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Abstract: In this study, machine learning representation is introduced to evaluate the 
flexoelectricity effect in truncated pyramid nanostructure under compression. A Non-
Uniform Rational B-spline (NURBS) based IGA formulation is employed to model the 
flexoelectricity.  We investigate 2D system with an isotropic linear elastic material under 
plane strain conditions discretized by 45×30 grid of B-spline elements. Six input parameters 
are selected to construct a deep neural network (DNN) model. They are the Young's 
modulus, two dielectric permittivity constants, the longitudinal and transversal flexoelectric 
coefficients and the order of the shape function. The outputs of interest are the strain in the 
stress direction and the electric potential due flexoelectricity. The dataset are generated from 
the forward analysis of the flexoelectric model. 80% of the dataset is used for training 
purpose while the remaining is used for validation by checking the mean squared error. In 
addition to the input and output layers, the developed DNN model is composed of four 
hidden layers.  The results showed high predictions capabilities of the proposed method with 
much lower computational time in comparison to the numerical model. 
 
Keywords: Flexoelectricity, Isogeometric analysis, Machine learning prediction, deep 
neural networks. 

1 Introduction 
In flexoelectric material, the coupling between polarization and strain gradient produces 
an electro electromechanical coupling due to a mechanical stress or an applied electric 
field. It exists in several materials. Though, flexoelectricity is possible in different 
dielectrics, including those with centrosymmetric crystal structures, and is thus a more 
general electromechanical coupling mechanism than piezoelectricity. Flexoelectricity in 
solids was introduced first in the 1950s by Mashkevich et al. [Mashkevich and Tolpygo 
(1957)] but received little attention. Recent developments, however, in nanotechnology 
have shed the light on flexoelectricity as a size dependent phenomenon due to the large 
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strain gradients that are obtainable at small length scales. The effect of flecxoelectricty is 
much clear in nanostructures [Nguyen, Mao, Yeh et al. (2013); Krichen and Sharma 
(2016)]. In this regard, Micro-Nano electromechanical sensors and actuators are 
increasingly used in numerous applications providing high power density and allowing a 
broader range of material choice [Abdollahi and Arias (2015)] and hence 
micromechanical modeling is essential [Bek, Hamdia, Rabczuk et al. (2018)]. Among the 
emerging usage of flexoelectricity is the energy harvesters which promise to have one of 
the widest technological impact  replacing the traditional batteries and showing a 
preferable environmentally alternative [Deng, Kammoun,  Erturk et al. (2014)]. In 
particular, energy harvesters have been used to convert ambient mechanical energy into 
electrical energy [Priya and Inman (2009)]. 
Despite the advantages offered by flexoelectricity, research in this field is still in its infancy. 
The well-known configurations to evaluate the effect of flexoelectricity by generating strain 
gradients in simple geometries are bending of thin cantilever beam and compression of 
truncated pyramids. Laboratory tests are limited in measuring, explaining and quantifying 
the key flexoelectric phenomena at specific conditions [Catalan, Lubk, Vlooswijk et al. 
(2011); Baskaran, He, Chen et al. (2011); Bhaskar, Banerjee, Abdollahi et al. (2016)]. 
Besides, further theoretical basis studies have been presented to investigate the flexoelectric 
phenomena in various structures under different configurations [Sharma, Maranganti and 
Sharma (2007); Mao and Purohit (2015); Yang, Liang and Shen (2015)]. However, 
relatively few numerical works have been documented to simulate flexoelectricity. In this 
regard, fourth order partial differential equations (PDEs) of flexoelectricity has been solved 
in computational finite element (FE) methods [Abdollahi, Peco, Millán et al. (2014); 
Abdollahi, Millán, Peco et al. (2015); Mao, Purohit and Aravas (2016)]. A mixed finite 
element formulation is used to discretize the higher order equations of flexoelectricity 
[Nanthakumar, Zhuang, Park et al. (2017)]. Besides, mixed FE method was developed 
using Lagrangian multiplier method to relate the displacement field and its gradient [Deng, 
Deng, Yu et al. (2017); Deng, Deng and Shen (2018)].  A Non-Uniform Rational B-spline 
(NURBS) was adopted for the discretization of the solution of fourth order PDEs,  where 
the flexoelectricity effect have been investigated by defining the enhancement in the energy 
conversion factor [Ghasemi, Park  and  Rabczuk (2017)]. 
A distinct approach in this regard is the machine learning representation. Machine 
learning methods such as artificial neural networks (ANN) has recently proven to be a 
viable alternative approach to solve complex problems in material design. ANN is 
stochastic approach based on computational intelligence. It is based on correlating the 
inputs to the output/s parameters of interest by means of mathematics and statistics 
methods without the need to an explicit definition of the relationships between inputs and 
outputs.  By using limited amount of training data, ANN has the ability to learn and 
identify the pattern rapidly. Also, future predictions of the problem can be predicted with 
much less effort. The classical ANN is composed of three layers: input, one hidden and 
output layers. Meanwhile, the architecture of deep neural network (DNN) is the same 
except it has more than two hidden layers. This allows DNN to provide a higher learning 
representation compared to the classical ANN. 
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In this study, machine learning approach is presented to gain insight into better 
understanding the key phenomena governing the flexoelectricity in truncated pyramid 
structures. DNN is employed for the computational design to relate different input 
parameters with the predicted behavior aiming at finding low cost constitutive method. 
Using a set of data for the selected inputs, a numerical model is solved based on the 
NURBS-based IGA formulation. The input data and the corresponding flexoelectricity 
material responses form the dataset required to build the model. In the following section, a 
brief of the material and method used in this study are introduced. Then, Section 3 provides 
a discussion of the results. Finally, the paper is ended with summary in Section 4. 

2 Materials and method 
2.1 Numerical Modeling 
The linear continuum theory is well known for modeling flexoelectricity in which a 
fourth-order flexoelectric coupling tensor is proposed. The electric polarization is a sum 
of the effects from the dielectric and piezoelectric responses, and the linear polarization 
response due to the flexoelectricity [Yudin and Tagantsev (2013)]. Mathematically, the 
relation between the electric polarization, P and the associated strain, 𝝐𝝐 , due to 
mechanical stress is 
𝑷𝑷 = 𝜿𝜿 ⋅ 𝑬𝑬 + 𝐞𝐞: 𝝐𝝐+ 𝝁𝝁𝛁𝛁𝝐𝝐 (1) 
where E is the macroscopic electric field, 𝛋𝛋 is the second-order dielectric tensor, 𝐞𝐞 is the 
third order piezoelectric tensor, 𝝐𝝐 is the strain tensor, 𝝁𝝁 is the fourth-order (including both 
direct and converse effects) flexoelectric tensor, and ∇𝜖𝜖  is the spatial gradient of 𝝐𝝐 
[Sharma, Maranganti and Sharma (2007); Catalan, Sinnamon and Gregg (2004)]. 
Because of the high-order spatial derivatives term in Eq. (1), conventional finite elements 
cannot be applied to solve the system. Hence, a Non-Uniform Rational B-spline (NURBS) 
has been developed recently for discretization in order to solve the continuum equations 
of flexoelectricity in 2D [Ghasemi, Park and Rabczuk (2017)]. The truncated pyramid 
under compression load is one of the common configuration in determining the effect of 
flexoelectricity. We consider two-dimension truncated pyramid geometries with unit 
width (truncated triangle) by assuming an isotropic linear elasticity under plane strain 
conditions. Fig. 1 depicts the geometry and the boundary conditions. At the top surface, a 
uniformly distributed force, F is applied in the negative direction of Y-axis, while the 
bottom is mechanically fixed. The electric potential is fixed to zero at the top and is 
constant but unknown at the bottom. 
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Figure 1: Geometry and boundary conditions for the truncated pyramid problem 

The upper face has a length of 𝑎𝑎1 that is linearly increasing function of the depth up to 𝑎𝑎2. 
Due to the difference in the surface areas of the top and bottom surfaces, the applied 
force generates different tractions at the top and bottom surfaces, resulting in a strain 
gradients and accordingly a flexoelectric polarization is generated. A simple analytical 
formulation to estimate the effective piezoelectric constant accounting for the 
flexoelectricity in one-dimensional analysis (i.e., only the effect of the longitudinal 
flexoelectric coefficient, 𝜇𝜇11) was presented by Cross and co-workers [Cross (2006); Zhu, 
Fu, Li et al. (2006)]. Nevertheless, in the purpose of this study we provide computational 
modeling based on two dimensional flexoelectricity effect. 

2.2 Machine learning representation 
To model the relation between the inputs and output parameters machine learning 
modeling can be designed through a predefined training process. The objective of is to 
build an approximation function (𝑓𝑓) that maps the relation between the inputs (𝐱𝐱) and the 
outputs (𝐘𝐘). Based on biological learning, ANN in the form of multilayer feedforward 
networks is adopted in this study. It contains a large number of interconnected processing 
units called neurons or nodes [Hamdia, Lahmer, Nguyen-Thoi et al. (2015); Hamdia, 
Arafa and Alqedra (2018)]. These units are grouped together into three or more layers 
where the neighboring layers are connected by weights forming a large network. The first 
layer receives information from the input parameters and transmits it to one or several 
hidden layers, and then evaluates the predictions through the output layer. The network 
learns by analyzing multiple datasets and adjusting connection weights [Haykin (1999)].  
We use neural network with multiple hidden layers called deep neural network (DNN). It 
uses gradient descent forms for training (updating the weights and bias) via the backward 
propagation algorithm. Inputs from previous layers are linked to a neuron by the 
corresponding weights and bias. The weighted sums are applied to an activation function 
to determine the neuron output, see Fig. 2. The neuron receives data from the preceding 
layer and consequently proceeds it to the next layer. The tan-sigmoid is considered as the 
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activation function for the hidden layer because it has yielded higher prediction accuracy. 
The output signal for the 𝑗𝑗-th neuron is expressed as 

𝑶𝑶𝒋𝒋 =
𝟐𝟐

  𝟏𝟏 − 𝒆𝒆−𝟐𝟐𝜑𝜑𝑗𝑗
− 𝟏𝟏  

𝜑𝜑𝑗𝑗 = ��𝑤𝑤𝑗𝑗𝑗𝑗𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� + 𝑏𝑏𝑗𝑗 
(2) 

where, 𝑛𝑛 is the number of neurons in the preceding layer and 𝑂𝑂𝑗𝑗−1  is its output signal, 
while 𝑤𝑤𝑖𝑖𝑖𝑖  and 𝑏𝑏𝑗𝑗  are the connecting weights and the bias. Finally the signal from the 
neurons of the last hidden layer is passed to the output layer [Rafiq, Bugmann and 
Easterbrook (2001)]. The network learns iteratively from several datasets. The predicted 
outputs are compared with target outputs and accordingly the weights and bias of the 
neural network are updated to minimize the mean squared error (𝑀𝑀𝑀𝑀𝑀𝑀). For training 
(updating the weights and bias) gradient descent forms are used with Levenberg-
Marquardt training algorithm via the error back-propagation (BP) method. 
 

 
Figure 2: The structure of an artificial neuron 

 

3 Results 
In our analysis, we consider material parameters that fit the behavior of single crystals of 
barium titanate (BaTiO3). The length of the top and bottom faces are, respectively, 𝑎𝑎1=750 
μm and 𝑎𝑎2=2250 μm discretized by 45×30 grid of B-spline elements. It is made of non-
piezoelectric material obtained through setting 𝑒𝑒31=0. The Poisson’s ratio (𝜈𝜈) is found to 
have insignificant effect [Hamdia, Ghasemi, Zhuang et al. (2018)] and hence fixed at 0.37, 
whereas Young’s modulus 𝐸𝐸𝑓𝑓 is taken into account as input parameter. There are also two 
dielectric permittivity constant 𝜅𝜅11 and 𝜅𝜅33. The longitudinal and transversal flexoelectric 
coefficients 𝜇𝜇11 and 𝜇𝜇12 are considered. Their measurements have shown a high scatter in 
the experimental investigation which in turn greatly exceed theoretical estimates. We adopt 
a range of variation of [10-105] nC/m to define this scatter. In addition to these material 
parameters, the order of the shape function (p) in the x and y-directions is introduced. 
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Accordingly, we have six input parameters to model the behaviour of flexoelectricity. The 
the input parameters and their variation are listed in Tab. 1.  

Table 1: The variation of the input parameters 

𝐸𝐸𝑓𝑓 (GPa) 𝜅𝜅 (nC/Vm) 𝜇𝜇 (nC/m) p(-) 

[80-120] [8.85×10-3-15] [10-105] {2,3,4} 

DNN is developed to construct a relation between the addressed input parameters and the 
corresponding behaviour in each element. The most accurate architecture (minimum 
mean squared error) is found to be composed of four hidden layers with 30 neurons, 25 
neurons, 25 neurons, and 20 neurons, respectively. The DNN model has been constructed 
by assigning 80% of the data as training data set. The remaining is assigned for testing 
and validation purpose. Two outputs of are studied using the DNN. They are the 
distributions of strain in the direction of the applied stress, 𝜖𝜖22, and the electric potential, 
𝜃𝜃. The computational results and the predictions of the DNN as well are shown in Figure 
3 for a randomly selected sample.  It illustrates, the distribution of the electric potential 
due to the mechanical load and the produced strain (𝜖𝜖22). 
 
 

  

(a) computational 

  
(b) DNN predictions 

Figure 3: The computational results (a) and the DNN modeling predictions (b) for the 
Truncated pyramid problem in the distribution of the electric potential, 𝜽𝜽, (left), and the 
strain, 𝝐𝝐𝟐𝟐𝟐𝟐, (right) 

The electric potential and the strain are vary along the entire geometry due to variation of 
strain gradient that caused by the applied uniform force. Sharp changes of the strain and 
electric potential near the corners are observed. At the surface subjected to the load 
(upper face), the electric potential is much lower than those away. The highest values of 
the electric potential are produced at the inclined surfaces. As expected, also, the upper 
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surface is undergoing compressive strain and decays gradually as going away from it. 
The predictions of DNN and the computational results are in tune. Nevertheless, the 
DNN predicts the strain (𝜖𝜖22 ) with higher accuracy. The reason could be that the 
distribution of the electric potential has higher gradients across the full domain. A more 
refined discretization for the B-spline elements may improve the results. In spite of the 
discrepancies in the distribution of the electric potential, the predicted behaviour and 
results, which have been obtained by a sufficiently fine discretization, are in good 
agreement with the benchmark example of Abdollahi et al. [Abdollahi, Peco, Millán et al. 
(2014)] from the point of view both the values and the field distribution. 

4 Summary 
In the flexoelectric materials, the polarization is related to not only the strain as in 
pizoelectric materials, but also to the gradient of strain that enhances their energy conversion 
efficiency. The truncated pyramid under compression is one of the common configuration to 
evaluate the flexoelectricity effect in nanostructures. In this set-up, significant strain 
gradients are generated due to the differences in the areas of the widths of the top and bottom 
surfaces. In this study, the governing equations of flexoelectricity were modeled by a 
NURBS-based IGA formulation as ground truth for machine learning representation. We 
investigated 2D system (truncated triangle) with an isotropic linear elasticity under plane 
strain conditions. It was discretized by 45×30 grid of B-spline elements. 
Subsequently, an on-demand property prediction model based deep neural networks 
(DNN) algorithm was developed to define a mapping between the input parameters and 
the output of interest. Six input parameters defining the material properties of barium 
titanate (BaTiO3) were selected to establish the database.  Meanwhile the strain in stress 
direction and the electric potential due flexoelectricity have been evaluated. 
The database has been divided randomly into two groups: training and testing datasets. 
Among variety of architectures that has been trained, a DNN model composed by four 
hidden layers with 30 neurons, 25 neurons, 25 neurons, and 20 neurons, respectively was 
found to be the most accurate structure with minimum mean squared error. The 
predictions of DNN revealed high accuracy predictions compared to the corresponding 
actual highly demanding computational model. It has been found that at the top surface 
(with lower area), the electric potential was less than those away and its highest values 
were produced at the inclined surfaces. 
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