

Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

CMC.doi:10.32604/cmc.2019.06660 www.techscience.com/cmc

A Deep Collocation Method for the Bending Analysis of Kirchhoff

Plate

Hongwei Guo3, Xiaoying Zhuang3, 4, 5 and Timon Rabczuk1, 2, *

Abstract: In this paper, a deep collocation method (DCM) for thin plate bending

problems is proposed. This method takes advantage of computational graphs and

backpropagation algorithms involved in deep learning. Besides, the proposed DCM is

based on a feedforward deep neural network (DNN) and differs from most previous

applications of deep learning for mechanical problems. First, batches of randomly

distributed collocation points are initially generated inside the domain and along the

boundaries. A loss function is built with the aim that the governing partial differential

equations (PDEs) of Kirchhoff plate bending problems, and the boundary/initial

conditions are minimised at those collocation points. A combination of optimizers is

adopted in the backpropagation process to minimize the loss function so as to obtain the

optimal hyperparameters. In Kirchhoff plate bending problems, the C1 continuity

requirement poses significant difficulties in traditional mesh-based methods. This can be

solved by the proposed DCM, which uses a deep neural network to approximate the

continuous transversal deflection, and is proved to be suitable to the bending analysis of

Kirchhoff plate of various geometries.

Keywords: Deep learning, collocation method, Kirchhoff plate, higher-order PDEs.

1 Introduction

Thin plates are widely employed as basic structural components in engineering fields

[Ventsel and Krauthammer (2001)], which combines light weight, efficient load-carrying

capacity, economy with technological effectiveness. Their mechanical behaviours have

long been studied by various methods such as finite element method [Bathe (2006);

Hughes (2012); Zhuang, Huang, Zhu et al. (2013)], boundary element method

[Katsikadelis (2016); Brebbia and Walker (2016)], meshfree method [Nguyen, Rabczuk,

Bordas et al. (2008)], isogeometric analysis [Nguyen, Anitescu, Bordas et al. (2015)],

and numerical manifold method [Zheng, Liu and Ge (2013); Guo and Zheng (2018); Guo,

1 Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.

2 Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.

3 Institute of Continuum Mechanics, Leibniz Universität Hannover, Hannover, Germany.

4 Department of Geotechnical Engineering, Tongji University, Shanghai, China.

5 Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University,

Shanghai, China.

* Corresponding Author: Timon Rabczuk. Email: timon.rabczuk@tdtu.edu.vn.

434 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

Zheng and Zhuang (2019)]. The Kirchhoff bending problem is a classical fourth-order

problem, its mechanical behaviour is described by fourth-order partial differential

equation which poses difficulties to construct a shape function to be globally C1

continuous but piecewise C2 continuous, namely, H2 regular, for those mesh-based

numerical method. However, according to the universal approximation theorem, see

Cybenko [Cybenko (1989)] and Hornic [Hornik (1991)], any continuous function can be

approximated arbitrarily well by a feedforward neural network, even with a single hidden

layer, which offers a new possibility of analyzing Kirchhoff plate bending problems.

Deep learning was first brought up as a new branch of machine learning in the realm of

artificial intelligence in 2006, which uses deep neural networks to learn features of data

with high-level of abstractions [LeCun, Bengio and Hinton (2015)]. The deep neural

networks adopt artificial neural network architectures with various hidden layers, which

exponentially reduce the computational cost and amount of training data in some

applications [Al-Aradi, Correia, Naiff et al. (2018a)]. The major two desirable traits of

deep learning lie in the nonlinear processing in multiple hidden layers in supervised or

unsupervised learning [Vargas, Mosavi and Ruiz (2018)]. Several types of deep neural

networks such as convolutional neural networks (CNN) and recurrent/recursive neural

networks (RNN) [Patterson and Gibson (2017)] have been created, which further boost

the application of deep learning in image processing [Yang, MacEachren, Mitra et al.

(2018)], object detection [Zhao, Zheng, Xu et al. (2019)], speech recognition [Nassif,

Shahin, Attili et al. (2019)] and many other domains including genomics [Yue and Wang

(2018)] and even finance [Fischer and Krauss (2018)].

As a matter of fact, artificial neural networks (ANN) which are main tools in deep

learning have been around since the 1940’s [McCulloch and Pitts (1943)] but have not

performed well until recently. They only became a major part of machine learning in the

past few decades due to strides in computing techniques and explosive growth in date

collection and availability, especially the arrival of backpropagation technique and

advance in deep neural networks. However, based on the function approximation

capabilities of feed forward neural networks, ANN were adopted to solve partial

differential equations (PDEs) [Lagaris, Likas and Fotiadis (1998); Lagaris, Likas and

Papageorgiou (2000); McFall and Mahan (2009)], which results in a solution that can be

described by a closed analytical form. Due to vanishing gradients, neural networks with

many hidden layers require a long time for training. However, pretraining, which sets the

initial values of connection weights and biases, with back propagation algorithm are now

proposed to solve this problem more efficiently. More recently, with improved theory

incorporating unsupervised pre-training, stacks of auto-encoder variants, and deep belief

nets, deep learning has become a central and popular branch in research and applications.

Some researchers employed deep learning for the solution of PDEs. Mills et al. deployed

a deep conventional neural network to solve schrödinger equation, which directly learned

the mapping between potential and energy [Mills (2017)]. E et al. applied deep

learning-based numerical methods for high-dimensional parabolic PDEs and

back-forward stochastic differential equations, which was proven to be efficient and

accurate for 100-dimensional nonlinear PDEs [E, Han and Jentzen (2017); Han, Jentzen,

and E (2018)]. Also, E and Yu proposed a Deep Ritz method for solving variational

A Deep Collocation Method for the Bending Analysis 435

problems arising from partial differential equations [E and Yu (2018)]. Raissi et al.

applied the probabilistic machine learning in solving linear and nonlinear differential

equations using Gaussian Processes and later introduced a data-driven Numerical

Gaussian Processes to solve time-dependent and nonlinear PDEs, which circumvented

the need for spatial discretization [Raissi, Perdikaris and Karniadakis (2017a); Raissi and

Karniadakis (2018); Raissi, Perdikaris and Karniadakis (2018)]. Later, Raissi et al.

[Raissi, Perdikaris and Karniadakis (2017b, 2017c); Raissi, Perdikaris and Karniadakis

(2019)] introduced a physical informed neural networks for supervised learning of

nonlinear partial differential equations from Burger’s equations to Navier-Stokes

equations. Two distinct models were tailored for spatio-temporal datasets: continuous

time and discrete time models. They also applied a deep neural networks in solving

coupled forward-backward stochastic differential equations and their corresponding

high-dimensional PDEs [Raissi (2018)]. Beck et al. [Beck, Becker, Grohs et al. (2018);

Beck, E and Jentzen (2019)] studied the deep learning in solving stochastic differential

equations and Kolmogorov equations. Nabian and Meidani studied the presentation of

high-dimensional random partial differential equations with a feed-forward

fully-connected deep neural networks [Nabian and Meidani (2018a, 2018b)]. Based on

the physics informed deep neural networks, Tartakovsky et al. studied the estimation of

parameters and unknown physics in PDE models [Tartakovsky, Marrero, Perdikaris et al.

(2018)]. Qin et al. applied the deep residual network and observation data to approximate

unknown governing differential equations [Qin, Wu and Xiu (2018)]. Sirignano et al.

[Sirignano and Spiliopoulos (2018)] gave a theoretic motivation of using deep neural

networks as PDE approximators, which converged as the number of hidden layers tend to

infinity. Based on this, a deep Galerkin method was tested to solve PDEs including

high-dimensional ones. Berg et al. [Berg and Nyström (2018)] proposed a unified deep

neural network approach to approximate solutions to PDEs and then used deep learning

to discover PDEs hidden in complex data sets from measurement data [Berg and Nyström

(2019)]. In general, a deep feed-forward neural networks can serve as a suitable solution

approximators, especially for high-dimensional PDEs with complex domains.

Some researchers studied the surrogate of FEM by deep learning, which mainly trains the

deep neural networks from datasets obtained from FEM. For instance, Liang et al. [Liang,

Liu, Martin et al. (2017); Liang, Liu, Martin et al. (2018)] investigated the relationship

between geometric features of aorta and FEM-predicted ascending aortic aneurysm

rupture risk and then a deep learning was used to estimate the stress distribution of the

aorta. In this research, we will not confine deep learning application within FEM datasets.

Rather, the deflection of Kirchhoff plate is first approximated with deep physical

informed feedforward neural networks with hyperbolic tangent activation functions and

trained by minimizing a loss function related to the governing equation of Kirchhoff

bending problems and related boundary conditions hence avoiding a FEM discretization

entirely. The training data for deep neural networks are obtained by randomly distributed

collocation points from the physical domain of the plate. This deep collocation method

can be seen as a truly mesh-free method without the need of background grids.

The paper is organized as follows: First a brief introduction of Kirchhoff plate bending

strong form with typical boundary conditions is given. Then we give a short introduction

to deep learning. Finally, the deep collocation method with varying hidden layers and

436 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

neurons are adopted for plates with various shapes and boundary conditions to show the

performance of the proposed method.

2 Kirchhoff plate bending

Based on Kirchhoff plate bending theory [Ventsel and Krauthammer (2001)], the relation

between lateral deflection 𝑤(𝑥, 𝑦) of the middle surface (𝑧 = 0) and rotations about

the 𝑥, 𝑦 -axis can be given by:

𝜃𝑥 =
𝜕𝑤

𝜕𝑥
, 𝜃𝑦 =

𝜕𝑤

𝜕𝑦
 (1)

Under the coordinate system shown in Fig. 1, the displacement field in a thin plate can be

expressed as:

𝑢(𝑥, 𝑦, 𝑧) = −𝑧
𝜕𝑤

𝜕𝑥
,

𝑣(𝑥, 𝑦, 𝑧) = −𝑧
𝜕𝑤

𝜕𝑦
, (2)

𝑤(𝑥, 𝑦, 𝑧) = w(x,y).

It is obviously that the transversal deflection of the middle plane of the thin plate can be

regard as the field variables of the bending problem of thin plates. The corresponding

bending and twist curvatures are the generalized strains:

𝑘𝑥 = −
𝜕2𝑤

𝜕𝑥2
, 𝑘𝑦 = −

𝜕2𝑤

𝜕𝑦2
, 𝑘𝑥𝑦 = −2

𝜕2𝑤

𝜕𝑥𝑦
. (3)

Therefore, the geometric equations of Kirchhoff bending can be expressed as:

𝒌 = {

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

}=−

{

𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2

2
𝜕2𝑤

𝜕𝑥𝜕𝑦}

= 𝑳𝑤, (4)

with 𝑳 being the differential operator defined as 𝑳 = −{
𝜕2

𝜕𝑥2

𝜕2

𝜕𝑦2
 2

𝜕2

𝜕𝑥𝜕𝑦
}
𝑇

.

Figure 1: Internal force in the coordinate system

Fig. 1. Kirchhoff plate in the coordinate system .

Fig. 2. Cover systems of an irregular polygon plate.

Ωm4 Ωm3

Ωm2Ωm1

Ωm8 Ωm7

Ωm6Ωm5

Ωp1-1 Ωp1-2

Ωp1-3Ωp1-4

Ωp1-8
Ωp1-7

Ωp1-6Ωp1-5

E1

E2

A Deep Collocation Method for the Bending Analysis 437

Accordingly, the bending and twisting moments, shown in Fig. 1 can be obtained as:

𝑀𝑥 = −𝐷0 (
𝜕2𝑤

𝜕𝑥2
+ 𝜐

𝜕2𝑤

𝜕𝑦2
),

𝑀𝑦 = −𝐷0 (𝜐
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
), (5)

𝑀𝑥𝑦 = 𝑀𝑦𝑥 = −𝐷0(1 − 𝜈)
𝜕2𝑤

𝜕𝑥𝑦
.

𝐷0 =
𝐸ℎ3

12(1−𝜈2)
 is the bending rigidity, where 𝐸 and 𝜈 are the Young's modulus and

Poisson ratio, and ℎ is the thickness of the thin plate. For isotropic thin plate, the

constitutive equation can be expressed in Matrix form:

𝑴 = 𝑫𝒌. (6)

The shear forces can be obtained in terms of the generalized stress components:

𝑄𝑥 =
𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
, 𝑄𝑦 =

𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦

𝜕𝑦
. (7)

The differential equation for the deflections for thin plate based on Kirchhoff's

assumptions can be expressed by transversal deflection as:

∇2(∇2𝑤) = ∇4𝑤 =
𝑝

𝐷
, (8)

where ∇4() =
𝜕4

𝜕𝑥4
+

𝜕4

𝜕𝑥2𝑦2
+

𝜕4

𝜕𝑦4
 is commonly called biharmonic operator.

Consequently, the Kirchhoff plate bending problems can be boiled down to a fourth order

PDE problem, which pose difficulty for tradition mesh-based method in constructing a

shape function to be H2 regular. Moreover, the boundary conditions of Kirchhoff plate

taken into consideration in this paper can be generally classified into three parts, namely,

∂Ω = 𝛤1 + 𝛤2 + 𝛤3, (9)

For clamped edge boundary 𝛤1 , 𝑤 = 𝑤̃,
𝜕𝑤

𝜕𝑛
= 𝜃̃𝑛 . 𝑤̃ and 𝜃̃𝑛 are functions of arc

length.

For simply supported edge boundary 𝛤2, 𝑤 = 𝑤̃, 𝑀𝑛 = 𝑀̃𝑛. 𝑀̃𝑛 is the function of arc

length, too.

For free edge boundary 𝛤3, 𝑀𝑛 = 𝑀̃𝑛,
𝜕𝑀𝑛𝑠

𝜕𝑠
+ 𝑄𝑛 = 𝑞̃, where 𝑞̃ is a load exerted along

this boundary.

It should be noted that 𝒏 and 𝒔 here refer to the normal and tangent directions along the

boundaries.

3 Deep collocation method for solving Kirchhoff plate bending

3.1 Feed forward neural network

The basic architecture of a fully connected feedforward neural network is shown in Fig. 2.

It comprises of multiple layers: input layer, one or more hidden layers and output layer.

Each layer consists of one or more nodes called neurons, shown in the Fig. 2 by small

coloured circles, which are the basic units of computation. For an interconnected

structure, every two neurons in neighbouring layers have a connection, which is

438 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

represented by a connection weight, see Fig. 2, where the weight between neuron 𝑘 in

hidden layer 𝑙 − 1 and neuron 𝑗 in hidden layer 𝑙 is denoted by ω𝑗𝑘
𝑙 . No connection

exists among neurons in the same layer as well as in the non-neighbouring layers. Input

data, defined from 𝑥1 to 𝑥𝑁, flow through this neural network via connections between

neurons, starting from the input layer, through hidden layer 𝑙 − 1, 𝑙, to the output layer,

which eventually outputs data from 𝑦1 to 𝑦𝑀. The feedforward neural network defines a

mapping FNN: 𝑅𝑁 → 𝑅𝑀.

Figure 2: Architecture of a fully connected feedforward back-propagation neural

network

However, it should be noted that the number of neurons on each hidden layers and

number of hidden layers can be arbitrarily chosen and are invariably determined through

a trial and error procedure. It has also been concluded that any continuous function can be

approximated with any desired precision by a feed forward neural network with even a

single hidden layer [Funahashi (1989); Hornik, Stinchcombe and White (1989)].

On each neuron in the feed forward neural network, a bias is supplied including neurons

in the output layer except the neurons in the input layer, which is defined by 𝑏𝑗
𝑙 for bias

of neuron 𝑗 in layer 𝑙. Furthermore, the activation function is defined for an output of

each neuron in order to introduce a non-linearity into the neural network and make the

back-propagation possible where gradients are supplied along with an error to update

weights and biases. The activation function in layer 𝑙 will be denoted by 𝜎 here. There

are many activation functions such as sigmoid function, hyperbolic tangent function Tanh,

Rectified linear units Relu, to name a few. Suggestions upon their choice can be found in

[Hayou, Doucet and Rousseau (2018)]. Hence, for the value on each neuron in the hidden

layers and output layer adds the weighted sum of values of output values from the

previous layer with corresponding connection weights to basis on the neuron. An

intermediate quantity for neuron 𝑗 on hidden layer 𝑙 is defined as

𝑎𝑗
𝑙 = ∑ 𝜔𝑗𝑘

𝑙 𝑦𝑘
𝑙−1 + 𝑏𝑗

𝑙
𝑘 , (10)

and its output is given by the activation of the above weighted input

A Deep Collocation Method for the Bending Analysis 439

𝑦𝑗
𝑙 = 𝜎(𝑎𝑗

𝑙) = 𝜎(∑ 𝜔𝑗𝑘
𝑙 𝑦𝑘

𝑙−1 + 𝑏𝑗
𝑙

𝑘), (11)

where 𝑦𝑘
𝑙−1 is the output from the previous layer.

When Eq. (11) is applied to compute 𝑦𝑗
𝑙, the intermediate quantity 𝑎𝑗

𝑙 is calculated

'along the way'. This quantity turns out to be useful and named here as weighted input to

neuron 𝑗 on hidden layer 𝑙. Eq. (10) can be written in a compact matrix form, which

calculates the weighted inputs for all neurons on certain layers efficiently, obtaining:

𝒂 = 𝑾𝑙𝒚𝑙−1 + 𝒃𝑙, (12)

Accordingly, from Eq. (12) 𝒚𝑙 = 𝜎(𝒂) , where activation functions are applied

elementwise. A feedforward network thus defines a function 𝑓(𝒙; 𝜃) depending on the

input data 𝒙 and parametrized by 𝜃 consisting of weights and biases in each layer. The

defined function provides an efficient way to approximate unknown field variables.

3.2 Backpropagation

Backpropagation (𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛) is an important and computationally

efficient mathematical tool to compute gradients in deep learning [Nielsen (2018)].

Essentially, backpropagation is based on recursively applying the chain rule and deciding

which computations can be run in parallel from computational graphs. In our problem, the

governing equation contains fourth order partial derivatives of field variable 𝑤(𝒙)
approximated by the deep neural networks 𝑓(𝒙; 𝜃). For the approximation defined by

𝑓(𝒙; 𝜃), in order to find the weights and biases, a loss function 𝑳(𝑓, 𝑤) is defined to be

minimized [Janocha and Czarnecki (2017)]. The backpropagation algorithm for computing

the gradient of this loss function 𝑳(𝑓,𝑤) can be defined as follows [Nielsen (2018)]:

⚫ Input: Input dataset 𝑥1, ⋯ , 𝑥𝑛, prepare activation 𝑦1 for input layer;

⚫ Feedforward: For each layer 𝑙 = 2,3,⋯ , 𝐿, compute 𝑎𝑙 = ∑ 𝑊𝑙𝑦𝑙−1 + 𝑏𝑙𝑘 , and

𝜎(𝑎𝑙);

⚫ Output error: Compute the error 𝛿𝐿 = ∇𝑦𝐿𝑳⊙ 𝜎𝐿
′(𝑎𝐿), 𝜎𝐿

′ measures how fast 𝜎

changes at 𝑎𝐿;

⚫ Backpropagation error: For each 𝑙 = 𝐿 − 1, 𝐿 − 2,⋯ ,2, compute 𝛿𝑙 =

((𝑊𝑙+1)
𝑇
𝛿𝑙+1)⊙ 𝜎𝑙

′(𝑎𝑙);

⚫ Output: The gradient of the loss function is given by
∂𝑳

∂𝜔𝑗𝑘
𝑙 = 𝑦𝑘

𝑙−1𝛿𝑗
𝑙 and

∂𝑳

∂𝑏𝑗
𝑙 = 𝛿𝑗

𝑙.

Here, ⊙ denotes the Hadamard product.

There are lists of deep learning tools to setup the training such as Pytorch or Tensorflow.

The former inputs a numerical value and then computes the derivatives at this node,

while the latter computers the derivatives of a symbolic variable, then stores the

derivative operations into new nodes added to the graph for later use. Obviously, the

latter is more advantageous in computing higher-order derivatives, which can be

computed from its extended graph by running backpropagation repeatedly. Therefore,

since the fourth-order derivatives of field variables is needed to be computed, the

Tensorflow framework is adopted [Al-Aradi, Correia, Naiff et al. (2018b)].

440 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

3.3 Formulation of deep collocation method

The formulation of a deep collocation in solving Kirchhoff plate bending problems is

introducted in this section. Collocation method is a widely used method seeking

numerical solutions for ordinary, partial differential and integral equations [Atluri (2005)].

It is a popular method for trajectory optimization in control theory. A set of randomly

distributed points (also known as collocation points) is often deployed to represent a

desired trajectory that minimizes the loss function while satisfying a set of constraints.

The collocation method tends to be relatively insensitive to instabilities (such as

blowing/vanishing gradients with neural networks) and is a viable way to train the deep

neural networks [Agrawal].

Eqs. (8), (9)-the Kirchhoff plate bending problem-can be boiled down to the solution of a

fourth order biharmonic equations with boundary constraints. Thus we first discretize the

physical domain with collocation points denoted by 𝒙Ω = (𝑥1,⋯ , 𝑥𝑁Ω)
𝑇

. Another set of

collocation points is employed to discretize the boundary conditions denoted by 𝒙𝛤 =

(𝑥1,⋯ , 𝑥𝑁𝛤)
𝑇

. Then the transversal deflection 𝑤 is approximated with the

aforementioned deep feedforward neural network 𝑤ℎ(𝒙; 𝜃). A loss function can thus be

constructed to find the optimal hyperparameters by minimizing governing equation with

boundary conditions approximated by 𝑤ℎ(𝒙; 𝜃). The mean squared error loss form is

adopted here.

Substituting 𝑤ℎ(𝒙Ω; 𝜃) into Eq. (8), we obtain

𝐺(𝒙Ω; 𝜃) = ∇
4𝑤ℎ(𝒙Ω; 𝜃) =

𝑝

𝐷
, (13)

which results in a physical informed deep neural network 𝐺(𝒙Ω; 𝜃).

The boundary conditions illustrated in Section 2 can also be expressed by the neural

network approximation 𝑤ℎ(𝒙Ω; 𝜃) as:

On 𝛤1, we have

𝑤ℎ(𝒙𝛤1; 𝜃) = 𝑤̃,
∂𝑤ℎ(𝒙𝛤1;𝜃)

∂n
= 𝜃̃𝑛. (14)

On 𝛤2,

𝑤ℎ(𝒙𝛤2; 𝜃) = 𝑤̃, 𝑀𝑛(𝒙𝛤2; 𝜃) = 𝑀̃𝑛.
 (15)

where 𝑀𝑛(𝒙𝛤2; 𝜃) can be obtained from Eq. (5) by combing 𝑤ℎ(𝒙𝛤1; 𝜃).

On 𝛤3,

𝑀𝑛(𝒙𝛤3; 𝜃) = 𝑀̃𝑛,
∂𝑀𝑛𝑠(𝒙𝛤3;𝜃)

∂s
+ 𝑄𝑛(𝒙𝛤3; 𝜃) = 𝑞̃,

 (16)

where 𝑀𝑛𝑠(𝒙𝛤3; 𝜃) can be obtained from Eq. (5) and 𝑄𝑛(𝒙𝛤3; 𝜃) can be obtained from

Eq. (7) by combing 𝑤ℎ(𝒙𝛤3; 𝜃).

It should be noted that n, s here refer to the normal and tangent directions along the

boundaries. Note the induced physical informed neural network 𝐺(𝒙; 𝜃), 𝑀𝑛(𝒙; 𝜃),
𝑀𝑛𝑠(𝒙; 𝜃), 𝑄𝑛(𝒙; 𝜃) share the same parameters as 𝑤ℎ(𝒙; 𝜃). Considering the generated

collocation points in domain and on boundaries, they can all be learned by minimizing

the mean square error loss function:

A Deep Collocation Method for the Bending Analysis 441

𝐿(𝜃) = 𝑀𝑆𝐸 = 𝑀𝑆𝐸G +𝑀𝑆𝐸𝛤1 +𝑀𝑆𝐸𝛤2 +𝑀𝑆𝐸𝛤3 , (17)

with

𝑀𝑆𝐸G =
1

𝑁Ω
∑ ‖𝐺(𝒙Ω; 𝜃)‖

2𝑁Ω
𝑖=1 =

1

𝑁Ω
∑ ‖∇4𝑤ℎ(𝒙Ω; 𝜃) −

𝑝

𝐷
‖
2𝑁Ω

𝑖=1 ,

𝑀𝑆𝐸𝛤1 =
1

𝑁𝛤1
∑ ‖𝑤ℎ(𝒙𝛤1; 𝜃) − 𝑤̃‖

2𝑁𝛤1
𝑖=1

+
1

𝑁𝛤1
∑ ‖

∂𝑤ℎ(𝒙𝛤1;𝜃)

∂n
− 𝜃̃𝑛‖

2
𝑁𝛤1
𝑖=1

,

(18) 𝑀𝑆𝐸𝛤2 =
1

𝑁𝛤2
∑ ‖𝑤ℎ(𝒙𝛤2; 𝜃) − 𝑤̃‖

2𝑁𝛤2
𝑖=1

+
1

𝑁𝛤2
∑ ‖𝑀𝑛(𝒙𝛤2; 𝜃) −
𝑁𝛤2
𝑖=1

𝑀̃𝑛‖
2

,

𝑀𝑆𝐸𝛤3 =
1

𝑁𝛤3
∑ ‖𝑀𝑛(𝒙𝛤3; 𝜃) − 𝑀̃𝑛‖

2𝑁𝛤3
𝑖=1

+
1

𝑁𝛤3
∑ ‖

∂𝑀𝑛𝑠(𝒙𝛤3;𝜃)

∂s
+

𝑁𝛤3
𝑖=1

𝑄𝑛(𝒙𝛤3; 𝜃) − 𝑞̃‖
2

.

where 𝒙Ω ∈ 𝑅
𝑁 , 𝜃 ∈ 𝑅𝐾are the neural network parameters. 𝐿(𝜃) = 0, 𝑤ℎ(𝒙; 𝜃) is

then a solution to transversal deflection. Our goal is to find the a set of parameters 𝜃 that

the approximated deflection 𝑤ℎ(𝒙; 𝜃) minimizes the loss 𝐿(𝜃). If 𝐿(𝜃) is a very small

value, the approximation 𝑤ℎ(𝒙; 𝜃) is very closely satisfying governing equations and

boundary conditions, namely

𝑤ℎ =
𝑎𝑟𝑔𝑚𝑖𝑛

𝜃∈ 𝑅𝐾
𝐿(𝜃), (19)

The solution of thin plate bending problems by deep collocation method can be reduced

to an optimization problem. In the deep learning Tensorflow framework, a variety of

optimizers are available. One of the most widely used optimization methods is the Adam

optimization algorithm [Kingma and Ba (2015)], which is also adopted in the numerical

study in this paper. The idea is to take a descent step at collocation point 𝒙𝑖 with

Adam-based learning rates 𝛼𝑖,

𝜃𝑖+1 = 𝜃𝑖+1 + 𝛼𝑖∇𝜃𝐿(𝒙𝑖; 𝜃), (20)

and then the process in Eq. (20) is repeated until a convergence criterion is satisfied.

4 Numerical examples

In this section, several numerical examples on plate bending problems with various

shapes and boundary conditions are studied. A combined optimizer suggested by Berg et

al. [Berg and Nyström (2018)] is adopted using L-BFGS optimizer [Liu and Nocedal

(1989)] first and in linear search where BFGS may fail, an Adam optimizer is then

applied with a very small learning rate. For all numerical examples, predicted maximum

transverse with increasing layers are studied in order to show the convergence of deep

collocation method in solving the plate bending problem.

4.1 Simply-supported square plate

A simply-supported square plate under a sinusoidal distribution of transverse loading is

first studied. The distributed load is given by.

442 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

𝑝 =
𝑝0

𝐷
𝑠𝑖𝑛 (

𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝜋𝑦

𝑏
), (21)

Here, 𝑎, 𝑏 indicate the length of the plate; 𝐷 denotes the flexural stiffness of the plate

depending on the plate thickness and material properties. The exact solution for this

problem is given by

𝑤 =
𝑝0

𝜋4𝐷(
1

𝑎2
+
1

𝑏2
)
2 𝑠𝑖𝑛 (

𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝜋𝑦

𝑏
), (22)

𝑤 represents the transverse plate deflection. For this numerical example, we first

generate 1000 randomly distributed collocation points in the physical domain depicted in

Fig. 3. We thoroughly studied the influence of deep neural network with a varying

number of hidden layer and neurons on the maximum deflection at the center of the plate,

which is shown in Tab. 1. The numerical results are compared with the exact solution. It

is clear that the results predicted by more hidden layers are more desirable, especially for

neural networks with three hidden layers. To better reflect the deflection vector in the

whole physical domain, the contour plot, contour error plot of deflection for increasing

hidden layers with 50 neurons are shown in Fig. 5, Fig. 6, Fig. 7.

Figure 3: Collocation points discretize the square domain

We employed a varying number of hidden layers from 1 to 4 and in each layer and the

number of neurons varies from 20 to 60, see Tab. 1. We calculated the corresponding

maximum transversal deflection at the center of the square plate. The 𝐿2 relative error of

deflection vector at all predicted points is shown in Fig. 4 for each case. Even the neural

network with only one single hidden layer with 20 neurons gives very accurate results.

With increasing neurons and hidden layers, the results converge to the exact solution and

the results are very accurate even with a few neurons and a single hidden layer. In Fig. 4,

all three hidden layer types get very accurate results. Though the single layer with 20

neurons is the most accurate in all three types with 20 neurons, the magnitude of all is

10−4. As the number of hidden layers and neurons increases, the relative error flattens.

A Deep Collocation Method for the Bending Analysis 443

Table 1: Maximum deflection predicted by deep collocation method

Simply-supported

Square Plate

Predicted Maximum

Deflection

Exact Maximum

Deflection

1 hidden layers, 20 neurons 2.566529

2.566496

1 hidden layers, 30 neurons 2.566556

1 hidden layers, 40 neurons 2.566541

1 hidden layers, 50 neurons 2.566576

1 hidden layers, 60 neurons 2.566509

2 hidden layers, 20 neurons 2.566501

2 hidden layers, 30 neurons 2.566429

2 hidden layers, 40 neurons 2.566329

2 hidden layers, 50 neurons 2.566442

2 hidden layers, 60 neurons 2.566420

3 hidden layers, 20 neurons 2.566366

3 hidden layers, 30 neurons 2.566518

3 hidden layers, 40 neurons 2.566434

3 hidden layers, 50 neurons 2.566468

3 hidden layers, 60 neurons 2.566549

Figure 4: The relative error of deflection with varying hidden layers and neurons

444 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

(a). Predicted deflection contour (b). Deflection error contour

(c). Predicted deflection contour (d). Deflection error contour

Figure 5: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted

deflection (d) Exact deflection of the simply-supported square plate with 1 hidden layer

and 50 neurons with varying hidden layers and neurons

(a). Predicted deflection contour (b). Deflection error contour

A Deep Collocation Method for the Bending Analysis 445

(c). Predicted deflection contour (d). Deflection error contour

Figure 6: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted

deflection (d) Exact deflection of the simply-supported square plate with 2 hidden layers

and 50 neurons with varying hidden layers and neurons

(a). Predicted deflection contour (b). Deflection error contour

(c). Predicted deflection contour (d). Deflection error contour

Figure 7: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted

deflection (d) Exact deflection of the simply-supported square plate with 3 hidden layers

and 50 neurons with varying hidden layers and neurons

From Fig. 5, Fig. 6, Fig. 7, we can observe that the deflection obtained by the deep

collocation method agrees well with the exact solutions. As the hidden layer number

increases, the numerical results converge to the exact solutions in the whole square plate.

446 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

The predicted plate deformation agrees well with the exact deformation. The advantages

of neural networks with hidden layers are not conspicuously reflected in this numerical

example, as the next numerical example shows more clearly.

4.2 Clamped square plate

Next, a clamped square plate under a uniformly distributed transverse loading is analyzed

with deep collocation method. No exact solution for the deflection in the whole plate is

available. Therefore, a solution obtained by the Galerkin method [Khan, Tiwari and Ali

(2012)] is adopted as a comparison:

[

𝑎11
𝑎12
𝑎21
𝑎22

] =
𝑏4𝑝

𝐷
[

0.318682766
0.038459815
0.038459815
0.008281438

], (23)

𝑤 =
𝑏4𝑝

𝐷
{𝑎11 (1 −

𝑥

𝑎
)
2

(1 −
𝑦

𝑏
)
2

(
𝑥

𝑎
)
2

(
𝑦

𝑏
)
2

+

(24)
 𝑎12 (1 −

𝑥

𝑎
)
2
(
𝑦

𝑏
−
𝑦2

𝑏2
)
2

(
𝑥

𝑎
)
2
(
𝑦

𝑏
)
2
} +

𝑏4𝑝

𝐷
{𝑎21 (

𝑥

𝑎
−
𝑥2

𝑎2
)
2

(1 −
𝑦

𝑏
)
2
(
𝑥

𝑎
)
2
(
𝑦

𝑏
)
2
+

 𝑎22 (
𝑥

𝑎
−
𝑥2

𝑎2
)
2

(
𝑦

𝑏
−
𝑦2

𝑏2
)
2

(
𝑥

𝑎
)
2
(
𝑦

𝑏
)
2
},

For the maximum transversal deflection at the center of an isotropic square plate, the Ritz

method gives the maximum deflection at the center as 𝑤𝑚𝑎𝑥 = 0.00133
𝑏4𝑝

𝐷
 [Khan,

Tiwari and Ali (2012)], and Timoshenko et al. [Timoshenko and Woinowsky-Krieger

(1959)] gave an exact solution 𝑤𝑚𝑎𝑥 = 0.00126
𝑏4𝑝

𝐷
. Here, 𝐷 denotes the flexural

stiffness of the plate and depends on the plate thickness and material properties; 𝑎, 𝑏

indicate the length dimension of the plate. 1000 randomly generated collocation points as

in Fig. 3 are used to discretize the clamped square plate.

For this clamped case, a deep feedforward neural network with increasing layers and

neurons is studied in order to validate the convergence of this scheme. First, the

maximum central deflection shown in Tab. 2 is calculated for different number of layers

and neurons and compared with aforementioned Ritz method, Galerkin method and exact

solution by Timoshenko. The results of our deep collocation agree best with the exact

solution. However, for neural networks with a single hidden layer, the results are less

accurate, even when 60 neurons are used. As the number of neurons increases, the results

are indeed more accurate for the neural network with single hidden layer. This can be

observed for the other two hidden layer types. Additionally, as the number of hidden

layer increases, the results are significantly more accurate than the single hidden layer

neural network results.

A Deep Collocation Method for the Bending Analysis 447

Table 2: Maximum deflection predicted by deep collocation method

Clamped Square

 Plate

Predicted Maximum

Deflection

Galerkin

method

Ritz

method

Exact

solution

1 hidden layers, 20 neurons 0.860568

1.321993 1.330000 1.260000

1 hidden layers, 30 neurons 1.152175

1 hidden layers, 40 neurons 1.195843

1 hidden layers, 50 neurons 1.249870

2 hidden layers, 20 neurons 1.257226

2 hidden layers, 30 neurons 1.257759

2 hidden layers, 40 neurons 1.265145

2 hidden layers, 50 neurons 1.261974

3 hidden layers, 20 neurons 1.261780

3 hidden layers, 30 neurons 1.260374

3 hidden layers, 40 neurons 1.261743

3 hidden layers, 50 neurons 1.258893

Figure 8: The relative error of deflection with varying hidden layers and neurons

The relative error with the analytical solution with different hidden layers and different

neurons is shown in Fig. 8. The magnitude of the relative error of the deflection for this

numerical example is 10−2, see also Tab. 2. With increasing number of hidden layers,

the two flat relative error curves coincide and converge to the exact solution.

448 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

(a). Predicted deflection contour (b). Deflection error contour

(c). Predicted deflection contour (d). Deflection error contour

Figure 9: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted

deflection (d) Exact deflection of the clamped square plate with 3 hidden layers and 50

neurons with varying hidden layers and neurons

Finally, the deflection contour, relative error contour and deformed deflection of the

middle surface for the deep neural network with three layers and 50 neurons is illustrated

in Fig. 9.

4.3 Clamped circular plate

A clamped circular plate with radius 𝑅 under a uniformly distributed force is employed

in the domain of the circular plate. This problem has an exact solution given by

Timoshenko et al. [Timoshenko and Woinowsky-Krieger (1959)]:

𝑤 =
𝑝0
64𝐷

(𝑅2 − (𝑥2 + 𝑦2))
2

 (25)

𝐷 denoting the flexural stiffness of the plate. The maximum deflection at the central of the

circular plate with varying hidden layers and neurons is summarized in Tab. 3 and compared

with the exact solution. The predicted maximum deflection becomes more accurate with

increasing number of neurons and hidden layers. The relative error for deflection of clamped

circular plate with increasing hidden layers and neurons is depicted in Fig. 11. As hidden

layer number increases, the relative error curves become flatter and converges to the exact

solution. All neural networks perform well with a relative error magnitude of 10−4.

A Deep Collocation Method for the Bending Analysis 449

Figure 10: Collocation points discretize the circular domain

Table 3: Maximum deflection predicted by deep collocation method

Clamped Circular

 Plate

Predicted Maximum

Deflection

Exact

solution

1 hidden layers, 30 neurons 15.5958

15.6250

1 hidden layers, 40 neurons 15.5685

1 hidden layers, 50 neurons 15.6201

2 hidden layers, 30 neurons 15.6251

2 hidden layers, 40 neurons 15.6264

2 hidden layers, 50 neurons 15.6224

3 hidden layers, 30 neurons 15.6269

3 hidden layers, 40 neurons 15.6247

3 hidden layers, 50 neurons 15.6229

Figure 11: The relative error of deflection with varying hidden layers and neurons

The deformation contour, deflection error contour, predicted and exact deformation

figures are displayed in Fig. 12. The deflection of this circular plate agrees well with the

exact solution.

450 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

(a). Predicted deflection contour (b). Deflection error contour

(c). Predicted deflection contour (d). Deflection error contour

Figure 12: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted

deflection (d) Exact deflection of the clamped circular plate with 3 hidden layers and 50

neurons with varying hidden layers and neurons

4.4 Simply-supported square plate on Winkler foundation

The last example is a simply-supported square plate resting on Winkler foundation,

which assumes that the foundation's reaction 𝑝(x, y) can be described by 𝑝(x, y) = 𝑘𝑤,

𝑘 being a constant called 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑢𝑠. For a plate on a continuous Winkler

foundation, the governing Eq. (8) can be written as:

∇2(∇2𝑤) = ∇4𝑤 =
(𝑝−𝑞)

𝐷
=

(𝑝−𝑘𝑤)

𝐷
. (26)

The analytical solution for this numerical example is [Timoshenko and

Woinowsky-Krieger (1959)]:

𝑤 =
16𝑝

𝜋2
∑ ∑

𝑠𝑖𝑛
𝑚𝜋𝑥

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑦

𝑏

𝑚𝑛[𝜋4𝐷(
𝑚2

𝑎2
+
𝑛2

𝑏2
)
2

+𝑘]

∞
𝑛=1,3,5,⋯

∞
𝑚=1,3,5,⋯ , (27)

For this numerical example, the same arrangement of collocation points is depicted in Fig.

3. Neural networks with different neurons and depth are applied in the calculation. Tab. 3

lists the maximum deflection at the central point in all cases. Good agreement can be

observed in this numerical example as well. As hidden layer and neuron number grows,

the maximum deflection becomes more accurate approaching the analytical serial

A Deep Collocation Method for the Bending Analysis 451

solution for even two hidden layers. The relative error shown in Fig. 13 better depicts the

advantages of deep neural network than shallow wide neural network. More hidden

layers, with more neurons yield flatting of the relative error. Various contour plots are

shown in Fig. 14 and compared with the analytical solution.

Table 4: Maximum deflection predicted by deep collocation method

Square Plate on Winkler

foundation

Predicted Maximum

Deflection

Exact

solution

1 hidden layers, 30 neurons 0.33999

0.32137

1 hidden layers, 40 neurons 0.35689

1 hidden layers, 50 neurons 0.32168

2 hidden layers, 30 neurons 0.32248

2 hidden layers, 40 neurons 0.32176

2 hidden layers, 50 neurons 0.32168

3 hidden layers, 30 neurons 0.32216

3 hidden layers, 40 neurons 0.32172

3 hidden layers, 50 neurons 0.32181

Figure 13: The relative error of deflection with varying hidden layers and neurons

(a). Predicted deflection contour (b). Deflection error contour

452 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

(c). Predicted deflection contour (d). Deflection error contour

Figure 12: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted

deflection (d) Exact deflection of the simply-supported plate on Winkler foundation with

3 hidden layers and 50 neurons with varying hidden layers and neurons

5 Conclusions

We propose a deep collocation method to study the bending analysis of Kirchhoff plates

of various shapes, loads and boundary conditions. The governing equation of this

problem is a fourth order partial differential equation (biharmonic equation). The

proposed deep collocation method can be considered as truly "meshfree" and can be used

to approximate any continuous function, which is very suitable for the analysis of thin

plate bending problems. The deep collocation method is very simple in implementation,

which can be further applied in a wide variety of engineering problems.

Moreover, the deep collocation method with randomly distributed collocations and deep

neural networks perform very well with MSE loss function minimized by the combined

L-BFGS and Adam optimizer. Accurate results are obtained even for a single layer and

20 neurons. However, as the hidden layers and neurons on each layer increase, results

gain in accuracy and converge to the exact and analytical solution. Most importantly,

once those deep neural networks are trained, they can be used to evaluate the solution at

any desired points with minimal additional computation time.

However, there are still several issues for the deep neural network based method such as

the influence of choosing other neural network types, activation functions, loss function

forms, weight/bias initialization, and optimizers on the accuracy and efficiency of this

deep collocation method, which will be studied in our future research.

References

Agrawal, P. Collocation based approach for training recurrent neural networks.

https://people.eecs.berkeley.edu/~pulkitag/collocation-report.pdf.

Al-Aradi, A.; Correia, A.; Naiff, D.; Jardim, G.; Saporito, Y. (2018): Solving

nonlinear and high-dimensional partial differential equations via deep Learning.

arXiv:1811.08782.

Atluri, S. N. (2005): Methods of Computer Modeling in Engineering & the Sciences.

Tech Science Press.

A Deep Collocation Method for the Bending Analysis 453

Bathe, K. J. (2006): Finite Element Procedures. Klaus-Jurgen Bathe.

Beck, C.; Becker, S.; Grohs, P.; Jaafari, N.; Jentzen, A. (2018): Solving stochastic

differential equations and Kolmogorov equations by means of deep learning.

arXiv:1806.00421.

Beck, C.; Weinan, E.; Jentzen, A. (2019): Machine learning approximation algorithms for

high-dimensional fully nonlinear partial differential equations and second-order backward

stochastic differential equations. Journal of Nonlinear Science, vol. 18, pp. 1-57.

Berg, J.; Nyström, K. (2018): A unified deep artificial neural network approach to partial

differential equations in complex geometries. Neurocomputing, vol. 317, pp. 28-41.

Berg, J.; Nyström, K. (2019): Data-driven discovery of PDEs in complex datasets.

Journal of Computational Physics, vol. 384, pp. 239-252.

Brebbia, C. A.; Walker, S. (2016): Boundary Element Techniques in Engineering.

Elsevier.

Cybenko, G. (1989): Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303-314.

E, W. N.; Han, J.; Jentzen, A. (2017): Deep learning-based numerical methods for

high-dimensional parabolic partial differential equations and backward stochastic

differential equations. Communications in Mathematics and Statistics, vol. 5, no. 4, pp.

349-380.

E, W. N.; Bing, Y. (2018): The deep ritz method: A deep learning-based numerical

algorithm for solving variational problems. Communications in Mathematics and

Statistics, vol. 6, no. 1, pp. 1-12.

Fischer, T.; Krauss, C (2018): Deep learning with long short-term memory networks for

financial market predictions. European Journal of Operational Research, vol. 270, no. 2,

pp. 654-669.

Funahashi, K. I. (1989): On the approximate realization of continuous mappings by

neural networks. Neural Networks, vol. 2, no. 3, pp. 183-192.

Guo, H.; Zheng, H. (2018): The linear analysis of thin shell problems using the

numerical manifold method. Thin-Walled Structures, vol. 124, pp. 366-383.

Guo, H.; Zheng, H.; Zhuang, X. (2019): Numerical manifold method for vibration

analysis of Kirchhoff's plates of arbitrary geometry. Applied Mathematical Modelling,

vol. 66, pp. 695-727.

Han, J.; Jentzen, A.; E, W. N. (2018): Solving high-dimensional partial differential

equations using deep learning. Proceedings of the National Academy of Sciences, vol.

115, no. 34, pp. 8505-8510.

Hayou, S.; Doucet, A.; Rousseau, J. (2018): On the selection of initialization and

activation function for deep neural networks. arXiv:1805.08266.

Hornik, K. (1991): Approximation capabilities of multilayer feedforward networks.

Neural Networks, vol. 4, no. 2, pp. 251-257.

Hornik, K.; Stinchcombe, M.; White, H. (1989): Multilayer feedforward networks are

universal approximators. Neural Networks, vol. 2, no. 5, pp. 359-366.

454 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

Hughes, T. J. (2012): The Finite Element Method: Linear Static and Dynamic Finite

Element Analysis. Courier Corporation.

Janocha, K.; Czarnecki, W. M. (2017): On loss functions for deep neural networks in

classification. arXiv:1702.05659.

Katsikadelis, J. T. (2016): The Boundary Element Method for Engineers and Scientists:

Theory and Applications. Academic Press.

Khan, Y.; Tiwari, P.; Ali, R. (2012): Application of variational methods to a rectangular

clamped plate problem. Computers & Mathematics with Applications, vol. 63, no. 4, pp.

862-869.

Kingma, D. P.; Ba, J. (2015): Adam: a method for stochastic optimization.

arXiv:1412.6980.

Lagaris, I. E.; Likas, A.; Fotiadis, D. I. (1998): Artificial neural networks for solving

ordinary and partial differential equations. IEEE Transactions on Neural Networks, vol. 9,

no. 5, 987-1000.

Lagaris, I. E.; Likas, A. C.; Papageorgiou, D. G. (2000): Neural-network methods for

boundary value problems with irregular boundaries. IEEE Transactions on Neural

Networks, vol. 11, no. 5, pp. 1041-1049.

LeCun, Y.; Bengio, Y.; Hinton, G. (2015): Deep learning. Nature, vol. 521, no. 7553,

pp. 436.

Liang, L.; Liu, M.; Martin, C.; Elefteriades, J. A.; Sun, W. (2017): A machine

learning approach to investigate the relationship between shape features and numerically

predicted risk of ascending aortic aneurysm. Biomechanics and Modeling in

Mechanobiology, vol. 16, no. 5, pp. 1519-1533.

Liang, L.; Liu, M.; Martin, C.; Sun, W. ((2018): A deep learning approach to estimate

stress distribution: a fast and accurate surrogate of finite-element analysis. Journal of the

Royal Society Interface, vol. 15, no. 138, pp. 20170844.

Liu, D. C.; Nocedal, J. (1989): On the limited memory BFGS method for large scale

optimization. Mathematical Programming, vol. 45, no. 1-3, pp. 503-528.

McCulloch, W. S.; Pitts, W. (1943): A logical calculus of the ideas immanent in

nervous activity. The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115-133.

McFall, K. S.; Mahan, J. R. (2009): Artificial neural network method for solution of

boundary value problems with exact satisfaction of arbitrary boundary conditions. IEEE

Transactions on Neural Networks, vol. 20, no. 8, pp. 1221-1233.

Mills, K. (2017): Deep learning and the Schrödinger equation. Physical Review A, vol. 96,

no. 4, 042113.

Nabian, M. A.; Meidani, H. (2018): A deep neural network surrogate for

high-dimensional random partial differential equations. arXiv:1806.02957.

Nabian, M. A.; Meidani, H. (2018): Physics-informed regularization of deep neural

networks. arXiv:1810.05547.

Nassif, A. B.; Shahin, I.; Attili, I.; Azzeh, M.; Shaalan, K. (2019): Speech recognition

using deep neural networks: a systematic review. IEEE Access, vol. 7, pp. 19143-19165.

A Deep Collocation Method for the Bending Analysis 455

Nguyen, V. P.; Anitescu, C.; Bordas, S. P.; Rabczuk, T. (2015): Isogeometric analysis:

an overview and computer implementation aspects. Mathematics and Computers in

Simulation, vol. 117, pp. 89-116.

Nguyen, V. P.; Rabczuk, T.; Bordas, S.; Duflot, M. (2008): Meshless methods: A

review and computer implementation aspects. Mathematics and Computers in Simulation,

vol. 79, no. 3, pp. 763-813.

Nielsen, M. A. (2015): Neural Networks and Deep Learning, volume 25. USA:

Determination Press.

Patterson, J; Gibson, A. (2017): Deep Learning: A Practitioner's Approach. O’Reilly

Media, Inc.

Qin, T.; Wu, K.; Xiu, D. (2018): Data driven governing equations approximation using

deep neural networks. arXiv:1811.05537.

Raissi, M. (2018): Forward-backward stochastic neural networks: deep learning of

high-dimensional partial differential equations. arXiv:1804.07010.

Raissi, M.; Karniadakis, G. E. (2018): Hidden physics models: machine learning of

nonlinear partial differential equations. Journal of Computational Physics, vol. 357, pp.

125-141.

Raissi, M.; Perdikaris, P.; Karniadakis, G. E. (2018): Numerical Gaussian processes

for time-dependent and nonlinear partial differential equations. SIAM Journal on

Scientific Computing, vol. 40, no. 1, pp. A172-A198.

Raissi, M.; Perdikaris, P.; Karniadakis, G. E. (2017): Machine learning of linear

differential equations using Gaussian processes. Journal of Computational Physics, vol.

348, pp. 683-693.

Raissi, M.; Perdikaris, P.; Karniadakis, G. E. (2017): Physics informed deep learning

(part i): data-driven solutions of nonlinear partial differential equations.

arXiv:1711.10561.

Raissi, M.; Perdikaris, P.; Karniadakis, G. E. (2017): Physics informed deep learning

(part ii): Data-driven discovery of nonlinear partial differential equations.

arXiv:1711.10566.

Raissi, M.; Perdikaris, P.; Karniadakis, G. E. (2019): Physics-informed neural

networks: a deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations. Journal of Computational Physics, vol. 378, pp.

686-707.

Sirignano, J.; Spiliopoulos, K. (2018): DGM: a deep learning algorithm for solving

partial differential equations. Journal of Computational Physics, vol. 375, pp. 1339-1364.

Tartakovsky, A. M.; Marrero, C. O.; Tartakovsky, D.; Barajas-Solano, D. (2018):

Learning parameters and constitutive relationships with physics informed deep neural

networks. arXiv:1808.03398.

Timoshenko, S. P.; Woinowsky-Krieger, S. (1959): Theory of Plates and Shells.

McGraw-hill.

456 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.433-456, 2019

Vargas, R.; Mosavi, A.; Ruiz, R. (2018): Deep learning: a review. Advances in

Intelligent Systems and Computing.

Ventsel, E.; Krauthammer, T. (2001): Thin Plates and Shells: Theory: Analysis, and

Applications. CRC Press.

Yang, L.; MacEachren, A.; Mitra, P.; Onorati, T. (2018): Visually-enabled active

deep learning for (geo) text and image classification: a review. ISPRS International

Journal of Geo-Information, vol. 7, no. 2, pp. 65.

Yue, T.; Wang, H. (2018): Deep learning for genomics: a concise overview.

arXiv:1802.00810.

Zhao, Z. Q.; Zheng, P.; Xu, S. T.; Wu, X. (2019): Object detection with deep learning:

a review. IEEE Transactions on Neural Networks and Learning Systems.

Zheng, H.; Liu, Z.; Ge, X. (2013): Numerical manifold space of Hermitian form and

application to Kirchhoff's thin plate problems. International Journal for Numerical

Methods in Engineering, vol. 95, no. 9, pp. 721-739.

Zhuang, X. Y.; Huang, R. Q.; Zhu, H. H. (2013): A new and simple locking-free

triangular thick plate element using independent shear degrees of freedom. Finite element

in Analysis and Design, vol. 75, pp. 1-7.

