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Abstract: This study proposes a color image steganalysis algorithm that extracts high-
dimensional rich model features from the residuals of channel differences. First, the 
advantages of features extracted from channel differences are analyzed, and it shown that 
features extracted in this manner should be able to detect color stego images more 
effectively. A steganalysis feature extraction method based on channel differences is then 
proposed, and used to improve two types of typical color image steganalysis features. 
The improved features are combined with existing color image steganalysis features, and 
the ensemble classifiers are trained to detect color stego images. The experimental results 
indicate that, for WOW and S-UNIWARD steganography, the improved features clearly 
decreased the average test errors of the existing features, and the average test errors of the 
proposed algorithm is smaller than those of the existing color image steganalysis 
algorithms. Specifically, when the payload is smaller than 0.2 bpc, the average test error 
decreases achieve 4% and 3%. 
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1 Introduction 
Steganography is the science and art of concealing secret messages in unsuspected digital 
media, and the generated digital media are referred to as stego objects. Steganalysis is 
used to detect the stego objects and extract the secret messages. Among steganographic 
algorithms [Xiang, Li, Hao et al. (2018); Zhang, Qin, Zhang et al. (2018); Yao, Zhang 
and Yu (2016); Tang, Chen, Zhang et al. (2015)] with text, image, and video as cover, the 
image steganographic algorithms attract widespread attention from steganalysts. 
Steganalysts have designed numerous effective steganalysis algorithms [Yang, Liu, Luo 
et al. (2013); Pevný, Bas and Fridrich (2010)] for a number of classic image 
steganographic algorithms such as least significant bit steganography (LSB), F5 
[Westfeld (2001)], and MB [Sallee (2005)], where many steganalysis algorithms could 
even locate or extract the secret messages in certain cases [Yang, Luo, Lu et al. (2018)]. 
Currently, steganalysts have also proposed a number of high-dimensional steganalysis 
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features, such as the rich model [Fridrich and Kodovský (2012)], the projection spatial 
rich model (PSRM) [Holub and Fridrich (2013b)], maxSRM [Denemark, Sedighi, Holub 
et al. (2014)], and phase-aware projection features (PHARM) [Holub and Fridrich 
(2015)], for the new content-adaptive image steganographic algorithms, such as highly 
undetectable stego (HUGO) [Pevný, Filler and Bas (2010)], wavelet obtained weights 
(WOW) [Holub and Fridrich (2012)], universal wavelet universal wavelet relative 
distortion (UNIWARD) steganography [Holub and Fridrich (2013a)], and studied how to 
select the most effective features from them [Ma, Luo, Li et al. (2018)]. 
Steganalysts currently focus on steganalysis for steganographic algorithms with grayscale 
images as covers [Song, Liu, Yang et al. (2015); Zhang, Liu, Yang et al. (2017)]. 
However, color images are more widely used in our life and daily work. And for color 
image steganography, some steganalysis algorithms have also been proposed. Here, they 
are classified into various types, including steganalysis algorithms based on changes of 
color number [Fridrich, Du and Long (2000); Su, Han, Huang et al. (2011)], steganalysis 
algorithms based on inter-channel texture consistency [Abdulrahman, Chaumont, 
Montesinos et al. (2016b)], steganalysis algorithms based on co-occurrence matrices 
across channels [Goljan, Fridrich and Cogranne (2014); Goljan and Fridrich (2015); Liao, 
Chen and Yin (2016)], steganalysis algorithms based on inter-channel prediction errors 
[Lyu and Farid (2004); Liu, Sung, Xu et al. (2006); Li, Zhang and Yu (2014)], and 
steganalysis algorithms based on combinations of different channel features 
[Abdulrahman, Chaumont, Montesinos et al. (2016a)]. 
The steganalysis algorithms based on changes of color number primarily used the 
characteristic that steganography will increase the number of colors or similar color pairs 
to detect color stego images. For example, Fridrich et al. [Fridrich, Du and Long (2000)] 
extracted the ratio of similar color pairs in the color pairs appearing as features, and Su et 
al. [Su, Han, Huang et al. (2011)] embedded fixed ratios of random information in the 
given image, and then extracted the increased numbers of different colors and similar 
color pairs as features to detect the color stego image of LSB steganography. The 
steganalysis algorithms based on inter-channel texture consistency primarily extracted the 
statistical features that could reflect the strong consistency between the texture of 
different channels to detect color stego image. For example, Abdulrahman et al. 
[Abdulrahman, Chaumont, Montesinos et al. (2016b)] used the cosine and sine of the 
angle between the gradients of different channels to depict the texture direction 
consistency of different channels, extract their co-occurrence matrices, and combined 
them with SCRMQ1 (spatio-color rich model with quantization step 1q = ) [Goljan, 
Fridrich and Cogranne (2014)] to improve the detection accuracy of color stego images. 
The steganalysis algorithms based on the co-occurrence matrices across channels 
primarily captured the correlation between different channels by extracting the co-
occurrence matrices across the residuals of three channels to detect the color stego image. 
For example, Goljan et al. [Goljan, Fridrich and Cogranne (2014)] extracted the co-
occurrence matrices between the residuals of three channels and the rich model features 
of each channel, and then merged them into the color image steganography detection 
features, SCRMQ1. Goljan et al. [Goljan and Fridrich (2015)] divided the image pixels 
into blocks according to the color filter array characteristics from the imaging principle of 
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a camera, and then computed the co-occurrence matrices across residuals in different 
channels from each block and merged them as the final feature set for steganalysis. Liao 
et al. [Liao, Chen and Yin (2016)] obtained the regions with complex texture in each 
channel and the regions with complex texture in any channel, and then calculated the co-
occurrence matrices from residuals of these two types of regions in each channel and 
combined them as steganalysis features, that improved the detection accuracy of new 
adaptive steganography, such as WOW and S-UNIWARD. The steganalysis algorithms 
based on inter-channel prediction errors considered the correlation between channels 
when calculating the prediction errors of the image elements (such as pixel or wavelet 
coefficients) or their features, and then combined the features of prediction errors with 
other features to detect the color stego image. For example, Lyu et al. [Lyu and Farid 
(2004)] utilized the correlation between horizontal, vertical, and diagonal wavelet sub-
band coefficients of different scales and different color channels to calculate logarithmic 
prediction errors, extracted their statistic features such as mean, variance, skewness, and 
kurtosis, and then used one-class support vector machines to realize pure blind detection 
of color image steganography. Liu et al. [Liu, Sung, Xu et al. (2006)] measured the 
correlation coefficients between the LSB planes of different color channels and the 
correlation coefficients between the prediction errors of each channel, and then combined 
them with the features reflecting the correlation in each channel to improve the color 
stego image detection performance of LSB matching. Li et al. [Li, Zhang and Yu (2014)] 
calculated the prediction errors of other channels from Y-channel by differences, and 
extracted the Markov features, Pevný features (PEV), co-occurrence matrix features, and 
their calibration features of the prediction error, and then combined them with the 
statistical features in the Y-channel to improve the detection performance of the color 
JPEG image steganography. The steganalysis algorithms based on the combination of 
different channel features extracted the features from three channels of the color image 
and then combined them to obtain the steganalysis feature. For example, Abdulrahman et 
al. [Abdulrahman, Chaumont, Montesinos et al. (2016a)] used steerable Gaussian filters 
to construct gradient magnitudes and derivatives of each channel, and then calculated the 
co-occurrence matrices from them as features SGF (steerable Gaussian filters) which is 
combined with the spatio rich model with quantization step 1q =  (SRMQ1) features and 
color rich model with quantization step 1q =  (CRMQ1) to train the steganalyzer. 
Compared with simply applying the steganography detection algorithm of grayscale 
images in three channels and fusing the results, the above algorithms improve the 
detection accuracy of color image steganography. Specifically, Abdulrahman et al. 
[Abdulrahman, Chaumont, Montesinos et al. (2016a)] combines three color steganalysis 
features with great performance, and obtains a better result. However, two of them, 
SRMQ1 and SGF, fail to consider a number of types of relationships between different 
color channels. As the pixels in different color channels exhibit strong correlative 
dependence and interplay, it is very likely that extracting these two features from the 
differences of different channels will further improve the accuracy of color image 
steganalysis. 
In view of this, this study proposes a steganalysis algorithm for color images based on 
residuals of channel differences. The advantages of the channel difference feature are 
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first analyzed from the view of the variance change rate. A steganalysis feature extraction 
method, based on residuals of channel differences, is then proposed. Then the proposed 
feature extraction method is used to improve two high-dimensional rich model features--
the spatio rich model with quantization step 1q =  (SRMQ1) and steerable Gaussian 
filters (SGF). Combining the improved features with the 22563-dimension steganalysis 
feature reported in Abdulrahman et al. [Abdulrahman, Chaumont, Montesinos et al. 
(2016a)], a color image steganalysis algorithm based on residuals of channel differences 
is proposed. Finally, the experimental results indicate that, when secret messages are 
embedded into the R, G, or B color channels by new adaptive steganography such as 
WOW and S-UNIWARD, the improved features significantly enhance the steganalysis 
performance compared to the original features, and the proposed color image steganalysis 
algorithm has significantly smaller detection error rates than existing algorithms. 
Specifically, at smaller embedding rates, the maximum decreasing amplitude of detection 
errors can attain 3%. 

2 Advantage of channel difference features 
Let X  and Y  be random variables representing pixel values at the same position in 
channel I and channel II, respectively, and XN  and YN  be random variables representing 
steganographic signals at the same positions in channel I and channel II, respectively. 
The means of X , Y , XN  and YN  are denoted as Xµ , Yµ , 

XNµ  and 
YNµ , respectively, 

and the variances are denoted as 2
Xσ , 2

Yσ , 2
XNσ  and 2

YNσ . It assumed that the correlation 
coefficient between X  and Y  is r . 
Proposition 2.1. When random message bits are embedded into color images by additive 
noise, if the variances of the steganographic signal in the same positions in channel I and 
channel II are equal, that is: 

2 2=
X YN Nσ σ ,                                                                                                                         (1) 

and the correlation coefficients between pixel values in the same positions in channel I 
and channel II and their variances satisfy the following relationships: 

2 2

2
X Y

X Y

r σ σ
σ σ
−

> ,                                                                                                                       (2) 

then the variance change rate of the difference between the pixels in the same position in 
channel I and channel II after steganography, ( )D X Y∆ − , is greater than the variance 
change rate of the pixel at the corresponding position of either channel I or channel II, 

( )D X∆  or ( )D Y∆ . 

Proof. When random message bits are embedded into color images by additive noise, 
because of the randomness of the embedded information, the stego noise is independent 
of the pixel value. Therefore, the variances of pixels X  and Y  in the same positions in 
channel I and channel II after steganography are as follows: 

( ) 2 2
XX X ND X N σ σ+ = +                                                                                                            (3) 
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( ) 2 2
YY Y ND Y N σ σ+ = +                                                                                                              (4) 

The variance change rates of pixels X  and Y  in the same positions in channel I and 
channel II are:  

( ) ( ) ( )
( )

2

2
XNX

X

D X N D X
D X

D X
σ
σ

+ −
∆ = =                                                                                     (5) 

( ) ( ) ( )
( )

2

2
YNY

Y

D Y N D Y
D Y

D Y
σ
σ

+ −
∆ = =                                                                                        (6) 

In the cover image, if pixels at the same positions in channel I and channel II are 
differentiated, the variance of the difference is as follows: 
( ) 2 2 2X Y X YD X Y rσ σ σ σ− = + −                                                                                               (7) 

In the stego image, if pixels at the same positions in channel I and channel II are 
differentiated, the variance of the difference is as follows: 

( ) 2 2 2 22
X YX Y X Y X Y N ND X N Y N rσ σ σ σ σ σ+ − − = + − + +                                                                 (8) 

Therefore, the variance change rate of the difference between the pixels in the same 
positions in channel I and channel II after steganography is: 

( ) ( ) ( )
( )

2 2

2 2

+
=

2
X YN NX Y

X Y X Y

D X N Y N D X Y
D X Y

D X Y r
σ σ

σ σ σ σ
+− − − −

∆ − =
− + −

                                     (9) 

Subtracting the variance change rate of channel I from the variance change rate of the 
pixel difference between channel I and channel II, the following result is obtained: 

( ) ( ) ( )
2 2 2 2 2

2 2 2

2

2
Y X XX N N Y X Y N

X X Y X Y

r
D X Y D X

r

σ σ σ σ σ σ σ

σ σ σ σ σ

− +
∆ − − ∆ =

+ −
                                                          (10) 

The denominator of (10) is always positive because the correlation coefficient between 
the pixels in the same positions in channel I and channel II is in the range [-1, 1], viz. 

1 1r− ≤ ≤ . Therefore, when the correlation coefficient between pixels in the same 
positions in channel I and channel II in the cover image satisfies the relationship shown 
in (11), (10) is positive. In other words, the variance change rate of the difference 
between pixels in the same positions in channel I and channel II is greater than the 
variance change rate of the pixel in the same position in channel I. 

2
2 2

2 2 2 2 2

2 22

Y

X Y X

X

N
Y X

N Y N X N

X YX Y N

r

σ
σ σ

σ σ σ σ σ
σ σσ σ σ

−
−

> =                                                                                    (11) 

Similarly, by subtracting the variance change rate of channel II from the variance change 
rate of the difference between pixels in the same positions in channel I and channel II, it 
also can be derived that the variance change rate of the difference between pixels in the 
same positions in channel I and channel II is greater than that of channel II when the 
correlation coefficient between pixels in the same positions in channel I and channel II in 
the cover image satisfies the relationship shown in (12). 
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2
2 2

2 2 2 2 2

2 22

X

Y X Y

Y

N
X Y

N X N Y N

X YX Y N

r

σ
σ σ

σ σ σ σ σ
σ σσ σ σ

−
−

> =                                                                                    (12) 

Eqs. (11) and (12) show that if 2 2=
X YN Nσ σ  and the correlation coefficient r  satisfies the 

relationship (2), the variance change rate of the difference between pixels in the same 
positions in channel I and channel II after the steganography is greater than the variance 
change rate of the pixel in the corresponding position of either channel I or channel II. 
Therefore, the proposition is proved. 
One of the necessary conditions of proposition 1 is that the variances of the 
steganographic signal in the same positions in channel I and channel II satisfy (1). In 
[Sangwine and Horne (1998)], Sangwine et al. reported that there is always a strong 
correlation between the three color channels R, G, and B of natural color images and 
gave the correlation coefficients between color channels as B-R 0.78r ≈ , R-G 0.98r ≈ , and 

G-B 0.94r ≈ . This strong positive correlation makes the texture complexity of the same 
region in different channels significantly close. 
When the same adaptive steganography algorithm is used to embed information in two 
channels, the similar texture complexity in the same position of two channels results in 
the distortion of the two corresponding pixels being significantly close after changing. As 
the probability of change for each pixel in adaptive steganography is determined by the 
distortion function and the length of the embedded information, the probability of two 
pixels in the same position being changed is approximately equal when the random 
information with equivalent lengths are embedded in the two channels. This also makes 
the variance of the steganographic signal at the same position approximately equal, that is, 

2 2
X YN Nσ σ≈                                                                                                                           (13) 

Therefore, one of the necessary conditions of proposition 1, (1), is reasonable. 
Another necessary condition of proposition 1 is that the correlation coefficients between the 
pixels in the same positions in channel I and channel II and their variances satisfy (2). As 
reported in Sangwine et al. [Sangwine and Horne (1998)], the strong positive correlation 
between the two channels results in the left-hand side of (2), the correlation coefficient 
between two channels, being greater than zero and close to one. In addition, the similar 
texture complexity of the same position in the two channels makes the variances of the 
pixel values in the same position approximately equal, resulting in the right-hand side of (2) 
being approximately zero. Therefore, the correlation coefficients between pixels in the 
same positions in different color channels and their variances should be able to satisfy (2) in 
the bulk of color images. The proportion of images whose two channels satisfy (2) will be 
calculated from the 10,000 color images from BOSSbase database3. 
Let channel I and channel II represent channel R and channel G, respectively, and the 
value of the right-hand side of (2) is subtracted from the value of the left-hand side for 
each image, that is: 
                                                      
3 http://agents.fel.cvut.cz/stegodata/RAWs/ 



Color Image Steganalysis Based on Residuals of Channel Differences                          321 

2 2

( , , )
2

R G
RG R G RG

R G

res r r
σ σ

σ σ
σ σ
−

= −                                                                                          (14) 

In a color image, if the correlation coefficient between channel R and channel G and their 
variance results in (14) being greater than zero, it can be concluded that channel R and 
channel G of this image satisfy (2). From the statistical results shown in Fig. 2(a), there 
are 9992 images whose channel R and channel G satisfy (2) in the 10,000 color 
BOSSbase images. Similarly, there are 9887 images whose channel R and channel B 
satisfy (2), and 9927 images whose channel G and channel B satisfy (2), as shown in Figs. 
2(b) and 2(c). It can be seen that the ratio of images whose two color channels satisfy (2) 
is greater than 98%, which indicates that the second necessary condition of proposition 1 
is reasonable. 

 
(a)                                               (b)                                                 (c)  

Figure 1: Value of function “res” (14) with correlation coefficient between different 
color channels and their variances as parameters (x-label: Number of pictures and y-label: 
Value of “res”): (a) Channel R and channel G, (b) Channel R and channel B, and (c) 
Channel G and channel B 
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Figure 2: Procedure of steganalysis feature extraction based on residuals of channel 
difference 

The above analysis of the conditions of proposition 1 indicates that, for most of the color 
images, the variance change rate of the difference between pixels in the same positions in 
different channels after steganography should be greater than that of the corresponding 



322   Copyright © 2019 Tech Science Press             CMC, vol.59, no.1, pp.315-329, 2019 

pixel in any of the channels. When the means of the steganographic signal, XN  and YN , 
are zero, the mean change rate of the pixel value after steganography is zero and the 
mean change rate of the difference between pixels in the same positions in different 
channels is also zero. Therefore, proposition 1 indicates that steganography has a greater 
effect on the distribution of pixel differences between two channels than on any single 
channel. In addition, the features extracted from the pixel difference between two 
channels should be able to detect the color stego image more effectively.  

3 Color image steganalysis features based on residuals of channel differences 
In existing color image steganalysis algorithms, some features are independently 
extracted from the residuals of each color channel, and then combined. According to the 
analysis in Section 2, if the residuals are computed from the differences between different 
color channels, the steganalysis features extracted from them should have better detection 
performance. Therefore, this section proposes the following steganalysis feature 
extraction method based on the residuals of channel differences. As shown in Fig. 3, the 
primary steps of the method are as follows: 
1) Calculate the channel differences between any two of the three colors channels R, G, 

or B, in a color spatial image, as follows: 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

, , ,

, , ,

, , ,

RG R G

RB R B

GB G B

D i j X i j X i j

D i j X i j X i j

D i j X i j X i j

= −


= −
 = −

                                                                                      (15) 

where RGD , RBD , and GBD  are the differences between channels red and green, red and 
blue, and green and blue, respectively; 

2) The n high-pass filters are used to filter the three channel differences RGD , RBD , and 

GBD , and then the residual image sets RGd , RBd , and GBd  of three channel differences 
are generated as follows: 

1 2 ,

1 2 ,

1 2 ,

RG RG RG RG n

RB RB RB RB n

GB GB GB GB n

d d d
d d d
d d d

 = …


= …
 = …

d
d
d

， ，

， ，

， ，

｛ , , , ｝

｛ , , , ｝

｛ , , , ｝

                                                                                          (16) 

3) Each residual image in the residual image sets RGd , RBd , and GBd  is seen as a feature 
extraction source, from which statistical features such as the co-occurrence matrices 
or Markov transition probability matrices are extracted as the feature subsets RGf , RBf , 
and GBf : 

 
1 2 ,

1 2 ,

1 2 ,

RG RG RG RG n

RB RB RB RB n

GB GB GB GB n

f f f
f f f
f f f

 = …


= …
 = …

f
f
f

， ，

， ，

， ，

｛ , , , ｝

｛ , , , ｝

｛ , , , ｝

                                                                                            (17) 

4) Merge the features in feature subsets RGf , RBf , and GBf  to obtain the steganalysis 
feature based on the residual of channel differences. 
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4 Color image steganalysis algorithm based on residuals of channel differences 
In existing color steganalysis features, SRMQ1 feature has become one of the 
mainstream steganalysis features because it considers a number of types of relationships 
between neighboring samples of noise residuals obtained by linear and non-linear filters 
and achieves excellent performance. In recent years, SGF feature is proposed as a new 
feature to significantly improve the steganalysis performance. This feature takes into 
account the correlation between adjacent pixels inside each channel. The image content 
components are eliminated by a number of filters of different orientations, which helps to 
capture the steganographic signals with higher signal-to-noise ratio, and results in a more 
reliable detection of stego images. However, these two features fail to consider the 
correlation between channels. This section tries to apply the feature extraction method 
proposed in Section 3 to SRMQ1 and SGF features, which are called DSRMQ1 and 
DSGF. And a color image steganalysis algorithm is proposed by combining the 
DSRMQ1 and DSGF features with the CRMQ1, SRMQ1, and SGF features. As 
supervised learning techniques typically outperform unsupervised learning techniques in 
both the accuracy and efficiency [Xiang, Zhao, Li et al. (2018)], supervised learning 
techniques are more widely used in steganalysis. And the ensemble classifier [Kodovský, 
Fridrich and Holub (2012)] has become a popular learning tool used in steganalysis. 
Therefore, it will also be used in the proposed color image steganalysis algorithm. The 
algorithm comprises steganalyzer training and stego image detection. The detailed 
procedures are as follows: 
Algorithm 1: Training color steganalyzer. 
Input: Color image training set, including cover training images and corresponding stego 
training images. 
Output: Trained steganalyzer. 
1) Steganalysis features extraction. A 39722-dimensional steganalysis feature is extracted 
from each training image as follows. 

I．CRMQ1, SRMQ1, and SGF features extraction. The CRMQ1, SRMQ1, and SGF 
features with dimensions 22563 are extracted by the method in Abdulrahman et al. 
[Abdulrahman, Chaumont, Montesinos et al. (2016a)]; 
II．Channel differences computation. Compute the differences between two pixel 
values in the same position in any two color channels to get the channel differences; 
III. DSRMQ1 feature extraction. The method presented in Section 3 is used to extract the 
12753-dimensional DSRMQ1 feature from the channel differences RGD , RBD , and GBD ; 

IV．DSGF feature extraction. The method presented in Section 3 is used to extract the 
4406-dimensional DSGF features from the channel differences RGD , RBD , and GBD ; 

V．Features merging. Merge the features extracted in asteps I, III, and IV to generate 
the 39722-dimensional color image steganalysis feature. 

2) Ensemble classifier training. The group of label and corresponding steganalysis feature 
of each training image are taken as a training sample to train the ensemble classifier, that 
will be used as the steganalyzer. 
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Algorithm 2: Detecting color stego image. 
Input: The given color image and the steganalyzer obtained by Algorithm 1. 
Output: The label of the given image. If the given image is a stego image, the label is set 
as +1, otherwise, the label is set as -1. 
1) Steganalysis feature extraction. For each color image to be detected, the same 
procedure and parameters of step 1) in algorithm 1 are used to extract the 39722-
dimensional steganalysis feature of the given image. 
2) Classifying the given image. Take the 39722-dimensional steganalysis feature of the 
given image as input, and use the steganalyzer trained by Algorithm 1 to distinguish 
whether the given image is a stego image. 

5 Experimental results and analysis 
10,000 raw images downloaded from BOSSbase4 were scaled to generate 10000 color 
cover images in “tiff” format with sizes of 512 512×  pixels. The two typical adaptive 
steganography algorithms, WOW [Holub and Fridrich (2012)] and S-UNIWARD [Holub 
and Fridrich (2013a)], were used to embed pseudo-random information in the R, G, and 
B color channels of cover images with payloads of 0.05, 0.1, 0.2, 0.3, and 0.4 bits per 
channel pixel (bpc), and then generated 2 5=10×  groups of color stego images. Then, the 
performance of the proposed DSRMQ1 and DSGF features and color image steganalysis 
algorithm were tested with these images. 
In each experimental unit, 5000 images were randomly selected as training cover images, 
and the corresponding 5000 stego images were used as training stego images. The 
remaining 5000 cover images and 5000 stego images were used as test cover and stego 
images, respectively. And the average testing errors under equal priors [Fridrich and 
Kodovský (2012)] were calculated to evaluate the performance. For each payload of a 
steganographic algorithm, 10 experimental units were performed. The median of the 
average testing errors under equal priors of 10 experimental units was taken to measure 
detection performance. The smaller the value, the better the steganalysis performance. 

5.1 Performance of steganalysis features based on residuals of channel differences 
The steganalysis performance of SRMQ1 and SGF features in Abdulrahman et al. 
[Abdulrahman, Chaumont, Montesinos et al. (2016a)], the DSRMQ1 and DSGF features 
proposed in Section 4, and the combined features DSRMQ1+DSGF and 
DSRMQ1+DSGF+SRMQ1+SGF were tested with above experimental settings in this 
subsection. Tab. 1 presents the average testing errors under equal priors of the above 
feature types for WOW and S-UNIWARD. It can be seen that, for both the steganographic 
algorithms, the performance of DSRMQ1 and DSGF features are significantly better than 
those of SRMQ1 and SGF features. The average test errors of DSRMQ1 features for WOW 
and S-UNIWARD are smaller than those of the original SRMQ1 feature by the decreasing 
amplitudes reaching 12.19% and 13.43% respectively. The average test errors of DSGF 
feature for WOW and S-UNIWARD steganography are smaller than those of original SGF 
                                                      
4 http://agents.fel.cvut.cz/stegodata/RAWs/ 
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features, with decreasing amplitudes reaching 16.30% and 17.17%, respectively. If the 
DSRMQ1 and DSGF features are combined, the combined features exhibit better 
performance. Compared with the average test errors of original SRMQ1+SGF features, 
those of the DSRMQ1+DSGF features for WOW and S-UNIWARD are smaller, with 
decreasing amplitudes reaching 12.82% and 14.51%, respectively. And the average test 
errors of the combined DSRMQ1+DSGF+SRMQ1+SGF features for WOW and S-
UNIWARD are much smaller than that, with decreasing amplitudes reaching 14.45% and 
15.60%, respectively. 
Above experimental results indicate that, compared to the features extracted from 
residuals of three channels, the features extracted from the residuals of channel 
differences exhibit better steganalysis performance. 

Table 1: Average test errors of features before and after improving 

Algorithm 
Payload 

(bpc) 
SRMQ1 DSRMQ1 SGF DSGF 

SRMQ1 
+SGF 

DSRMQ1 
+DSGF 

DSRMQ1+DSGF 
SRMQ1+SGF 

WOW 

0.05 0.4261 0.3628 0.4921 0.4811 0.4320 0.3577 0.3526 
0.1 0.3754 0.2722 0.4751 0.4401 0.3794 0.2762 0.2634 
0.2 0.3054 0.1835 0.4476 0.3690 0.3117 0.1838 0.1672 
0.3 0.2505 0.1334 0.4326 0.3041 0.2598 0.1316 0.1191 
0.4 0.2155 0.1022 0.4136 0.2506 0.2181 0.1013 0.0877 

S-
UNIWARD 

0.05 0.4404 0.3504 0.4947 0.4730 0.4478 0.3532 0.3496 
0.1 0.3926 0.2718 0.4816 0.4421 0.3971 0.2657 0.2606 
0.2 0.3094 0.1783 0.4583 0.3575 0.3167 0.1716 0.1607 
0.3 0.2613 0.1270 0.4362 0.2967 0.2636 0.1269 0.1104 
0.4 0.2197 0.0974 0.4081 0.2364 0.2202 0.0942 0.0776 

5.2 Performance of steganalysis algorithm based on residuals of channel differences 
The performance of the steganalysis algorithms in Abdulrahman et al. [Abdulrahman, 
Chaumont, Montesinos et al. (2016a)] and [Goljan, Fridrich and Cogranne (2014)], and 
the proposed steganalysis algorithm are tested with above experimental settings in this 
subsection. The average test errors of the three steganalysis algorithms for WOW and S-
UNIWARD with different payloads are presented in Tab. 2. Fig. 3 shows the receiver 
operating characteristic (ROC) curves of three steganalysis algorithms for WOW with 
payloads of 0.05, 0.1, and 0.3 bpc, and it is similar to that for S-UNIWARD. It can be 
seen that the proposed steganalysis algorithm outperforms the steganalysis algorithms in 
Abdulrahman et al. [Abdulrahman, Chaumont, Montesinos et al. (2016a)] and [Goljan, 
Fridrich and Cogranne (2014)] under different payloads for WOW. Specifically, when 
the payload is small, the advantage of the proposed steganalysis algorithm is more 
significant. The true positive rate of the proposed algorithm is clearly greater than those 
of the algorithms in Abdulrahman et al. [Abdulrahman, Chaumont, Montesinos et al. 
(2016a)] and [Goljan, Fridrich and Cogranne (2014)] at different false positive rates, and 
the maximum decreasing amplitudes of the average test errors for WOW and S-
UNIWARD are between 4% and 5%. Even when the payload is greater than or equal to 
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0.2 bpc, the true positive rate of the steganalysis algorithm proposed in this study is still 
greater than those of the algorithms in Abdulrahman et al. [Abdulrahman, Chaumont, 
Montesinos et al. (2016a)] and [Goljan, Fridrich and Cogranne (2014)], and the average 
test error is decreased by approximately 2%. The outstanding performance of the 
proposed steganalysis algorithm can be attributed to the addition of the features extracted 
from the residuals of channel differences. In addition, with increased payload, the 
steganalysis algorithms in Abdulrahman et al. [Abdulrahman, Chaumont, Montesinos et 
al. (2016a)] and [Goljan, Fridrich and Cogranne (2014)] achieve significant success rates, 
resulting in the advantages of the proposed algorithm being less significant than those 
with low payloads. 

Table 2: Average test errors of different steganalysis algorithms. 
Algorithm Payload(bpc) 0.05 0.1 0.2 0.3 0.4 

WOW 

SCRMQ1(CRMQ1 + SRMQ1) 
[Goljan, Fridrich and Cogranne (2014)] 0.3743 0.2686 0.1562 0.1010 0.0693 

SCRMQ1+SGF 
[Abdulrahman, Chaumont, Montesinos et al. (2016a)] 0.3872 0.2759 0.1606 0.1036 0.0701 

SCRMQ1+SGF+DSRMQ1+DSGF 0.3344 0.2429 0.1441 0.0867 0.0597 

S-UNIWARD 

SCRMQ1(CRMQ1 + SRMQ1) 
[Goljan, Fridrich and Cogranne (2014)] 0.3698 0.2689 0.1560 0.0955 0.0636 

SCRMQ1+SGF 
[Abdulrahman, Chaumont, Montesinos et al. (2016a)] 0.3786 0.2666 0.1559 0.0968 0.0642 

SCRMQ1+SGF+DSRMQ1+DSGF 0.3334 0.2372 0.1344 0.0835 0.0546 
 

 
(a)                                            (b)                                           (c) 

Figure 3: ROC curves of different steganalysis algorithms for WOW (x-label: False 
positive rate and y-label: True positive rate): (a) payload 0.05 bpc, (b) payload 0.1 bpc, 
and (c) payload 0.3 bpc 

6 Conclusions 
In existing color image steganalysis algorithms, some features do not consider the 
correlation between different color channels, and the performance of them can be 
further improved. This study points out that the influence of steganography to the 
distribution of channel difference is greater than that of a single channel, and features 
extracted from channel differences will detect the color stego image with greater 
success rates. Based on this, two types of typical steganalysis features of color image, 
SRMQ1 and SGF, are improved. A color image steganalysis algorithm is proposed by 
combining the improved features with the existing color image steganalysis features. 
Experimental results indicate that, for both WOW and S-UNIWARD, the improved 
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steganalysis features and algorithm significantly decrease the average test errors of the 
existing steganalysis features and algorithms. 
In future studies, we will attempt to improve other high-dimensional steganalysis features, 
and design more effective steganalysis algorithms for color JPEG images.  
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