.80  3.19  3.02  3.33  3.26  2.94  2.97  
# 3 4.04  3.27  2.98  3.48  3.78  5.47  3.40  

Avg. 4.08  4.03  3.15  4.18  4.21  3.83  3.32  
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To further measure the presented image-augmentation architecture, compared with 
another two works using the similar food-ingredient dataset [Chen, Xu, Xiao et al. (2017); 
Pan, Pouyanfar, Chen et al. (2017)]. The method [Chen, Xu, Xiao et al. (2017)], the top1 
accuracy with CaffeNet was below 50% and close to 60% with AlexNet, while the 
average accuracy of the novel image-augmentation architecture with CaffeNet is 80.60%, 
and with AlexNet is 81.08% as shown in Tab. 6. Tab. 6 depicts the average accuracy 
difference between two food recognition techniques with the MLC-41 dataset and various 
CNNs. As can be noted from Tab. 6, the image-augmentation architecture is close to the 
DeepFood framework [Pan, Pouyanfar, Chen et al. (2017)] using AlexNet and CaffeNet. 
Significantly, the method presented in this document achieves the best average accuracy 
with image augmentation and ResNet than other benchmarks, and the average accuracy 
attains 88.84%. It is an important promotion compared to the approach [Chen, Xu, Xiao 
et al. (2017)] and superior to the DeepFood framework. 

Table 6: Accuracy comparison between two frameworks 

                  Framework 
   Model 

DeepFood Image Augmentation 

AlexNet 80.42  81.08  
CaffeNet 80.76  80.60  
ResNet 87.78  88.84  

 

 

Figure 6: F1 measure for 41-class food ingredients on different datasets 

Fig. 6 depicts the graphic average accuracy difference of various food-ingredient datasets. 
In Fig. 6, the F1 Measure of each food category is marked. As can be noticed from this 
figure, the combinational dataset of Rotation & Original outperforms other food datasets 
in all food types except Yellow hen, and the corresponding F1 values of several food 
categories, are obviously higher than other datasets. Overall, the F1 Measure plot of each 
dataset on forty-one categories is approximately fluctuating from 70% to 100%, and the 
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accuracy of several classes gain or come near to 100%. Therefore, the novel presented 
architecture strongly strengthens the effectiveness of food recognition. 
In sum, it can be concluded that the novel Image-augmentation architecture integrates the 
advantages of the image augmentation with affine transformations, deep feature extraction 
using ResNet and SMO classifier, and achieves very high effectiveness for food recognition 
comparing with earlier techniques. Furthermore, the proposed architecture promotes the 
image recognition using CNNs for small-scale or medium datasets. 

5 Conclusion 
This literature proposes a novel approach, an image augmentation-based food recognition 
utilizing CNNs, which combines image augmentation and high-level feature vectors as well 
as SMO classifier. The new framework is designed for the classification of small or 
medium-scale datasets that is an extremely common and important assignment in real life. 
Therefore, it is applied to the image recognition of MLC-41 food ingredients. The Image-
augmentation technique is measured with comprehensive experiments by comparing the 
average accuracy of various image transformation datasets, CNN models and classifiers. 
The extensive experimental results demonstrate the promotion and enhancement of the 
Image-augmentation architecture for food recognition. We believe that other classification 
problems for small or medium datasets can benefit from the Image-augmentation 
framework, and the presented method will lead to stronger classification systems. 
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