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Abstract: Nowadays, cloud computing is used more and more widely, more and more 

people prefer to using cloud server to store data. So, how to encrypt the data efficiently is 

an important problem. The search efficiency of existed search schemes decreases as the 

index increases. For solving this problem, we build the two-level index. Simultaneously, 

for improving the semantic information, the central word expansion is combined. The 

purpose of privacy-preserving content-aware search by using the two-level index 

(CKESS) is that the first matching is performed by using the extended central words, then 

calculate the similarity between the trapdoor and the secondary index, finally return the 

results in turn. Through experiments and analysis, it is proved that our proposed schemes 

can resist multiple threat models and the schemes are secure and efficient. 

 

Keywords: Semantic search, two-level index, expanded central-keyword. 

1 Introduction 

Today, heterogeneous Internet of Things is applied popularly [Qiu, Chen and Li (2018)]. 

Zhang et al. [Zhang, Li and Dai (2018)] proposed a public verifiable outsourcing scheme 

based on matrix multiplication in the Internet of Things environment. Many people are 

preferring to storing data in the cloud. Yang et al. [Yang, Xu and Weng (2018)] provides 

a lightweight proof of storage for privacy protection. To utilize the data in the cloud 

efficient, cloud computing is widely developed. Cloud computing, not only reducing the 

local data maintenance costs, but also provide simple and efficient calculations. In 

addition, cloud computing gives a convenient way to share resources between data 

owners and legal data users.  

Some scheme [Li, Liu and Chen (2015)] can protect the security of data search at some 

degree. However, cloud servers are not completely honest. Cloud servers enforce system 

protocols and capabilities honestly, but they guess the content of important files stored on 

them actively. The existing solution is to encrypt the data before uploading. However, 

how to effectively search encrypted data is an important issue. 

At present, there are too many researches on ciphertext search by domestic and foreign 
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experts. Song et al. [Song, Wagner and Perrig (2002)] proposed a searchable encryption 

method which must encrypt the data set for each query, in each query, the data set needs to 

be fully scanned make the computational consumption enormous. At the same time, this 

method cannot resist statistical analysis attacks. Dan et al. [Dan, Crescenzo and Ostrovsky 

(2004)] proposed a keyword search scheme based on public key encryption. This scheme is 

also aimed at the matching of keywords and ciphertexts, but the scope of utilization is too 

small. After that, Li et al. [Li, Wang and Wang (2014)] proposed a wildcard-based 

ciphertext search method to achieve fuzzy search to a certain degree, but it needs the 

support of the semantic library. A new scalable dynamic access scheme is proposed in 

Weng et al. [Weng, Weng, and Zhang (2018)]. At present, most of the research on index-

based ciphertext search methods use tree index structure to improve the search efficiency. 

Fu et al. [Fu, Sun and Liu (2015)] proposed a search scheme to improve efficiency by using 

k-d tree. Leslie et al. [Leslie, Jain and Birdsall (1995)] proposed an efficient query scheme 

based on multi-dimensional B tree. Ciaccia et al. [Ciaccia, Patella and Rabitti (1997)] used 

M-tree to construct index metric space which improved search efficiency. Kurasawa et al. 

[Kurasawa, Takasu and Adachi (2008)] proposed a Peer-to-Peer (P2P) information search 

scheme based on Huffman distributed hash table. The index structure was changed by 

Huffman coding to reach the load balancing. However, the data preprocessing consumes 

too many computing and storage resources. Xu et al. [Xu, Li and Dai, (2019)] proposed an 

efficient geometric range query scheme. 

In this paper, we put forward the privacy-preserving content-aware search by using the 

two-level index (CKESS). We build a novel two-level index framework based on the 

existed forward and reverse indexes, which can improve the search efficiency. 

Simultaneously, for improving the search precision, our program has expanded the 

central word of the trapdoor. The basic framework of privacy-preserving content-aware 

search by using the two-level index has been proposed firstly. And we propose two 

search schemes that can resist different threats. Followings are the main contributions of 

the paper. 

1. We propose the privacy-preserving content-aware search by using the two-level 

index (CKESS) to reduce the impact of the number of files on the search time. The 

difference from the existed index is matching the trapdoor with the first-layer index 

instead of the file set, which greatly improves our search efficiency; 

2. In order to be close to the user's semantic requirements, we have semantically 

extended the central keyword of the trapdoor based on the two-level index, thus 

improving the search precision. Our scheme first uses the extension of the central 

word of the trapdoor to match the first index. After that, the similarity between the 

secondary index and the trapdoor keyword is calculated, and finally the result is 

returned in order. 

3. Through experiments and analysis, it shows that our scheme can effectively resist 

different threat attacks and prove the efficiency, accuracy and security of the 

scheme. 

The following are the arrangements for the other sections of this paper. In the Section 2, 

we introduce the related work. We arrange the system model, threat model, and 

implementation goals of the program in the third section. The fourth part is mainly to 
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describe the main content of the index construction and schemes implementation. The 

fifth part analyzes the security of the program. The final part is the experimental analysis 

and the summary of the article. 

2 Relation work 

2.1 Multi-keyword search 

In 2011, Cao et al. [Cao, Wang and Li (2014)] first proposed a secure multi-keyword 

search solution (MRSE) that resisted two threat models (known ciphertexts and known 

backgrounds). The solution used vector space model and secure inner product to sort after 

the search results. In 2014, they proposed improvements and added TF / IDF algorithm to 

improve the search accuracy. Yang et al. [Chen, Huang and Li (2015)] proposed to use 

the trapdoor concept to search all encrypted documents. Fu et al. [Fu, Sun and Linge 

(2014)] proposed multi-keyword sorting search scheme supporting synonym query in 

cloud environment. These programs to achieve a multi-keyword search, expanded 

ciphertext search capabilities. In terms of efficiency and accuracy of multi-keyword 

search, Chen et al. [Liang, Huang and Guo (2016)] used sparse matrices to achieve a safe 

large-scale linear equation, further improving the retrieval efficiency. In 2016, Liang et al. 

[Li, Yang and Luan (2016)] proposed that search based on regular language is more 

efficient than other search schemes. In the same year, Li et al. [Wang, Li and Wang 

(2015)] proposed a multi-keyword search based on the fine-grained, which improved the 

accuracy and efficiency of the search scheme through sub-dictionaries and preference 

factors. To combat the Selective Chosen-Plaintext Attacks, Wang et al. [Li, Liu and 

Wang (2016)] proposed a SE-based range search in 2015. In 2016, Li et al. [Chuah and 

Hu (2011)] proposed the first range query solution that can defend against selective 

keyword attacks (IND-CKA). Li et al. [Li, Chen and Chow (2018)] proposed a privacy-

aware multi-keyword attribute encryption scheme that hides attribute information in 

ciphertext and allows tracking of non-honest users who have keys. Combining kNN and 

attribute encryption, a dynamic search symmetric encryption scheme is proposed in Li et 

al. [Li, Yang and Dai (2017)]. Gao et al. [Gao, Cheng and He (2018)] proposed to 

combine the double-blind technology with the addition of homomorphic encryption to 

realize the privacy protection of both parties. Li et al. [Li, Liu and Dai (2018)] proposed 

an efficient searchable symmetric encryption scheme in mobile cloud environment. 

2.2 Semantic search 

Li et al. [Li, Wang and Wang (2014)] propose a single fuzzy keyword search scheme by 

using edit distance. Chuah et al. [Chuah and Hu (2011)] implement fuzzy search based on 

pre-defined word set as a whole, and propose a fuzzy search scheme to achieve secure 

search for multi-keywords. Kuzu et al. [Kuzu, Islam and Kantarcioglu (2012)] designed a 

similar search scheme using minhash based on Jaccard distance. Fu et al. [Fu, Shu and 

Wang (2015)] proposed similarity search scheme for encrypted documents based on 

simhash. Wang et al. [Wang, Yu and Zhao (2015)] proposed a fuzzy search based on 

multi-keywords for achieving range query using a sequence reservation encryption and 

two-layer Bloom. Huang et al. [Huang, Fu and Sun (2016)] combined gene sequences 

with secure searchable indexes to propose a secure searchable encryption scheme. Our 
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earlier work [Fu, Wu and Guan (2016)] used a new keyword transformation to get a 

better accuracy. Fu et al. [Fu, Wu and Wang (2017)] improved accuracy by using center 

word expansion.  Fu et al. [Fu, Xia and Sun (2018)] proposed the conceptual hierarchical 

semantic search scheme under dual servers. 

3 Problem formulation 

3.1 System model 

Fig. 1 shows that our system model is mainly composed of the following three entities. 

Data owner: The data owner is the person who owns the source data. To facilitate search, 

they need to build efficient indexes based on the data. Finally, the source data and the 

index are encrypted and uploaded to the cloud server. 

Cloud server: Storing and managing the encrypted data received are the main work of 

the cloud server. Upon receiving the user's retrieval request, the data is processed and the 

results are returned in turn. 

Data user: The data user who received a secure authorization certificate processes the 

query to generate a corresponding trapdoor and uploads it to the cloud. 

 
Figure 1: The system model 

3.2 Threat model 

In the overall system model, we believe the data owner and user are honest and 

trustworthy, but the cloud server is not completely trusted. As the references describe 

[Cao, Wang and Li (2014)], the cloud server can execute programs accurately without 

tampering with the DO and DU instruction sets; however, it can collect keyword 
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information and deduces the contents of the file by analyzing the relationship between 

trapdoor functions. Therefore, according to different privacy requirements, our threat 

model is as follows. 

Known Ciphertext Model: The uploaded information of files, indexes, and trapdoor is 

easy to get for the cloud server, but it does not understand the meaning. 

Known Background Model: Apart from file data, indexes, and trapdoors, the cloud also 

understands some background information, including file statistics, keyword frequency, 

and the relationship between keywords and query. With this extra information, the cloud 

server can speculate on some ciphertext information.  

3.3 Design goal 

Due to the above threat models, the design goals of this paper are as follows: 

1. Scalability. We hope to implement the expansion of the central keywords, that is to 

say, after the user enters the search keywords, the center word can be found quickly 

and located accurately, and the semantic expansion of the central keyword can be 

achieved. The result returned must be related to the central word and its extension. 

2. Efficiency. Considering the data processing of cloud servers, our approaches are 

designed that document size has independence. In simple terms, the relationship 

between the search time and fileset size should be sub-linear. 

3. Privacy protection. Our schemes should provide privacy protection of data 

information of filesets or keywords during cloud search. 

4. Results accuracy. This paper focuses on semantic search, so the accuracy of the 

search results is extremely important. Our solution should improve the retrieval 

accuracy as much as possible to achieve a higher standard. 

3.4 Preliminaries 

Stanford Parser. Stanford parser is basically a lexicalized probability context-free parser, 

and also uses dependency analysis. Different analysis results can be output according to 

different grammatical points. The parser uses the knowledge of the language obtained 

from the parsing of the sign language to get the appropriate analysis of the new sentence. 

WordNet. WordNet is a huge English vocabulary database [Miller (1990)]. Nouns, verbs, 

adjectives and adverbs are each organized into a network of synonyms. Each synonym set 

represents a basic semantic concept, and these sets are also connected by various 

relationships. The resulting meaningful vocabulary and conceptual network can be 

browsed through the browser.  

Locality-Sensitive Hashing. The local sensitive hash (LSH) algorithm [Har-Peled, Indyk 

and Motwani (1998)] is mainly used to solve the nearest neighbor search problem 

efficiently. The basic idea of this algorithm is to map datasets to different collision 

buckets of multiple hash tables through a set of hash functions that meet certain 

constraints, then establishing multiple hash tables. So, under certain similarity measures, 

the points which are closer to the same conflict bucket (the higher similarity) have the 

greater probability, and the points which are farther to the same conflict bucket (the lower 

similarity) have the smaller probability. In this way, the data set is divided into multiple 
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sub-sets. The data in each sub-set is adjacent and the number of the sub-set is small. So 

the problem of finding adjacent elements in a very large set is transformed to find 

adjacent elements within a small set. This method reduces the amount of data to be 

compared greatly when we do a search. We deem that a hash function family H is (d1, d2, 

p1, p2)-sensitive if for random inputs of ,x y , and h H  satisfy the following: 

If ( ) ( ) ( )1 1, : Prd x y d h x h y p =                                                                              (1) 

If ( ) ( ) ( )2 2, : Prd x y d h x h y p =                                                                               (2) 

Where ( ),d x y  denotes the distance between x and y , ( )h x and ( )h y denote the hash 

function of x and y , 1d and 2d  mean the distance thresholds, 1p and 2p mean the 

probability threshold, and 1 2 1 2,d d p p  . 

4 Secure search scheme 

4.1 Main innovative idea 

In order to achieve a secure and efficient encryption search scheme, three important 

design choices must be made, all of which are closely related and to some extent 

determine the performance of the search solution. First, the data structure used to 

construct the file index; second, an efficient search scheme that enables a good match 

between the query keywords and the file index; and finally, a secure privacy mechanism 

that combines with the first two design choices to protect the privacy of files and 

retrieving privacy. 

Based on the above design choices, we propose privacy-preserving content-aware search 

based on two-level index. A secure two-level index for the file set is built and encrypted 

before uploading to the cloud. The trapdoor is constructed on the data user side and the 

data user provides the query keyword. We first locate the central word of the query 

keyword, then extend the central keyword, and upload the extended keywords to the 

cloud encryption. The mainly work of the cloud server is searching. When the cloud 

server gets the trapdoor from the user, in the first-level matching, the cloud server 

matches the extended keyword with the index keyword. Without loss the search accuracy, 

the search range is reduced. In the second-level matching, the other keywords in each file 

are matched with other non-central keywords in the trapdoor. Finally, the results are 

sorted and returned to the data user. 

In this section, we detail the scenario. We first introduce the central keyword expansion 

algorithm in plaintext mode and the two-level index construction algorithm, and then 

propose the complete schemes in ciphertext mode. 

4.2 Central keyword extension 

In the actual situation, the user usually inputs a string of keywords to make a query, and 

when the user searches different targets, the weight of each keyword is different. There 

have been many achievements in the study of the importance of keywords. [Li, Yang and 
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Luan (2016)] use a method of super-increasing sequence to order the keywords. In this 

way, getting the order of the query keywords’ importance is easily. However, this method 

requires the user to sort the keywords according to the user's expected value of the 

keyword. The disadvantage of this approach is that defaulting importance to the order of 

all keywords. Our early work Fu et al. [Fu, Ren and Shu (2016)] proposed to establish a 

unique interest model for different users, and use the grammatical relationship tree to 

measure the weight of keywords input by the user. In this way, a search that satisfies the 

needs of the user is realized. 

Definition of relationship: The relationship contained in the keyword reflects the user 

preference information. Keywords with more semantic relationships necessarily reflect 

more user information, so the weight of the keyword is heavier. So, we have the 

definition 1. 

Definition 1: For each keyword, we assign it an initial importance of 1. Assuming that 

the keyword has grammatical relationships with another keyword, we change its value 

to 1+R (relation), where R represents the total importance of the relationship between 

two keywords. 

The semantic relationship of keywords is expressed as a connection between different 

words on the grammatical relationship tree. The shorter the distance of this connection, 

the more similar the meaning of the words. Therefore, we can quantify the importance of 

the grammatical relationships between keywords by using the distance between the 

keywords in the grammatical tree. However, the relationship is mutual, so the value of 

the importance should be divided into two parts. So we have the definition 2. 

Definition 2: For the two keywords 1w and 2w , there is a semantic relation A between 

them, and the interest preferences of the user included in A  is ( ) 1/ ln( )R A d= , where 

d  represents the distance of the keywords in the semantic relation tree. The increased 

importance of 1w is 1 ln( ) /d d d , and 2 ln( ) /d d d is the increased importance of 2w , 

where 1d  and 2d  are the distance between the keywords and their ancestor, and the total 

between 1d  and 2d  is d .  

Note that, although prepositions are often used in articles and phrases to indicate the 

relation between two keywords, prepositions cannot be an independent part of a sentence. 

Therefore, when we calculate the importance of grammatical relations, such keywords do 

not be included. 

Definition 3: For an independent query Q , the total weight of the grammatical relation is

n , where n  represents the number of query keywords contained in this query. For a 

keyword w , p n  is its weight, in which p  means the percent of the importance of the 

keyword w  in the query Q . So we can get the keyword weight of the keyword w  as 

follow 

( ) ( )1( ) 1 / 1n

iKW w p n R n R==  = +  +                                                           (3) 
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Figure 2: The grammatical relationship tree of “black shirt made in silk” 

Decision of central keyword: To represent the grammatical relations, we use the Stanford 

parser in this paper. The function of the Stanford parser is to transform keywords into a 

grammatical relationship tree. Through this tree, the grammatical relationship between 

words is clearly expressed. For instance, Fig. 2 shows the grammatical relationship tree of 

“black shirt made in silk”, in which “NP” represents the noun phrase, “NN” represents the 

noun, and “JJ” represents an adjective or a number, and so on.  

We calculate the distance d between two keywords in the grammatical tree to indicate the 

importance of the relation between two keywords. As the Fig. 2 shown, the distance 

between “black” and “shirt” is 4, so ( mod) 1/ ln(4)R a = . Since each relation is shared by 

two keywords, we divide each relationship into two parts according to the following rules: 

1 1( )* /R d d R d= − , 2 1 21 =( )* /R R d d R d= − − , where 1d is the distance between the 

first keyword and the ancestors of the two keywords, as the same, the distance between 

the second keyword and the ancestor of the two keywords is 2d . Since the weight of each 

keyword has been calculated by this way, we choose the keywords which have the 

highest weight as the central keywords. 

Extension of central keywords: For the same meaning, there may be many different 

words to express, for example, “blouse” and “shirt” mean the same thing. When the user 

queries one of the words, if the word is not in the server, the result will not be returned. In 

this case, the user needs to change a synonym and search again, which wastes the search 

cost. Existing solutions either increase the index build cost or extend the keyword in a 

small range. 

Therefore, we calculate the weight of keyword to get the central keyword. Then, we 

expand the central keyword. In this way, we not only ensuring the results of user search, 
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but also ensure that trapdoor generated efficiency. So, we should balance the relationship 

between efficiency and functionality. 

Definition 4: For a query Q , we determine that the keyword w  ( w  belongs to Q ) as 

the central keyword when the weight of the keyword is greater than the weight of others. 

We extend the keywords by using WordNet. WordNet contains a huge amount of English 

words [Lin (1998)]. In this vocabulary, words with the same meaning are grouped and 

called synonyms. So, when we search for “pants”, not only will we return “pants”, but we 

will also return files related to the “trousers”. 

We use the central word as the benchmark to calculate the weight of each extended word. 

The higher the weight, the closer the meaning of the extended word, and the higher the 

quality of the expansion. 

We use Lin’s measure [Wong, Cheung and Kao (2009)] to calculate the similarity 

between the keywords A and B, and the calculated similarity is:   

1 2 1 2 1 2( , ) [2 ( ( ) ( ))] / [ ( ( ) ( ))]Sim w w I F W F W I F W F W=   +                                                       (4) 

Where ( )F w represents the feature set of w . ( ) log ( )
f S

I S P f


= −  represents the 

information contained in a set of features S , where ( )P f  is the probability of feature f . 

When two words have the same feature set, the similarity range from 0 to 1, in which 0 

means two words have no same feature, and 1 means two words have the same feature set. 

 

Figure 3: The framework of our scheme 

4.3 Two-level index framework 

Most of the existing index construction methods build reverse indexes to facilitate 

searching. However, this index construction method still has a lot of space for 

improvement in efficiency and precision. Therefore, this paper proposes a new search 
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index called two-level index. This index construction method is mainly to index the file 

set twice with different tags. The construction of the first-layer index is based on 

keywords, and the index of keyword to file set is constructed; the second-layer index is 

based on a single file, and the index of a single file to keyword set is constructed. 

For improving efficiency and accuracy, our index is divided into two steps when 

matching. First, the keyword expanded by the central word is matched with the first layer 

index, thereby narrowing the file range, and then the similarity calculation is performed 

on the filtered file and the trapdoor, and the result is sequentially returned to the user. 

As shown in Fig. 3, by matching the extended keyword 1 3( , )w w   with the first-layer 

index, the file set that needs to be further matched is narrowed down to

1 2 5 6( . . ( ), ( ), ( ), ( ))i eC id C id C id C id . After that, the similarity calculation is performed on 

each file and the trapdoor in the second-layer index. As shown in Fig. 3, 1S , 2S , 3S  and 

4S  are the final similarity scores, which is sorted and returned to the user. The higher the 

score, the more consistent with the user’s needs. 

4.4 CKESS1 scheme: secure scheme under the known ciphertext model 

Our solution combines two-level index and central keyword expansion on the basis of 

MRSE [Cao, Wang and Li (2014)]. We describe our scheme under the known ciphertext 

model in detail in this section. We extend each vector to ( 2)m +  dimensions. The extended 

dimension adds complexity to the index, making it difficult for cloud servers to guess 

trapdoors and file information. The main algorithms of our scheme are shown as follow. 

KeyGen: Given the security parameter   and the file set F with the keyword setW , the 

key SK is generated safety. The data owner generates the SK 1 2 1 2( , , , , )S K K M M . We 

get two random sequences  1 2, 0,1K K


 . 1 2( , )M M are two ( 2) ( 2)m m+  +  

invertible matrices and  0,1
m

S is a vector. 

Index Construction: For a file set F given a set of keywords W , the data owner 

initializes 1I  and 2I  to an empty array in order to obtain the inverted index 1I  and the 

forward index 2I  at the same time. Then, for each of the keywords in W, the data owner 

uses the key to encrypt the file identifier, and the LSH is used in the Bloom filter. The 

data owner encrypts the file ID and appends them to set 1I  and then sets all positions in 

2I  to 1. Finally, encrypting the Bloom filter in the secondary index 2I  using secure 

kNN encryption with 1 2( , , )M M S  [Yang, Liu and Li (2015)]. The index 2I  is divided 

into two vectors 
' ''

2 2,I I : For each element ji I , let 
' ''

j j ji i i= = ,if js S  equals 1; 
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otherwise ' ''1 1
,

2 2
j j j ji i r i i r= + = − where r is a random number, then 2I  is represented 

as ' ''

1 2 2 2,T TM I M I  . At last, the data owner gets Index = 1I , 2I  and uploads the index 

and the encrypted file set to the cloud. 

Trapdoor Generation: The user inputs the query Q, and performs a weight calculation 

for Q to obtain the central word. Then uses WordNet to expand the central word. So, the 

user gets the extension query EQ . The data user encrypts EQ and builds a Bloom filter 

qBf for w . After that, we divide the Bloom filter qBf  into two vectors
'

qBf  , 
''

qBf : If 

js S  equals 0, then set 
' ''

q q qBf Bf Bf= = ; otherwise, 

' ''1 1
', '

2 2
q q q qBf Bf r Bf Bf r= + = − , Where 'r is another random number. Finally, token 

=  1 ' 1 ''

1 2, ,q qEQ M Bf M Bf− −  , K is obtained and uploading to the cloud, where K is the 

result that 2K  does the pseudo-random function. 

Search: The cloud server uses the index to match the trapdoor. First, the cloud server get 

the encryption identifiers in 1I , and matches the EQ with the 1I  to get the intermediate 

results. Then, Token is decrypted by K, and retrieved the Bloom filter 2I = 

 ' ''

1 2 2 2,T TM I M I  . And the cloud server obtains the secret key K but it does not 

disclosure any information except the search result of EQ . This leakage can be 

acceptable because the search result of EQ are not the sensitive data. It is easy to get the 

inner product between qBf and 2I . 

' 1 ' '' 1 ''

2 1 2 1 2 2 2 2

T T T

q q q qBf I M I M Bf M I M Bf I Bf− −=  +  =                                                     (5) 

Then, the server returns the results based on the inner product to the user in turn.  

4.5 CKESS2 scheme: Secure scheme under the known background model 

Under this model, the cloud server not only knows the information, but also has a certain 

understanding of the background environment. Through background information such as 

text analysis and word frequency, the cloud server can speculate on trapdoors and indexes. 

In order to resist this threat, we propose the following scheme. 

KeyGen: The algorithm is basically the same as the previous one. The only difference is 

that k hash keys 1 2( , , )kkey key key  are inserted into SK. We get SK=

1 2 1 2 1 2, , , , , , , )kS K K key key key M M（ . 

Index Construction: Due to the change of the SK, the secret key need to re-generated 

and the vector wS  of each keyword should be calculated again. Then, data owner 
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encrypts the Bloom filter in the secondary index 2I  using secure kNN encryption with 

1 2( , , )wM M S . The index 2I  is divided into two vectors 
' ''

2 2,I I  according to the same 

rules. So, 2I is represented as
' ''

1 2 2 2{ , }T TM I M I  . At last, the data owner gets Index=

1 2,I I  and uploads the index and file set to the cloud. 

Trapdoor Generation: Compared with the CKESS1, the difference in the algorithm is 

that the pseudo-random function is modified by using k hash keys, and js  is changed 

into wS . Finally, we represent the token as  1 ' 1 ''

1 2, , ,q qEQ M Bf M Bf K− −  . 

Search: In this algorithm, the cloud server compute matches the EQ  with the 1I  firstly, 

and obtains the intermediate results. Then, according the intermediate results, the cloud 

server compute the similarity score between the 2I  and the qBf . At last, the cloud 

server returns the top-k results to data user.  

5 Security analysis 

This paper is mainly to conduct security analysis from the following aspects. 

Privacy: In this paper, the documents need to be encrypted before uploading to the cloud. 

We make use of the secure encryption framework MRSE to encrypt the documents [Cao, 

Wang and Li (2014)]. So, our data privacy is protected well. 

This paper uses pseudo-random functions, secure encryption algorithms and KNN 

algorithm to encrypt keywords, file sets and Bloom filters securely. This prevents the 

Plaintext Leakage. Due to the increase of random numbers, the cloud server cannot know 

any trapdoor information (whether different trapdoors are generated by the same search 

request), except that different trapdoors retrieve the same keyword at the first search. At 

the same time, in the second search, all query keywords are used to match, so the cloud 

server cannot know the query results. 

Confidentiality: Since the index and trapdoors are encrypted in the cloud server, they are 

not obtained by the cloud server. This encryption algorithm has been proved to be safe in 

the known ciphertext model [Yang, Liu and Li (2014)]. However, we added k hash keys 

to improve the encryption algorithm for security under the known background model. 

Unlinkability: We introduced k hash keys when splitting the vector, so that the same 

search request can get different trapdoors. And the random hash key makes the similarity 

scores different. Trapdoor unlinkability can be guaranteed by using this method. 

6 Performance analysis 

In this section, we experimented with different scenarios to verify performance. We do 

these experiments under Windows 7 by using Java language, and the specific CPU 

parameters is Core 2 CPU 2.93 GHz.  
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6.1 Precision 

In order to improve the semantic precision of the scheme, we have expanded the 

keywords. In order to evaluate the precision of the scheme, two probabilities have been 

set, pr1 and pr2, where pr1 represents there is single-character different between the 

keywords, and pr2 is multi-character. As the Fig. 4 shown, when c is the same, pr1 

decreases with the number of functions increases, and pr2 is reversed. When the number 

of functions is constant, pr1 increases as c increases, and pr2 is reversed. So we need to 

strike a balance between pr1 and pr2. 

 

Figure 4: Precision of scheme 

6.2 Index construction 

When constructing and encrypting index vectors, the dimension of the index vector is the 

important factor that affect the index constructing. As shown in Fig. 5, because we use the 

high-dimensional submatrix to build the secret matrix when encrypting the index, this 

makes our index construction time much better than MRSE. In addition, there is a positive 

linear relationship between the index build time and the number of file sets. Since the 

dimension of CKESS2 is more than CKESS1, the build time is higher than CKESS1. 
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Figure 5: The time of Index construction 

6.3 Query generation 

The time of trapdoor generation mainly includes the confirmation of the central keyword, 

the extension of the central word, the calculation of similarity, the construction of the 

query vector and the encryption of query vector. As seen from Fig. 6, the build time of 

MRSE is not increase as the query keyword increases, but our schemes are opposite. The 

main reason is that our schemes contain the time of expanding the central keyword. With 

the increase of query keywords, the time taken for the expansion of the central word is 

also increase. And due to the high dimension, CKESS2 cost more time than CKESS1.  
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Figure 6: The time of query generation 

6.4 Search efficiency 

As the most important performance indicator of the schemes, Fig. 7 shows the search 

time of the scheme. From Fig. 7, we can see that with the increase of file sets, MRSE are 

linearly increase, but CKESS are increased slowly. The reason for it is that MRSE 

traverse all files in the cloud for each search, while the search time of our schemes 

mainly depends on the results of the first screening. As the file sets grows, the result of 

the first screening increases as well, which makes the whole search time grow.  
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Figure 7: The time of search efficiency 

7 Conclusion 

In this paper, we propose privacy-preserving content-aware search by using the two-level 

index. The scheme makes the two-level index and expands the central word for 

improving efficiency and accuracy. At first, through the matching of the central extension 

word and the first layer index, the file set range is reduced. Then, the similarity 

calculation is performed on the file set and the trapdoor. Finally, the top-k file is returned 

to the user. Through experimental analysis, we verify our solution is more efficient, 

precise and secure than the existed. 
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