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Abstract: In this paper, a deep collocation method (DCM) for thin plate bending 

problems is proposed. This method takes advantage of computational graphs and 

backpropagation algorithms involved in deep learning. Besides, the proposed DCM is 

based on a feedforward deep neural network (DNN) and differs from most previous 

applications of deep learning for mechanical problems. First, batches of randomly 

distributed collocation points are initially generated inside the domain and along the 

boundaries. A loss function is built with the aim that the governing partial differential 

equations (PDEs) of Kirchhoff plate bending problems, and the boundary/initial 

conditions are minimised at those collocation points. A combination of optimizers is 

adopted in the backpropagation process to minimize the loss function so as to obtain the 

optimal hyperparameters. In Kirchhoff plate bending problems, the C1 continuity 

requirement poses significant difficulties in traditional mesh-based methods. This can be 

solved by the proposed DCM, which uses a deep neural network to approximate the 

continuous transversal deflection, and is proved to be suitable to the bending analysis of 

Kirchhoff plate of various geometries. 
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1 Introduction 

Thin plates are widely employed as basic structural components in engineering fields 

[Ventsel and Krauthammer (2001)], which combines light weight, efficient load-carrying 

capacity, economy with technological effectiveness. Their mechanical behaviours have 

long been studied by various methods such as finite element method [Bathe (2006); 

Hughes (2012); Zhuang, Huang, Zhu et al. (2013)], boundary element method 

[Katsikadelis (2016); Brebbia and Walker (2016)], meshfree method [Nguyen, Rabczuk, 

Bordas et al. (2008)], isogeometric analysis  [Nguyen, Anitescu, Bordas et al. (2015)], 

and numerical manifold method [Zheng, Liu and Ge (2013); Guo and Zheng (2018); Guo, 
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Zheng and Zhuang (2019)]. The Kirchhoff bending problem is a classical fourth-order 

problem, its mechanical behaviour is described by fourth-order partial differential 

equation which poses difficulties to construct a shape function to be globally C1 

continuous but piecewise C2 continuous, namely, H2 regular, for those mesh-based 

numerical method. However, according to the universal approximation theorem, see 

Cybenko [Cybenko (1989)] and Hornic [Hornik (1991)], any continuous function can be 

approximated arbitrarily well by a feedforward neural network, even with a single hidden 

layer, which offers a new possibility of analyzing Kirchhoff plate bending problems.  

Deep learning was first brought up as a new branch of machine learning in the realm of 

artificial intelligence in 2006, which uses deep neural networks to learn features of data 

with high-level of abstractions [LeCun, Bengio and Hinton (2015)]. The deep neural 

networks adopt artificial neural network architectures with various hidden layers, which 

exponentially reduce the computational cost and amount of training data in some 

applications [Al-Aradi, Correia, Naiff et al. (2018a)]. The major two desirable traits of 

deep learning lie in the nonlinear processing in multiple hidden layers in supervised or 

unsupervised learning [Vargas, Mosavi and Ruiz (2018)]. Several types of deep neural 

networks such as convolutional neural networks (CNN) and recurrent/recursive neural 

networks (RNN) [Patterson and Gibson (2017)] have been created, which further boost 

the application of deep learning in image processing [Yang, MacEachren, Mitra et al. 

(2018)], object detection [Zhao, Zheng, Xu et al. (2019)], speech recognition [Nassif, 

Shahin, Attili et al. (2019)] and many other domains including genomics [Yue and Wang 

(2018)] and even finance [Fischer and Krauss (2018)].  

As a matter of fact, artificial neural networks (ANN) which are main tools in deep 

learning have been around since the 1940’s [McCulloch and Pitts (1943)] but have not 

performed well until recently. They only became a major part of machine learning in the 

past few decades due to strides in computing techniques and explosive growth in date 

collection and availability, especially the arrival of backpropagation technique and 

advance in deep neural networks. However, based on the function approximation 

capabilities of feed forward neural networks, ANN were adopted to solve partial 

differential equations (PDEs) [Lagaris, Likas and Fotiadis (1998); Lagaris, Likas and 

Papageorgiou (2000); McFall and Mahan (2009)], which results in a solution that can be 

described by a closed analytical form. Due to vanishing gradients, neural networks with 

many hidden layers require a long time for training. However, pretraining, which sets the 

initial values of connection weights and biases, with back propagation algorithm are now 

proposed to solve this problem more efficiently. More recently, with improved theory 

incorporating unsupervised pre-training, stacks of auto-encoder variants, and deep belief 

nets, deep learning has become a central and popular branch in research and applications.  

Some researchers employed deep learning for the solution of PDEs. Mills et al. deployed 

a deep conventional neural network to solve schrödinger equation, which directly learned 

the mapping between potential and energy [Mills (2017)]. E et al. applied deep 

learning-based numerical methods for high-dimensional parabolic PDEs and 

back-forward stochastic differential equations, which was proven to be efficient and 

accurate for 100-dimensional nonlinear PDEs [E, Han and Jentzen (2017); Han, Jentzen, 

and E (2018)]. Also, E and Yu proposed a Deep Ritz method for solving variational 



 

 

A Deep Collocation Method for the Bending Analysis                    435                      

problems arising from partial differential equations [E and Yu (2018)]. Raissi et al. 

applied the probabilistic machine learning in solving linear and nonlinear differential 

equations using Gaussian Processes and later introduced a data-driven Numerical 

Gaussian Processes to solve time-dependent and nonlinear PDEs, which circumvented 

the need for spatial discretization [Raissi, Perdikaris and Karniadakis (2017a); Raissi and 

Karniadakis (2018); Raissi, Perdikaris and Karniadakis (2018)]. Later, Raissi et al. 

[Raissi, Perdikaris and Karniadakis (2017b, 2017c); Raissi, Perdikaris and Karniadakis 

(2019)] introduced a physical informed neural networks for supervised learning of 

nonlinear partial differential equations from Burger’s equations to Navier-Stokes 

equations. Two distinct models were tailored for spatio-temporal datasets: continuous 

time and discrete time models. They also applied a deep neural networks in solving 

coupled forward-backward stochastic differential equations and their corresponding 

high-dimensional PDEs [Raissi (2018)]. Beck et al. [Beck, Becker, Grohs et al. (2018); 

Beck, E and Jentzen (2019)] studied the deep learning in solving stochastic differential 

equations and Kolmogorov equations. Nabian and Meidani studied the presentation of 

high-dimensional random partial differential equations with a feed-forward 

fully-connected deep neural networks [Nabian and Meidani (2018a, 2018b)]. Based on 

the physics informed deep neural networks, Tartakovsky et al. studied the estimation of 

parameters and unknown physics in PDE models [Tartakovsky, Marrero, Perdikaris et al. 

(2018)]. Qin et al. applied the deep residual network and observation data to approximate 

unknown governing differential equations [Qin, Wu and Xiu (2018)]. Sirignano et al. 

[Sirignano and Spiliopoulos (2018)] gave a theoretic motivation of using deep neural 

networks as PDE approximators, which converged as the number of hidden layers tend to 

infinity. Based on this, a deep Galerkin method was tested to solve PDEs including 

high-dimensional ones. Berg et al. [Berg and Nyström (2018)] proposed a unified deep 

neural network approach to approximate solutions to PDEs and then used deep learning 

to discover PDEs hidden in complex data sets from measurement data [Berg and Nyström 

(2019)]. In general, a deep feed-forward neural networks can serve as a suitable solution 

approximators, especially for high-dimensional PDEs with complex domains.  

Some researchers studied the surrogate of FEM by deep learning, which mainly trains the 

deep neural networks from datasets obtained from FEM. For instance, Liang et al. [Liang, 

Liu, Martin et al. (2017); Liang, Liu, Martin et al. (2018)] investigated the relationship 

between geometric features of aorta and FEM-predicted ascending aortic aneurysm 

rupture risk and then a deep learning was used to estimate the stress distribution of the 

aorta. In this research, we will not confine deep learning application within FEM datasets. 

Rather, the deflection of Kirchhoff plate is first approximated with deep physical 

informed feedforward neural networks with hyperbolic tangent activation functions and 

trained by minimizing a loss function related to the governing equation of Kirchhoff 

bending problems and related boundary conditions hence avoiding a FEM discretization 

entirely. The training data for deep neural networks are obtained by randomly distributed 

collocation points from the physical domain of the plate. This deep collocation method 

can be seen as a truly mesh-free method without the need of background grids.  

The paper is organized as follows: First a brief introduction of Kirchhoff plate bending 

strong form with typical boundary conditions is given. Then we give a short introduction 

to deep learning. Finally, the deep collocation method with varying hidden layers and 
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neurons are adopted for plates with various shapes and boundary conditions to show the 

performance of the proposed method. 

2 Kirchhoff plate bending 

Based on Kirchhoff plate bending theory [Ventsel and Krauthammer (2001)], the relation 

between lateral deflection 𝑤(𝑥, 𝑦) of the middle surface (𝑧 = 0) and rotations about 

the 𝑥, 𝑦 -axis can be given by: 

𝜃𝑥 =
𝜕𝑤

𝜕𝑥
,   𝜃𝑦 =

𝜕𝑤

𝜕𝑦
  (1) 

Under the coordinate system shown in Fig. 1, the displacement field in a thin plate can be 

expressed as: 

𝑢(𝑥, 𝑦, 𝑧) = −𝑧
𝜕𝑤

𝜕𝑥
,   

𝑣(𝑥, 𝑦, 𝑧) = −𝑧
𝜕𝑤

𝜕𝑦
,  (2) 

𝑤(𝑥, 𝑦, 𝑧) = w(x,y).   

It is obviously that the transversal deflection of the middle plane of the thin plate can be 

regard as the field variables of the bending problem of thin plates. The corresponding 

bending and twist curvatures are the generalized strains: 

𝑘𝑥 = −
𝜕2𝑤

𝜕𝑥2
, 𝑘𝑦 = −

𝜕2𝑤

𝜕𝑦2
, 𝑘𝑥𝑦 = −2

𝜕2𝑤

𝜕𝑥𝑦
.  (3) 

Therefore, the geometric equations of Kirchhoff bending can be expressed as: 

𝒌 = {

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

}=−

{
 
 

 
 

𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2

2
𝜕2𝑤

𝜕𝑥𝜕𝑦}
 
 

 
 

= 𝑳𝑤,  (4) 

with 𝑳 being the differential operator defined as 𝑳 = −{
𝜕2

𝜕𝑥2
 
𝜕2

𝜕𝑦2
 2

𝜕2

𝜕𝑥𝜕𝑦
}
𝑇

. 

 

Figure 1: Internal force in the coordinate system 
 

 

Fig. 1. Kirchhoff plate in the coordinate system . 

Fig. 2. Cover systems of an irregular polygon plate. 
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Accordingly, the bending and twisting moments, shown in Fig. 1 can be obtained as: 

𝑀𝑥 = −𝐷0 (
𝜕2𝑤

𝜕𝑥2
+ 𝜐

𝜕2𝑤

𝜕𝑦2
),   

𝑀𝑦 = −𝐷0 (𝜐
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
),  (5) 

𝑀𝑥𝑦 = 𝑀𝑦𝑥 = −𝐷0(1 − 𝜈)
𝜕2𝑤

𝜕𝑥𝑦
.   

𝐷0 =
𝐸ℎ3

12(1−𝜈2)
 is the bending rigidity, where 𝐸 and 𝜈 are the Young's modulus and 

Poisson ratio, and ℎ is the thickness of the thin plate. For isotropic thin plate, the 

constitutive equation can be expressed in Matrix form: 

𝑴 = 𝑫𝒌.  (6) 

The shear forces can be obtained in terms of the generalized stress components:  

𝑄𝑥 =
𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
, 𝑄𝑦 =

𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦

𝜕𝑦
.   (7) 

The differential equation for the deflections for thin plate based on Kirchhoff's 

assumptions can be expressed by transversal deflection as: 

∇2(∇2𝑤) = ∇4𝑤 =
𝑝

𝐷
,  (8) 

where ∇4() =
𝜕4

𝜕𝑥4
+

𝜕4

𝜕𝑥2𝑦2
+

𝜕4

𝜕𝑦4
 is commonly called biharmonic operator. 

Consequently, the Kirchhoff plate bending problems can be boiled down to a fourth order 

PDE problem, which pose difficulty for tradition mesh-based method in constructing a 

shape function to be H2 regular. Moreover, the boundary conditions of Kirchhoff plate 

taken into consideration in this paper can be generally classified into three parts, namely, 

∂Ω = 𝛤1 + 𝛤2 + 𝛤3,  (9) 

For clamped edge boundary 𝛤1 ,  𝑤 = 𝑤̃,
𝜕𝑤

𝜕𝑛
= 𝜃̃𝑛 . 𝑤̃  and 𝜃̃𝑛  are functions of arc 

length. 

For simply supported edge boundary 𝛤2, 𝑤 = 𝑤̃, 𝑀𝑛 = 𝑀̃𝑛. 𝑀̃𝑛 is the function of arc 

length, too. 

For free edge boundary 𝛤3,  𝑀𝑛 = 𝑀̃𝑛,
𝜕𝑀𝑛𝑠

𝜕𝑠
+ 𝑄𝑛 = 𝑞̃, where 𝑞̃ is a load exerted along 

this boundary. 

It should be noted that 𝒏 and 𝒔 here refer to the normal and tangent directions along the 

boundaries. 

3 Deep collocation method for solving Kirchhoff plate bending 

3.1 Feed forward neural network 

The basic architecture of a fully connected feedforward neural network is shown in Fig. 2. 

It comprises of multiple layers: input layer, one or more hidden layers and output layer. 

Each layer consists of one or more nodes called neurons, shown in the Fig. 2 by small 

coloured circles, which are the basic units of computation. For an interconnected 

structure, every two neurons in neighbouring layers have a connection, which is 
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represented by a connection weight, see Fig. 2, where the weight between neuron 𝑘 in 

hidden layer 𝑙 − 1 and neuron 𝑗 in hidden layer 𝑙 is denoted by ω𝑗𝑘
𝑙 . No connection 

exists among neurons in the same layer as well as in the non-neighbouring layers. Input 

data, defined from 𝑥1 to 𝑥𝑁, flow through this neural network via connections between 

neurons, starting from the input layer, through hidden layer 𝑙 − 1, 𝑙, to the output layer, 

which eventually outputs data from 𝑦1 to 𝑦𝑀. The feedforward neural network defines a 

mapping FNN: 𝑅𝑁 → 𝑅𝑀. 

 

Figure 2: Architecture of a fully connected feedforward back-propagation neural 

network 

However, it should be noted that the number of neurons on each hidden layers and 

number of hidden layers can be arbitrarily chosen and are invariably determined through 

a trial and error procedure. It has also been concluded that any continuous function can be 

approximated with any desired precision by a feed forward neural network with even a 

single hidden layer [Funahashi (1989); Hornik, Stinchcombe and White (1989)]. 

On each neuron in the feed forward neural network, a bias is supplied including neurons 

in the output layer except the neurons in the input layer, which is defined by 𝑏𝑗
𝑙 for bias 

of neuron 𝑗 in layer 𝑙. Furthermore, the activation function is defined for an output of 

each neuron in order to introduce a non-linearity into the neural network and make the 

back-propagation possible where gradients are supplied along with an error to update 

weights and biases. The activation function in layer 𝑙 will be denoted by 𝜎 here. There 

are many activation functions such as sigmoid function, hyperbolic tangent function Tanh, 

Rectified linear units Relu, to name a few. Suggestions upon their choice can be found in 

[Hayou, Doucet and Rousseau (2018)]. Hence, for the value on each neuron in the hidden 

layers and output layer adds the weighted sum of values of output values from the 

previous layer with corresponding connection weights to basis on the neuron. An 

intermediate quantity for neuron 𝑗 on hidden layer 𝑙 is defined as 

𝑎𝑗
𝑙 = ∑ 𝜔𝑗𝑘

𝑙 𝑦𝑘
𝑙−1 + 𝑏𝑗

𝑙
𝑘 ,  (10) 

and its output is given by the activation of the above weighted input 
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𝑦𝑗
𝑙 = 𝜎(𝑎𝑗

𝑙) = 𝜎(∑ 𝜔𝑗𝑘
𝑙 𝑦𝑘

𝑙−1 + 𝑏𝑗
𝑙

𝑘 ),  (11) 

where 𝑦𝑘
𝑙−1 is the output from the previous layer. 

When Eq. (11) is applied to compute 𝑦𝑗
𝑙, the intermediate quantity 𝑎𝑗

𝑙 is calculated 

'along the way'. This quantity turns out to be useful and named here as weighted input to 

neuron 𝑗 on hidden layer 𝑙. Eq. (10) can be written in a compact matrix form, which 

calculates the weighted inputs for all neurons on certain layers efficiently, obtaining: 

𝒂 = 𝑾𝑙𝒚𝑙−1 + 𝒃𝑙,  (12) 

Accordingly, from Eq. (12) 𝒚𝑙 = 𝜎(𝒂) , where activation functions are applied 

elementwise. A feedforward network thus defines a function 𝑓(𝒙; 𝜃) depending on the 

input data 𝒙 and parametrized by 𝜃 consisting of weights and biases in each layer. The 

defined function provides an efficient way to approximate unknown field variables. 

3.2 Backpropagation 

Backpropagation (𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛)  is an important and computationally 

efficient mathematical tool to compute gradients in deep learning [Nielsen (2018)]. 

Essentially, backpropagation is based on recursively applying the chain rule and deciding 

which computations can be run in parallel from computational graphs. In our problem, the 

governing equation contains fourth order partial derivatives of field variable 𝑤(𝒙) 
approximated by the deep neural networks 𝑓(𝒙; 𝜃). For the approximation defined by 

𝑓(𝒙; 𝜃), in order to find the weights and biases, a loss function 𝑳(𝑓, 𝑤) is defined to be 

minimized [Janocha and Czarnecki (2017)]. The backpropagation algorithm for computing 

the gradient of this loss function 𝑳(𝑓,𝑤) can be defined as follows [Nielsen (2018)]: 

⚫ Input: Input dataset 𝑥1, ⋯ , 𝑥𝑛, prepare activation 𝑦1 for input layer; 

⚫ Feedforward: For each layer 𝑙 = 2,3,⋯ , 𝐿, compute 𝑎𝑙 = ∑ 𝑊𝑙𝑦𝑙−1 + 𝑏𝑙𝑘 , and 

𝜎(𝑎𝑙); 

⚫ Output error: Compute the error 𝛿𝐿 = ∇𝑦𝐿𝑳⊙ 𝜎𝐿
′(𝑎𝐿), 𝜎𝐿

′ measures how fast 𝜎 

changes at 𝑎𝐿; 

⚫ Backpropagation error: For each 𝑙 = 𝐿 − 1, 𝐿 − 2,⋯ ,2, compute 𝛿𝑙 =

((𝑊𝑙+1)
𝑇
𝛿𝑙+1)⊙ 𝜎𝑙

′(𝑎𝑙); 

⚫ Output: The gradient of the loss function is given by 
∂𝑳

∂𝜔𝑗𝑘
𝑙 = 𝑦𝑘

𝑙−1𝛿𝑗
𝑙 and 

∂𝑳

∂𝑏𝑗
𝑙 = 𝛿𝑗

𝑙. 

Here, ⊙ denotes the Hadamard product. 

There are lists of deep learning tools to setup the training such as Pytorch or Tensorflow.  

The former inputs a numerical value and then computes the derivatives at this node, 

while the latter computers the derivatives of a symbolic variable, then stores the 

derivative operations into new nodes added to the graph for later use. Obviously, the 

latter is more advantageous in computing higher-order derivatives, which can be 

computed from its extended graph by running backpropagation repeatedly. Therefore, 

since the fourth-order derivatives of field variables is needed to be computed, the 

Tensorflow framework is adopted [Al-Aradi, Correia, Naiff et al. (2018b)]. 
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3.3 Formulation of deep collocation method 

The formulation of a deep collocation in solving Kirchhoff plate bending problems is 

introducted in this section. Collocation method is a widely used method seeking 

numerical solutions for ordinary, partial differential and integral equations [Atluri (2005)]. 

It is a popular method for trajectory optimization in control theory. A set of randomly 

distributed points (also known as collocation points) is often deployed to represent a 

desired trajectory that minimizes the loss function while satisfying a set of constraints. 

The collocation method tends to be relatively insensitive to instabilities (such as 

blowing/vanishing gradients with neural networks) and is a viable way to train the deep 

neural networks [Agrawal]. 

Eqs. (8), (9)-the Kirchhoff plate bending problem-can be boiled down to the solution of a 

fourth order biharmonic equations with boundary constraints. Thus we first discretize the 

physical domain with collocation points denoted by 𝒙Ω = (𝑥1,⋯ , 𝑥𝑁Ω)
𝑇

. Another set of 

collocation points is employed to discretize the boundary conditions denoted by 𝒙𝛤 =

(𝑥1,⋯ , 𝑥𝑁𝛤)
𝑇

. Then the transversal deflection 𝑤  is approximated with the 

aforementioned deep feedforward neural network 𝑤ℎ(𝒙; 𝜃). A loss function can thus be 

constructed to find the optimal hyperparameters by minimizing governing equation with 

boundary conditions approximated by 𝑤ℎ(𝒙; 𝜃). The mean squared error loss form is 

adopted here. 

Substituting 𝑤ℎ(𝒙Ω; 𝜃) into Eq. (8), we obtain 

𝐺(𝒙Ω; 𝜃) = ∇
4𝑤ℎ(𝒙Ω; 𝜃) =

𝑝

𝐷
,  (13) 

which results in a physical informed deep neural network 𝐺(𝒙Ω; 𝜃). 

The boundary conditions illustrated in Section 2 can also be expressed by the neural 

network approximation 𝑤ℎ(𝒙Ω; 𝜃) as: 

On 𝛤1, we have  

𝑤ℎ(𝒙𝛤1; 𝜃) = 𝑤̃, 
∂𝑤ℎ(𝒙𝛤1;𝜃)

∂n
= 𝜃̃𝑛.  (14) 

On 𝛤2, 

𝑤ℎ(𝒙𝛤2; 𝜃) = 𝑤̃, 𝑀𝑛(𝒙𝛤2; 𝜃) = 𝑀̃𝑛. 
 (15) 

where 𝑀𝑛(𝒙𝛤2; 𝜃) can be obtained from Eq. (5) by combing 𝑤ℎ(𝒙𝛤1; 𝜃). 

On 𝛤3, 

𝑀𝑛(𝒙𝛤3; 𝜃) = 𝑀̃𝑛, 
∂𝑀𝑛𝑠(𝒙𝛤3;𝜃)

∂s
+ 𝑄𝑛(𝒙𝛤3; 𝜃) = 𝑞̃, 

 (16) 

where 𝑀𝑛𝑠(𝒙𝛤3; 𝜃) can be obtained from Eq. (5) and 𝑄𝑛(𝒙𝛤3; 𝜃) can be obtained from 

Eq. (7) by combing 𝑤ℎ(𝒙𝛤3; 𝜃). 

It should be noted that n, s here refer to the normal and tangent directions along the 

boundaries. Note the induced physical informed neural network 𝐺(𝒙; 𝜃), 𝑀𝑛(𝒙; 𝜃), 
𝑀𝑛𝑠(𝒙; 𝜃), 𝑄𝑛(𝒙; 𝜃) share the same parameters as 𝑤ℎ(𝒙; 𝜃). Considering the generated 

collocation points in domain and on boundaries, they can all be learned by minimizing 

the mean square error loss function: 
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𝐿(𝜃) = 𝑀𝑆𝐸 = 𝑀𝑆𝐸G +𝑀𝑆𝐸𝛤1 +𝑀𝑆𝐸𝛤2 +𝑀𝑆𝐸𝛤3 ,  (17) 

with 

𝑀𝑆𝐸G =
1

𝑁Ω
∑ ‖𝐺(𝒙Ω; 𝜃)‖

2𝑁Ω
𝑖=1 =

1

𝑁Ω
∑ ‖∇4𝑤ℎ(𝒙Ω; 𝜃) −

𝑝

𝐷
‖
2𝑁Ω

𝑖=1 ,   

𝑀𝑆𝐸𝛤1 =
1

𝑁𝛤1
∑ ‖𝑤ℎ(𝒙𝛤1; 𝜃) − 𝑤̃‖

2𝑁𝛤1
𝑖=1

+
1

𝑁𝛤1
∑ ‖

∂𝑤ℎ(𝒙𝛤1;𝜃)

∂n
− 𝜃̃𝑛‖

2
𝑁𝛤1
𝑖=1

,  

(18) 𝑀𝑆𝐸𝛤2 =
1

𝑁𝛤2
∑ ‖𝑤ℎ(𝒙𝛤2; 𝜃) − 𝑤̃‖

2𝑁𝛤2
𝑖=1

+
1

𝑁𝛤2
∑ ‖𝑀𝑛(𝒙𝛤2; 𝜃) −
𝑁𝛤2
𝑖=1

𝑀̃𝑛‖
2

, 
 

𝑀𝑆𝐸𝛤3 =
1

𝑁𝛤3
∑ ‖𝑀𝑛(𝒙𝛤3; 𝜃) − 𝑀̃𝑛‖

2𝑁𝛤3
𝑖=1

+
1

𝑁𝛤3
∑ ‖

∂𝑀𝑛𝑠(𝒙𝛤3;𝜃)

∂s
+

𝑁𝛤3
𝑖=1

𝑄𝑛(𝒙𝛤3; 𝜃) − 𝑞̃‖
2

. 
  

where 𝒙Ω ∈  𝑅
𝑁 , 𝜃 ∈  𝑅𝐾are the neural network parameters. 𝐿(𝜃) = 0, 𝑤ℎ(𝒙; 𝜃) is 

then a solution to transversal deflection. Our goal is to find the a set of parameters 𝜃 that 

the approximated deflection 𝑤ℎ(𝒙; 𝜃) minimizes the loss 𝐿(𝜃). If 𝐿(𝜃) is a very small 

value, the approximation 𝑤ℎ(𝒙; 𝜃) is very closely satisfying governing equations and 

boundary conditions, namely 

𝑤ℎ =
𝑎𝑟𝑔𝑚𝑖𝑛

𝜃∈ 𝑅𝐾
𝐿(𝜃),  (19) 

The solution of thin plate bending problems by deep collocation method can be reduced 

to an optimization problem. In the deep learning Tensorflow framework, a variety of 

optimizers are available. One of the most widely used optimization methods is the Adam 

optimization algorithm [Kingma and Ba (2015)], which is also adopted in the numerical 

study in this paper. The idea is to take a descent step at collocation point 𝒙𝑖 with 

Adam-based learning rates 𝛼𝑖, 

𝜃𝑖+1 = 𝜃𝑖+1 + 𝛼𝑖∇𝜃𝐿(𝒙𝑖; 𝜃),  (20) 

and then the process in Eq. (20) is repeated until a convergence criterion is satisfied. 

4 Numerical examples 

In this section, several numerical examples on plate bending problems with various 

shapes and boundary conditions are studied. A combined optimizer suggested by Berg et 

al. [Berg and Nyström (2018)] is adopted using L-BFGS optimizer [Liu and Nocedal 

(1989)] first and in linear search where BFGS may fail, an Adam optimizer is then 

applied with a very small learning rate. For all numerical examples, predicted maximum 

transverse with increasing layers are studied in order to show the convergence of deep 

collocation method in solving the plate bending problem. 

4.1 Simply-supported square plate 

A simply-supported square plate under a sinusoidal distribution of transverse loading is 

first studied. The distributed load is given by. 
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𝑝 =
𝑝0

𝐷
𝑠𝑖𝑛 (

𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝜋𝑦

𝑏
),  (21) 

Here, 𝑎, 𝑏 indicate the length of the plate; 𝐷 denotes the flexural stiffness of the plate 

depending on the plate thickness and material properties. The exact solution for this 

problem is given by 

𝑤 =
𝑝0

𝜋4𝐷(
1

𝑎2
+
1

𝑏2
)
2 𝑠𝑖𝑛 (

𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝜋𝑦

𝑏
),  (22) 

𝑤  represents the transverse plate deflection. For this numerical example, we first 

generate 1000 randomly distributed collocation points in the physical domain depicted in 

Fig. 3. We thoroughly studied the influence of deep neural network with a varying 

number of hidden layer and neurons on the maximum deflection at the center of the plate, 

which is shown in Tab. 1. The numerical results are compared with the exact solution. It 

is clear that the results predicted by more hidden layers are more desirable, especially for 

neural networks with three hidden layers. To better reflect the deflection vector in the 

whole physical domain, the contour plot, contour error plot of deflection for increasing 

hidden layers with 50 neurons are shown in Fig. 5, Fig. 6, Fig. 7. 

 

Figure 3: Collocation points discretize the square domain 

We employed a varying number of hidden layers from 1 to 4 and in each layer and the 

number of neurons varies from 20 to 60, see Tab. 1. We calculated the corresponding 

maximum transversal deflection at the center of the square plate. The 𝐿2 relative error of 

deflection vector at all predicted points is shown in Fig. 4 for each case. Even the neural 

network with only one single hidden layer with 20 neurons gives very accurate results. 

With increasing neurons and hidden layers, the results converge to the exact solution and 

the results are very accurate even with a few neurons and a single hidden layer. In Fig. 4, 

all three hidden layer types get very accurate results. Though the single layer with 20 

neurons is the most accurate in all three types with 20 neurons, the magnitude of all is 

10−4. As the number of hidden layers and neurons increases, the relative error flattens. 
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Table 1: Maximum deflection predicted by deep collocation method 

Simply-supported  

Square Plate 

Predicted Maximum 

Deflection 

Exact Maximum  

Deflection 

1 hidden layers, 20 neurons 2.566529 

2.566496 

1 hidden layers, 30 neurons 2.566556 

1 hidden layers, 40 neurons 2.566541 

1 hidden layers, 50 neurons 2.566576 

1 hidden layers, 60 neurons 2.566509 

2 hidden layers, 20 neurons 2.566501 

2 hidden layers, 30 neurons 2.566429 

2 hidden layers, 40 neurons 2.566329 

2 hidden layers, 50 neurons 2.566442 

2 hidden layers, 60 neurons 2.566420 

3 hidden layers, 20 neurons 2.566366 

3 hidden layers, 30 neurons 2.566518 

3 hidden layers, 40 neurons 2.566434 

3 hidden layers, 50 neurons 2.566468 

3 hidden layers, 60 neurons 2.566549 
  

 

Figure 4: The relative error of deflection with varying hidden layers and neurons 
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(a). Predicted deflection contour (b). Deflection error contour 

  

(c). Predicted deflection contour (d). Deflection error contour 

Figure 5: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted 

deflection (d) Exact deflection of the simply-supported square plate with 1 hidden layer 

and 50 neurons with varying hidden layers and neurons 

  

(a). Predicted deflection contour (b). Deflection error contour 



 

 

A Deep Collocation Method for the Bending Analysis                    445                      

  

(c). Predicted deflection contour (d). Deflection error contour 

Figure 6: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted 

deflection (d) Exact deflection of the simply-supported square plate with 2 hidden layers 

and 50 neurons with varying hidden layers and neurons 

  

(a). Predicted deflection contour (b). Deflection error contour 

  

(c). Predicted deflection contour (d). Deflection error contour 

Figure 7: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted 

deflection (d) Exact deflection of the simply-supported square plate with 3 hidden layers 

and 50 neurons with varying hidden layers and neurons 

From Fig. 5, Fig. 6, Fig. 7, we can observe that the deflection obtained by the deep 

collocation method agrees well with the exact solutions. As the hidden layer number 

increases, the numerical results converge to the exact solutions in the whole square plate. 
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The predicted plate deformation agrees well with the exact deformation. The advantages 

of neural networks with hidden layers are not conspicuously reflected in this numerical 

example, as the next numerical example shows more clearly. 

4.2 Clamped square plate 

Next, a clamped square plate under a uniformly distributed transverse loading is analyzed 

with deep collocation method. No exact solution for the deflection in the whole plate is 

available. Therefore, a solution obtained by the Galerkin method [Khan, Tiwari and Ali 

(2012)] is adopted as a comparison: 

[

𝑎11
𝑎12
𝑎21
𝑎22

] =
𝑏4𝑝

𝐷
[

0.318682766
0.038459815
0.038459815
0.008281438

],  (23) 

𝑤 =
𝑏4𝑝

𝐷
{𝑎11 (1 −

𝑥

𝑎
)
2

(1 −
𝑦

𝑏
)
2

(
𝑥

𝑎
)
2

(
𝑦

𝑏
)
2

+ 

(24) 
     𝑎12 (1 −

𝑥

𝑎
)
2
(
𝑦

𝑏
−
𝑦2

𝑏2
)
2

(
𝑥

𝑎
)
2
(
𝑦

𝑏
)
2
} +   

     
𝑏4𝑝

𝐷
{𝑎21 (

𝑥

𝑎
−
𝑥2

𝑎2
)
2

(1 −
𝑦

𝑏
)
2
(
𝑥

𝑎
)
2
(
𝑦

𝑏
)
2
+   

       𝑎22 (
𝑥

𝑎
−
𝑥2

𝑎2
)
2

(
𝑦

𝑏
−
𝑦2

𝑏2
)
2

(
𝑥

𝑎
)
2
(
𝑦

𝑏
)
2
},  

For the maximum transversal deflection at the center of an isotropic square plate, the Ritz 

method gives the maximum deflection at the center as 𝑤𝑚𝑎𝑥 = 0.00133
𝑏4𝑝

𝐷
 [Khan, 

Tiwari and Ali (2012)], and Timoshenko et al. [Timoshenko and Woinowsky-Krieger 

(1959)] gave an exact solution 𝑤𝑚𝑎𝑥 = 0.00126
𝑏4𝑝

𝐷
. Here, 𝐷  denotes the flexural 

stiffness of the plate and depends on the plate thickness and material properties; 𝑎, 𝑏 

indicate the length dimension of the plate. 1000 randomly generated collocation points as 

in Fig. 3 are used to discretize the clamped square plate. 

For this clamped case, a deep feedforward neural network with increasing layers and 

neurons is studied in order to validate the convergence of this scheme. First, the 

maximum central deflection shown in Tab. 2 is calculated for different number of layers 

and neurons and compared with aforementioned Ritz method, Galerkin method and exact 

solution by Timoshenko. The results of our deep collocation agree best with the exact 

solution. However, for neural networks with a single hidden layer, the results are less 

accurate, even when 60 neurons are used. As the number of neurons increases, the results 

are indeed more accurate for the neural network with single hidden layer. This can be 

observed for the other two hidden layer types. Additionally, as the number of hidden 

layer increases, the results are significantly more accurate than the single hidden layer 

neural network results. 
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Table 2: Maximum deflection predicted by deep collocation method 

Clamped Square 

 Plate 

Predicted Maximum 

Deflection 

Galerkin 

method 

Ritz 

method 

Exact 

solution 

1 hidden layers, 20 neurons 0.860568 

1.321993 1.330000 1.260000 

1 hidden layers, 30 neurons 1.152175 

1 hidden layers, 40 neurons 1.195843 

1 hidden layers, 50 neurons 1.249870 

2 hidden layers, 20 neurons 1.257226 

2 hidden layers, 30 neurons 1.257759 

2 hidden layers, 40 neurons 1.265145 

2 hidden layers, 50 neurons 1.261974 

3 hidden layers, 20 neurons 1.261780 

3 hidden layers, 30 neurons 1.260374 

3 hidden layers, 40 neurons 1.261743 

3 hidden layers, 50 neurons 1.258893 
 

 

 

Figure 8: The relative error of deflection with varying hidden layers and neurons 

The relative error with the analytical solution with different hidden layers and different 

neurons is shown in Fig. 8. The magnitude of the relative error of the deflection for this 

numerical example is 10−2, see also Tab. 2. With increasing number of hidden layers, 

the two flat relative error curves coincide and converge to the exact solution. 
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(a). Predicted deflection contour (b). Deflection error contour 

  

(c). Predicted deflection contour (d). Deflection error contour 

Figure 9: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted 

deflection (d) Exact deflection of the clamped square plate with 3 hidden layers and 50 

neurons with varying hidden layers and neurons 

Finally, the deflection contour, relative error contour and deformed deflection of the 

middle surface for the deep neural network with three layers and 50 neurons is illustrated 

in Fig. 9. 

4.3 Clamped circular plate 

A clamped circular plate with radius 𝑅 under a uniformly distributed force is employed 

in the domain of the circular plate. This problem has an exact solution given by 

Timoshenko et al. [Timoshenko and Woinowsky-Krieger (1959)]: 

𝑤 =
𝑝0
64𝐷

(𝑅2 − (𝑥2 + 𝑦2))
2

  (25) 

𝐷 denoting the flexural stiffness of the plate. The maximum deflection at the central of the 

circular plate with varying hidden layers and neurons is summarized in Tab. 3 and compared 

with the exact solution. The predicted maximum deflection becomes more accurate with 

increasing number of neurons and hidden layers. The relative error for deflection of clamped 

circular plate with increasing hidden layers and neurons is depicted in Fig. 11. As hidden 

layer number increases, the relative error curves become flatter and converges to the exact 

solution. All neural networks perform well with a relative error magnitude of 10−4. 



 

 

A Deep Collocation Method for the Bending Analysis                    449                      

 

Figure 10: Collocation points discretize the circular domain 

Table 3: Maximum deflection predicted by deep collocation method 

Clamped Circular 

 Plate 

Predicted Maximum 

Deflection 

Exact 

solution 

1 hidden layers, 30 neurons 15.5958 

15.6250 

1 hidden layers, 40 neurons 15.5685 

1 hidden layers, 50 neurons 15.6201 

2 hidden layers, 30 neurons 15.6251 

2 hidden layers, 40 neurons 15.6264 

2 hidden layers, 50 neurons 15.6224 

3 hidden layers, 30 neurons 15.6269 

3 hidden layers, 40 neurons 15.6247 

3 hidden layers, 50 neurons 15.6229 
  

 

 

Figure 11: The relative error of deflection with varying hidden layers and neurons 

The deformation contour, deflection error contour, predicted and exact deformation 

figures are displayed in Fig. 12. The deflection of this circular plate agrees well with the 

exact solution. 
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(a). Predicted deflection contour (b). Deflection error contour 

  

(c). Predicted deflection contour (d). Deflection error contour 

Figure 12: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted 

deflection (d) Exact deflection of the clamped circular plate with 3 hidden layers and 50 

neurons with varying hidden layers and neurons 

4.4 Simply-supported square plate on Winkler foundation 

The last example is a simply-supported square plate resting on Winkler foundation, 

which assumes that the foundation's reaction 𝑝(x, y) can be described by 𝑝(x, y) = 𝑘𝑤, 

𝑘 being a constant called 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑢𝑠. For a plate on a continuous Winkler 

foundation, the governing Eq. (8) can be written as: 

∇2(∇2𝑤) = ∇4𝑤 =
(𝑝−𝑞)

𝐷
=

(𝑝−𝑘𝑤)

𝐷
.  (26) 

The analytical solution for this numerical example is [Timoshenko and 

Woinowsky-Krieger (1959)]: 

𝑤 =
16𝑝

𝜋2
∑ ∑

𝑠𝑖𝑛
𝑚𝜋𝑥

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑦

𝑏

𝑚𝑛[𝜋4𝐷(
𝑚2

𝑎2
+
𝑛2

𝑏2
)
2

+𝑘]

∞
𝑛=1,3,5,⋯

∞
𝑚=1,3,5,⋯ , (27) 

For this numerical example, the same arrangement of collocation points is depicted in Fig. 

3. Neural networks with different neurons and depth are applied in the calculation. Tab. 3 

lists the maximum deflection at the central point in all cases. Good agreement can be 

observed in this numerical example as well. As hidden layer and neuron number grows, 

the maximum deflection becomes more accurate approaching the analytical serial 
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solution for even two hidden layers. The relative error shown in Fig. 13 better depicts the 

advantages of deep neural network than shallow wide neural network. More hidden 

layers, with more neurons yield flatting of the relative error. Various contour plots are 

shown in Fig. 14 and compared with the analytical solution. 

Table 4: Maximum deflection predicted by deep collocation method 

Square Plate on Winkler 

foundation 

Predicted Maximum 

Deflection 

Exact 

solution 

1 hidden layers, 30 neurons 0.33999 

0.32137 

1 hidden layers, 40 neurons 0.35689 

1 hidden layers, 50 neurons 0.32168 

2 hidden layers, 30 neurons 0.32248 

2 hidden layers, 40 neurons 0.32176 

2 hidden layers, 50 neurons 0.32168 

3 hidden layers, 30 neurons 0.32216 

3 hidden layers, 40 neurons 0.32172 

3 hidden layers, 50 neurons 0.32181 
 

 

 

Figure 13: The relative error of deflection with varying hidden layers and neurons 

  

(a). Predicted deflection contour (b). Deflection error contour 
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(c). Predicted deflection contour (d). Deflection error contour 

Figure 12: (a) Predicted deflection contour (b) Deflection error contour (c) Predicted 

deflection (d) Exact deflection of the simply-supported plate on Winkler foundation with 

3 hidden layers and 50 neurons with varying hidden layers and neurons 

5 Conclusions 

We propose a deep collocation method to study the bending analysis of Kirchhoff plates 

of various shapes, loads and boundary conditions. The governing equation of this 

problem is a fourth order partial differential equation (biharmonic equation). The 

proposed deep collocation method can be considered as truly "meshfree" and can be used 

to approximate any continuous function, which is very suitable for the analysis of thin 

plate bending problems. The deep collocation method is very simple in implementation, 

which can be further applied in a wide variety of engineering problems. 

Moreover, the deep collocation method with randomly distributed collocations and deep 

neural networks perform very well with MSE loss function minimized by the combined 

L-BFGS and Adam optimizer. Accurate results are obtained even for a single layer and 

20 neurons. However, as the hidden layers and neurons on each layer increase, results 

gain in accuracy and converge to the exact and analytical solution. Most importantly, 

once those deep neural networks are trained, they can be used to evaluate the solution at 

any desired points with minimal additional computation time. 

However, there are still several issues for the deep neural network based method such as 

the influence of choosing other neural network types, activation functions, loss function 

forms, weight/bias initialization, and optimizers on the accuracy and efficiency of this 

deep collocation method, which will be studied in our future research. 
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