

Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.473-491, 2019

CMC. doi:10.32604/cmc.2019.03785 www.techscience.com/cmc

Privacy-Preserving Content-Aware Search Based on Two-Level

Index

Zhangjie Fu1, *, Lili Xia1, Yuling Liu2 and Zuwei Tian3

Abstract: Nowadays, cloud computing is used more and more widely, more and more

people prefer to using cloud server to store data. So, how to encrypt the data efficiently is

an important problem. The search efficiency of existed search schemes decreases as the

index increases. For solving this problem, we build the two-level index. Simultaneously,

for improving the semantic information, the central word expansion is combined. The

purpose of privacy-preserving content-aware search by using the two-level index

(CKESS) is that the first matching is performed by using the extended central words, then

calculate the similarity between the trapdoor and the secondary index, finally return the

results in turn. Through experiments and analysis, it is proved that our proposed schemes

can resist multiple threat models and the schemes are secure and efficient.

Keywords: Semantic search, two-level index, expanded central-keyword.

1 Introduction

Today, heterogeneous Internet of Things is applied popularly [Qiu, Chen and Li (2018)].

Zhang et al. [Zhang, Li and Dai (2018)] proposed a public verifiable outsourcing scheme

based on matrix multiplication in the Internet of Things environment. Many people are

preferring to storing data in the cloud. Yang et al. [Yang, Xu and Weng (2018)] provides

a lightweight proof of storage for privacy protection. To utilize the data in the cloud

efficient, cloud computing is widely developed. Cloud computing, not only reducing the

local data maintenance costs, but also provide simple and efficient calculations. In

addition, cloud computing gives a convenient way to share resources between data

owners and legal data users.

Some scheme [Li, Liu and Chen (2015)] can protect the security of data search at some

degree. However, cloud servers are not completely honest. Cloud servers enforce system

protocols and capabilities honestly, but they guess the content of important files stored on

them actively. The existing solution is to encrypt the data before uploading. However,

how to effectively search encrypted data is an important issue.

At present, there are too many researches on ciphertext search by domestic and foreign

1School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing,

210044, China.

2 College of Computer Science and Electronic Engineering, Hunan University, China

3 School of Information Science and Engineering, Hunan First Normal University, Hunan, China.

* Corresponding Author: Zhangjie Fu. Email: wwwfzj@126.com.

474 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.473-491, 2019

experts. Song et al. [Song, Wagner and Perrig (2002)] proposed a searchable encryption

method which must encrypt the data set for each query, in each query, the data set needs to

be fully scanned make the computational consumption enormous. At the same time, this

method cannot resist statistical analysis attacks. Dan et al. [Dan, Crescenzo and Ostrovsky

(2004)] proposed a keyword search scheme based on public key encryption. This scheme is

also aimed at the matching of keywords and ciphertexts, but the scope of utilization is too

small. After that, Li et al. [Li, Wang and Wang (2014)] proposed a wildcard-based

ciphertext search method to achieve fuzzy search to a certain degree, but it needs the

support of the semantic library. A new scalable dynamic access scheme is proposed in

Weng et al. [Weng, Weng, and Zhang (2018)]. At present, most of the research on index-

based ciphertext search methods use tree index structure to improve the search efficiency.

Fu et al. [Fu, Sun and Liu (2015)] proposed a search scheme to improve efficiency by using

k-d tree. Leslie et al. [Leslie, Jain and Birdsall (1995)] proposed an efficient query scheme

based on multi-dimensional B tree. Ciaccia et al. [Ciaccia, Patella and Rabitti (1997)] used

M-tree to construct index metric space which improved search efficiency. Kurasawa et al.

[Kurasawa, Takasu and Adachi (2008)] proposed a Peer-to-Peer (P2P) information search

scheme based on Huffman distributed hash table. The index structure was changed by

Huffman coding to reach the load balancing. However, the data preprocessing consumes

too many computing and storage resources. Xu et al. [Xu, Li and Dai, (2019)] proposed an

efficient geometric range query scheme.

In this paper, we put forward the privacy-preserving content-aware search by using the

two-level index (CKESS). We build a novel two-level index framework based on the

existed forward and reverse indexes, which can improve the search efficiency.

Simultaneously, for improving the search precision, our program has expanded the

central word of the trapdoor. The basic framework of privacy-preserving content-aware

search by using the two-level index has been proposed firstly. And we propose two

search schemes that can resist different threats. Followings are the main contributions of

the paper.

1. We propose the privacy-preserving content-aware search by using the two-level

index (CKESS) to reduce the impact of the number of files on the search time. The

difference from the existed index is matching the trapdoor with the first-layer index

instead of the file set, which greatly improves our search efficiency;

2. In order to be close to the user's semantic requirements, we have semantically

extended the central keyword of the trapdoor based on the two-level index, thus

improving the search precision. Our scheme first uses the extension of the central

word of the trapdoor to match the first index. After that, the similarity between the

secondary index and the trapdoor keyword is calculated, and finally the result is

returned in order.

3. Through experiments and analysis, it shows that our scheme can effectively resist

different threat attacks and prove the efficiency, accuracy and security of the

scheme.

The following are the arrangements for the other sections of this paper. In the Section 2,

we introduce the related work. We arrange the system model, threat model, and

implementation goals of the program in the third section. The fourth part is mainly to

Privacy-Preserving Content-Aware Search 475

describe the main content of the index construction and schemes implementation. The

fifth part analyzes the security of the program. The final part is the experimental analysis

and the summary of the article.

2 Relation work

2.1 Multi-keyword search

In 2011, Cao et al. [Cao, Wang and Li (2014)] first proposed a secure multi-keyword

search solution (MRSE) that resisted two threat models (known ciphertexts and known

backgrounds). The solution used vector space model and secure inner product to sort after

the search results. In 2014, they proposed improvements and added TF / IDF algorithm to

improve the search accuracy. Yang et al. [Chen, Huang and Li (2015)] proposed to use

the trapdoor concept to search all encrypted documents. Fu et al. [Fu, Sun and Linge

(2014)] proposed multi-keyword sorting search scheme supporting synonym query in

cloud environment. These programs to achieve a multi-keyword search, expanded

ciphertext search capabilities. In terms of efficiency and accuracy of multi-keyword

search, Chen et al. [Liang, Huang and Guo (2016)] used sparse matrices to achieve a safe

large-scale linear equation, further improving the retrieval efficiency. In 2016, Liang et al.

[Li, Yang and Luan (2016)] proposed that search based on regular language is more

efficient than other search schemes. In the same year, Li et al. [Wang, Li and Wang

(2015)] proposed a multi-keyword search based on the fine-grained, which improved the

accuracy and efficiency of the search scheme through sub-dictionaries and preference

factors. To combat the Selective Chosen-Plaintext Attacks, Wang et al. [Li, Liu and

Wang (2016)] proposed a SE-based range search in 2015. In 2016, Li et al. [Chuah and

Hu (2011)] proposed the first range query solution that can defend against selective

keyword attacks (IND-CKA). Li et al. [Li, Chen and Chow (2018)] proposed a privacy-

aware multi-keyword attribute encryption scheme that hides attribute information in

ciphertext and allows tracking of non-honest users who have keys. Combining kNN and

attribute encryption, a dynamic search symmetric encryption scheme is proposed in Li et

al. [Li, Yang and Dai (2017)]. Gao et al. [Gao, Cheng and He (2018)] proposed to

combine the double-blind technology with the addition of homomorphic encryption to

realize the privacy protection of both parties. Li et al. [Li, Liu and Dai (2018)] proposed

an efficient searchable symmetric encryption scheme in mobile cloud environment.

2.2 Semantic search

Li et al. [Li, Wang and Wang (2014)] propose a single fuzzy keyword search scheme by

using edit distance. Chuah et al. [Chuah and Hu (2011)] implement fuzzy search based on

pre-defined word set as a whole, and propose a fuzzy search scheme to achieve secure

search for multi-keywords. Kuzu et al. [Kuzu, Islam and Kantarcioglu (2012)] designed a

similar search scheme using minhash based on Jaccard distance. Fu et al. [Fu, Shu and

Wang (2015)] proposed similarity search scheme for encrypted documents based on

simhash. Wang et al. [Wang, Yu and Zhao (2015)] proposed a fuzzy search based on

multi-keywords for achieving range query using a sequence reservation encryption and

two-layer Bloom. Huang et al. [Huang, Fu and Sun (2016)] combined gene sequences

with secure searchable indexes to propose a secure searchable encryption scheme. Our

476 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.473-491, 2019

earlier work [Fu, Wu and Guan (2016)] used a new keyword transformation to get a

better accuracy. Fu et al. [Fu, Wu and Wang (2017)] improved accuracy by using center

word expansion. Fu et al. [Fu, Xia and Sun (2018)] proposed the conceptual hierarchical

semantic search scheme under dual servers.

3 Problem formulation

3.1 System model

Fig. 1 shows that our system model is mainly composed of the following three entities.

Data owner: The data owner is the person who owns the source data. To facilitate search,

they need to build efficient indexes based on the data. Finally, the source data and the

index are encrypted and uploaded to the cloud server.

Cloud server: Storing and managing the encrypted data received are the main work of

the cloud server. Upon receiving the user's retrieval request, the data is processed and the

results are returned in turn.

Data user: The data user who received a secure authorization certificate processes the

query to generate a corresponding trapdoor and uploads it to the cloud.

Figure 1: The system model

3.2 Threat model

In the overall system model, we believe the data owner and user are honest and

trustworthy, but the cloud server is not completely trusted. As the references describe

[Cao, Wang and Li (2014)], the cloud server can execute programs accurately without

tampering with the DO and DU instruction sets; however, it can collect keyword

Privacy-Preserving Content-Aware Search 477

information and deduces the contents of the file by analyzing the relationship between

trapdoor functions. Therefore, according to different privacy requirements, our threat

model is as follows.

Known Ciphertext Model: The uploaded information of files, indexes, and trapdoor is

easy to get for the cloud server, but it does not understand the meaning.

Known Background Model: Apart from file data, indexes, and trapdoors, the cloud also

understands some background information, including file statistics, keyword frequency,

and the relationship between keywords and query. With this extra information, the cloud

server can speculate on some ciphertext information.

3.3 Design goal

Due to the above threat models, the design goals of this paper are as follows:

1. Scalability. We hope to implement the expansion of the central keywords, that is to

say, after the user enters the search keywords, the center word can be found quickly

and located accurately, and the semantic expansion of the central keyword can be

achieved. The result returned must be related to the central word and its extension.

2. Efficiency. Considering the data processing of cloud servers, our approaches are

designed that document size has independence. In simple terms, the relationship

between the search time and fileset size should be sub-linear.

3. Privacy protection. Our schemes should provide privacy protection of data

information of filesets or keywords during cloud search.

4. Results accuracy. This paper focuses on semantic search, so the accuracy of the

search results is extremely important. Our solution should improve the retrieval

accuracy as much as possible to achieve a higher standard.

3.4 Preliminaries

Stanford Parser. Stanford parser is basically a lexicalized probability context-free parser,

and also uses dependency analysis. Different analysis results can be output according to

different grammatical points. The parser uses the knowledge of the language obtained

from the parsing of the sign language to get the appropriate analysis of the new sentence.

WordNet. WordNet is a huge English vocabulary database [Miller (1990)]. Nouns, verbs,

adjectives and adverbs are each organized into a network of synonyms. Each synonym set

represents a basic semantic concept, and these sets are also connected by various

relationships. The resulting meaningful vocabulary and conceptual network can be

browsed through the browser.

Locality-Sensitive Hashing. The local sensitive hash (LSH) algorithm [Har-Peled, Indyk

and Motwani (1998)] is mainly used to solve the nearest neighbor search problem

efficiently. The basic idea of this algorithm is to map datasets to different collision

buckets of multiple hash tables through a set of hash functions that meet certain

constraints, then establishing multiple hash tables. So, under certain similarity measures,

the points which are closer to the same conflict bucket (the higher similarity) have the

greater probability, and the points which are farther to the same conflict bucket (the lower

similarity) have the smaller probability. In this way, the data set is divided into multiple

478 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.473-491, 2019

sub-sets. The data in each sub-set is adjacent and the number of the sub-set is small. So

the problem of finding adjacent elements in a very large set is transformed to find

adjacent elements within a small set. This method reduces the amount of data to be

compared greatly when we do a search. We deem that a hash function family H is (d1, d2,

p1, p2)-sensitive if for random inputs of ,x y , and h H satisfy the following:

If () () ()1 1, : Prd x y d h x h y p =    (1)

If () () ()2 2, : Prd x y d h x h y p =    (2)

Where (),d x y denotes the distance between x and y , ()h x and ()h y denote the hash

function of x and y , 1d and 2d mean the distance thresholds, 1p and 2p mean the

probability threshold, and 1 2 1 2,d d p p  .

4 Secure search scheme

4.1 Main innovative idea

In order to achieve a secure and efficient encryption search scheme, three important

design choices must be made, all of which are closely related and to some extent

determine the performance of the search solution. First, the data structure used to

construct the file index; second, an efficient search scheme that enables a good match

between the query keywords and the file index; and finally, a secure privacy mechanism

that combines with the first two design choices to protect the privacy of files and

retrieving privacy.

Based on the above design choices, we propose privacy-preserving content-aware search

based on two-level index. A secure two-level index for the file set is built and encrypted

before uploading to the cloud. The trapdoor is constructed on the data user side and the

data user provides the query keyword. We first locate the central word of the query

keyword, then extend the central keyword, and upload the extended keywords to the

cloud encryption. The mainly work of the cloud server is searching. When the cloud

server gets the trapdoor from the user, in the first-level matching, the cloud server

matches the extended keyword with the index keyword. Without loss the search accuracy,

the search range is reduced. In the second-level matching, the other keywords in each file

are matched with other non-central keywords in the trapdoor. Finally, the results are

sorted and returned to the data user.

In this section, we detail the scenario. We first introduce the central keyword expansion

algorithm in plaintext mode and the two-level index construction algorithm, and then

propose the complete schemes in ciphertext mode.

4.2 Central keyword extension

In the actual situation, the user usually inputs a string of keywords to make a query, and

when the user searches different targets, the weight of each keyword is different. There

have been many achievements in the study of the importance of keywords. [Li, Yang and

Privacy-Preserving Content-Aware Search 479

Luan (2016)] use a method of super-increasing sequence to order the keywords. In this

way, getting the order of the query keywords’ importance is easily. However, this method

requires the user to sort the keywords according to the user's expected value of the

keyword. The disadvantage of this approach is that defaulting importance to the order of

all keywords. Our early work Fu et al. [Fu, Ren and Shu (2016)] proposed to establish a

unique interest model for different users, and use the grammatical relationship tree to

measure the weight of keywords input by the user. In this way, a search that satisfies the

needs of the user is realized.

Definition of relationship: The relationship contained in the keyword reflects the user

preference information. Keywords with more semantic relationships necessarily reflect

more user information, so the weight of the keyword is heavier. So, we have the

definition 1.

Definition 1: For each keyword, we assign it an initial importance of 1. Assuming that

the keyword has grammatical relationships with another keyword, we change its value

to 1+R (relation), where R represents the total importance of the relationship between

two keywords.

The semantic relationship of keywords is expressed as a connection between different

words on the grammatical relationship tree. The shorter the distance of this connection,

the more similar the meaning of the words. Therefore, we can quantify the importance of

the grammatical relationships between keywords by using the distance between the

keywords in the grammatical tree. However, the relationship is mutual, so the value of

the importance should be divided into two parts. So we have the definition 2.

Definition 2: For the two keywords 1w and 2w , there is a semantic relation A between

them, and the interest preferences of the user included in A is () 1/ ln()R A d= , where

d represents the distance of the keywords in the semantic relation tree. The increased

importance of 1w is 1 ln() /d d d , and 2 ln() /d d d is the increased importance of 2w ,

where 1d and 2d are the distance between the keywords and their ancestor, and the total

between 1d and 2d is d .

Note that, although prepositions are often used in articles and phrases to indicate the

relation between two keywords, prepositions cannot be an independent part of a sentence.

Therefore, when we calculate the importance of grammatical relations, such keywords do

not be included.

Definition 3: For an independent query Q , the total weight of the grammatical relation is

n , where n represents the number of query keywords contained in this query. For a

keyword w , p n is its weight, in which p means the percent of the importance of the

keyword w in the query Q . So we can get the keyword weight of the keyword w as

follow

() ()1() 1 / 1n

iKW w p n R n R==  = +  +   (3)

480 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.473-491, 2019

Figure 2: The grammatical relationship tree of “black shirt made in silk”

Decision of central keyword: To represent the grammatical relations, we use the Stanford

parser in this paper. The function of the Stanford parser is to transform keywords into a

grammatical relationship tree. Through this tree, the grammatical relationship between

words is clearly expressed. For instance, Fig. 2 shows the grammatical relationship tree of

“black shirt made in silk”, in which “NP” represents the noun phrase, “NN” represents the

noun, and “JJ” represents an adjective or a number, and so on.

We calculate the distance d between two keywords in the grammatical tree to indicate the

importance of the relation between two keywords. As the Fig. 2 shown, the distance

between “black” and “shirt” is 4, so (mod) 1/ ln(4)R a = . Since each relation is shared by

two keywords, we divide each relationship into two parts according to the following rules:

1 1()* /R d d R d= − , 2 1 21 =()* /R R d d R d= − − , where 1d is the distance between the

first keyword and the ancestors of the two keywords, as the same, the distance between

the second keyword and the ancestor of the two keywords is 2d . Since the weight of each

keyword has been calculated by this way, we choose the keywords which have the

highest weight as the central keywords.

Extension of central keywords: For the same meaning, there may be many different

words to express, for example, “blouse” and “shirt” mean the same thing. When the user

queries one of the words, if the word is not in the server, the result will not be returned. In

this case, the user needs to change a synonym and search again, which wastes the search

cost. Existing solutions either increase the index build cost or extend the keyword in a

small range.

Therefore, we calculate the weight of keyword to get the central keyword. Then, we

expand the central keyword. In this way, we not only ensuring the results of user search,

Privacy-Preserving Content-Aware Search 481

but also ensure that trapdoor generated efficiency. So, we should balance the relationship

between efficiency and functionality.

Definition 4: For a query Q , we determine that the keyword w (w belongs to Q) as

the central keyword when the weight of the keyword is greater than the weight of others.

We extend the keywords by using WordNet. WordNet contains a huge amount of English

words [Lin (1998)]. In this vocabulary, words with the same meaning are grouped and

called synonyms. So, when we search for “pants”, not only will we return “pants”, but we

will also return files related to the “trousers”.

We use the central word as the benchmark to calculate the weight of each extended word.

The higher the weight, the closer the meaning of the extended word, and the higher the

quality of the expansion.

We use Lin’s measure [Wong, Cheung and Kao (2009)] to calculate the similarity

between the keywords A and B, and the calculated similarity is:

1 2 1 2 1 2(,) [2 (() ())] / [(() ())]Sim w w I F W F W I F W F W=   + (4)

Where ()F w represents the feature set of w . () log ()
f S

I S P f


= − represents the

information contained in a set of features S , where ()P f is the probability of feature f .

When two words have the same feature set, the similarity range from 0 to 1, in which 0

means two words have no same feature, and 1 means two words have the same feature set.

Figure 3: The framework of our scheme

4.3 Two-level index framework

Most of the existing index construction methods build reverse indexes to facilitate

searching. However, this index construction method still has a lot of space for

improvement in efficiency and precision. Therefore, this paper proposes a new search

482 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.473-491, 2019

index called two-level index. This index construction method is mainly to index the file

set twice with different tags. The construction of the first-layer index is based on

keywords, and the index of keyword to file set is constructed; the second-layer index is

based on a single file, and the index of a single file to keyword set is constructed.

For improving efficiency and accuracy, our index is divided into two steps when

matching. First, the keyword expanded by the central word is matched with the first layer

index, thereby narrowing the file range, and then the similarity calculation is performed

on the filtered file and the trapdoor, and the result is sequentially returned to the user.

As shown in Fig. 3, by matching the extended keyword 1 3(,)w w with the first-layer

index, the file set that needs to be further matched is narrowed down to

1 2 5 6(. . (), (), (), ())i eC id C id C id C id . After that, the similarity calculation is performed on

each file and the trapdoor in the second-layer index. As shown in Fig. 3, 1S , 2S , 3S and

4S are the final similarity scores, which is sorted and returned to the user. The higher the

score, the more consistent with the user’s needs.

4.4 CKESS1 scheme: secure scheme under the known ciphertext model

Our solution combines two-level index and central keyword expansion on the basis of

MRSE [Cao, Wang and Li (2014)]. We describe our scheme under the known ciphertext

model in detail in this section. We extend each vector to (2)m + dimensions. The extended

dimension adds complexity to the index, making it difficult for cloud servers to guess

trapdoors and file information. The main algorithms of our scheme are shown as follow.

KeyGen: Given the security parameter  and the file set F with the keyword setW , the

key SK is generated safety. The data owner generates the SK 1 2 1 2(, , , ,)S K K M M . We

get two random sequences  1 2, 0,1K K


 . 1 2(,)M M are two (2) (2)m m+  +

invertible matrices and  0,1
m

S is a vector.

Index Construction: For a file set F given a set of keywords W , the data owner

initializes 1I and 2I to an empty array in order to obtain the inverted index 1I and the

forward index 2I at the same time. Then, for each of the keywords in W, the data owner

uses the key to encrypt the file identifier, and the LSH is used in the Bloom filter. The

data owner encrypts the file ID and appends them to set 1I and then sets all positions in

2I to 1. Finally, encrypting the Bloom filter in the secondary index 2I using secure

kNN encryption with 1 2(, ,)M M S [Yang, Liu and Li (2015)]. The index 2I is divided

into two vectors
' ''

2 2,I I : For each element ji I , let
' ''

j j ji i i= = ,if js S equals 1;

Privacy-Preserving Content-Aware Search 483

otherwise ' ''1 1
,

2 2
j j j ji i r i i r= + = − where r is a random number, then 2I is represented

as ' ''

1 2 2 2,T TM I M I  . At last, the data owner gets Index = 1I , 2I and uploads the index

and the encrypted file set to the cloud.

Trapdoor Generation: The user inputs the query Q, and performs a weight calculation

for Q to obtain the central word. Then uses WordNet to expand the central word. So, the

user gets the extension query EQ . The data user encrypts EQ and builds a Bloom filter

qBf for w . After that, we divide the Bloom filter qBf into two vectors
'

qBf ,
''

qBf : If

js S equals 0, then set
' ''

q q qBf Bf Bf= = ; otherwise,

' ''1 1
', '

2 2
q q q qBf Bf r Bf Bf r= + = − , Where 'r is another random number. Finally, token

=  1 ' 1 ''

1 2, ,q qEQ M Bf M Bf− −  , K is obtained and uploading to the cloud, where K is the

result that 2K does the pseudo-random function.

Search: The cloud server uses the index to match the trapdoor. First, the cloud server get

the encryption identifiers in 1I , and matches the EQ with the 1I to get the intermediate

results. Then, Token is decrypted by K, and retrieved the Bloom filter 2I =

 ' ''

1 2 2 2,T TM I M I  . And the cloud server obtains the secret key K but it does not

disclosure any information except the search result of EQ . This leakage can be

acceptable because the search result of EQ are not the sensitive data. It is easy to get the

inner product between qBf and 2I .

' 1 ' '' 1 ''

2 1 2 1 2 2 2 2

T T T

q q q qBf I M I M Bf M I M Bf I Bf− −=  +  =  (5)

Then, the server returns the results based on the inner product to the user in turn.

4.5 CKESS2 scheme: Secure scheme under the known background model

Under this model, the cloud server not only knows the information, but also has a certain

understanding of the background environment. Through background information such as

text analysis and word frequency, the cloud server can speculate on trapdoors and indexes.

In order to resist this threat, we propose the following scheme.

KeyGen: The algorithm is basically the same as the previous one. The only difference is

that k hash keys 1 2(, ,)kkey key key are inserted into SK. We get SK=

1 2 1 2 1 2, , , , , , ,)kS K K key key key M M（ .

Index Construction: Due to the change of the SK, the secret key need to re-generated

and the vector wS of each keyword should be calculated again. Then, data owner

484 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.473-491, 2019

encrypts the Bloom filter in the secondary index 2I using secure kNN encryption with

1 2(, ,)wM M S . The index 2I is divided into two vectors
' ''

2 2,I I according to the same

rules. So, 2I is represented as
' ''

1 2 2 2{ , }T TM I M I  . At last, the data owner gets Index=

1 2,I I and uploads the index and file set to the cloud.

Trapdoor Generation: Compared with the CKESS1, the difference in the algorithm is

that the pseudo-random function is modified by using k hash keys, and js is changed

into wS . Finally, we represent the token as  1 ' 1 ''

1 2, , ,q qEQ M Bf M Bf K− −  .

Search: In this algorithm, the cloud server compute matches the EQ with the 1I firstly,

and obtains the intermediate results. Then, according the intermediate results, the cloud

server compute the similarity score between the 2I and the qBf . At last, the cloud

server returns the top-k results to data user.

5 Security analysis

This paper is mainly to conduct security analysis from the following aspects.

Privacy: In this paper, the documents need to be encrypted before uploading to the cloud.

We make use of the secure encryption framework MRSE to encrypt the documents [Cao,

Wang and Li (2014)]. So, our data privacy is protected well.

This paper uses pseudo-random functions, secure encryption algorithms and KNN

algorithm to encrypt keywords, file sets and Bloom filters securely. This prevents the

Plaintext Leakage. Due to the increase of random numbers, the cloud server cannot know

any trapdoor information (whether different trapdoors are generated by the same search

request), except that different trapdoors retrieve the same keyword at the first search. At

the same time, in the second search, all query keywords are used to match, so the cloud

server cannot know the query results.

Confidentiality: Since the index and trapdoors are encrypted in the cloud server, they are

not obtained by the cloud server. This encryption algorithm has been proved to be safe in

the known ciphertext model [Yang, Liu and Li (2014)]. However, we added k hash keys

to improve the encryption algorithm for security under the known background model.

Unlinkability: We introduced k hash keys when splitting the vector, so that the same

search request can get different trapdoors. And the random hash key makes the similarity

scores different. Trapdoor unlinkability can be guaranteed by using this method.

6 Performance analysis

In this section, we experimented with different scenarios to verify performance. We do

these experiments under Windows 7 by using Java language, and the specific CPU

parameters is Core 2 CPU 2.93 GHz.

Privacy-Preserving Content-Aware Search 485

6.1 Precision

In order to improve the semantic precision of the scheme, we have expanded the

keywords. In order to evaluate the precision of the scheme, two probabilities have been

set, pr1 and pr2, where pr1 represents there is single-character different between the

keywords, and pr2 is multi-character. As the Fig. 4 shown, when c is the same, pr1

decreases with the number of functions increases, and pr2 is reversed. When the number

of functions is constant, pr1 increases as c increases, and pr2 is reversed. So we need to

strike a balance between pr1 and pr2.

Figure 4: Precision of scheme

6.2 Index construction

When constructing and encrypting index vectors, the dimension of the index vector is the

important factor that affect the index constructing. As shown in Fig. 5, because we use the

high-dimensional submatrix to build the secret matrix when encrypting the index, this

makes our index construction time much better than MRSE. In addition, there is a positive

linear relationship between the index build time and the number of file sets. Since the

dimension of CKESS2 is more than CKESS1, the build time is higher than CKESS1.

486 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.473-491, 2019

Figure 5: The time of Index construction

6.3 Query generation

The time of trapdoor generation mainly includes the confirmation of the central keyword,

the extension of the central word, the calculation of similarity, the construction of the

query vector and the encryption of query vector. As seen from Fig. 6, the build time of

MRSE is not increase as the query keyword increases, but our schemes are opposite. The

main reason is that our schemes contain the time of expanding the central keyword. With

the increase of query keywords, the time taken for the expansion of the central word is

also increase. And due to the high dimension, CKESS2 cost more time than CKESS1.

Privacy-Preserving Content-Aware Search 487

Figure 6: The time of query generation

6.4 Search efficiency

As the most important performance indicator of the schemes, Fig. 7 shows the search

time of the scheme. From Fig. 7, we can see that with the increase of file sets, MRSE are

linearly increase, but CKESS are increased slowly. The reason for it is that MRSE

traverse all files in the cloud for each search, while the search time of our schemes

mainly depends on the results of the first screening. As the file sets grows, the result of

the first screening increases as well, which makes the whole search time grow.

488 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.473-491, 2019

Figure 7: The time of search efficiency

7 Conclusion

In this paper, we propose privacy-preserving content-aware search by using the two-level

index. The scheme makes the two-level index and expands the central word for

improving efficiency and accuracy. At first, through the matching of the central extension

word and the first layer index, the file set range is reduced. Then, the similarity

calculation is performed on the file set and the trapdoor. Finally, the top-k file is returned

to the user. Through experimental analysis, we verify our solution is more efficient,

precise and secure than the existed.

Acknowledgement: This work is supported by the National Natural Science Foundation

of China under grant U1836110, U1836208, U1536206, 61602253, 61672294; by the

National Key R&D Program of China under grant 2018YFB1003205; by China

Postdoctoral Science Foundation (2017M610574); by the Jiangsu Basic Research

Programs-Natural Science Foundation under grant numbers BK20181407; by the Priority

Academic Program Development of Jiangsu Higher Education Institutions (PAPD) fund;

by the Major Program of the National Social Science Fund of China (17ZDA092), Qing

Lan Project; by the Collaborative Innovation Center of Atmospheric Environment and

Equipment Technology (CICAEET) fund, China.

References

Cao, N.; Wang, C.; Li, M. (2014): Privacy-preserving multi-keyword ranked search

over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems, vol.

Privacy-Preserving Content-Aware Search 489

25, no. 1, pp. 222-233.

Chen, X.; Huang, X.; Li, J. (2015): New algorithms for secure outsourcing of large-

scale systems of linear equations. IEEE Transactions on Information Forensics and

Security, vol. 10, no. 1, pp. 69-78.

Chuah, M.; Hu, W. (2011): Privacy-aware bedtree based solution for fuzzy multi-

keyword search over encrypted data. International Conference on Distributed Computing

Systems Workshops, pp. 273-281.

Ciaccia, P.; Patella, M.; Rabitti, F. (1997): Indexing metric spaces with m-tree. PROC.

Quinto Convegno Nazionale Sebd, vol. 97, pp. 67-86.

Dan, B.; Crescenzo, G, D.; Ostrovsky, R. (2004): Public key encryption with keyword

search. Advances in Cryptology-Eurocrypt 2004, pp. 506-522.

Fu, Z.; Ren, K.; Shu, J. (2016): Enabling personalized search over encrypted outsourced

data with efficiency improvement. IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 9, pp. 2546-2559.

Fu, Z.; Shu, J.; Wang, J. (2015): Privacy-preserving smart similarity search based on

simhash over encrypted data in cloud computing. Journal of Internet Technology, vol. 16,

no. 3, pp. 453-460.

Fu, Z.; Sun, X.; Liu, Q. (2015): Achieving efficient cloud search services: multi-

keyword ranked search over encrypted cloud data supporting parallel computing. IEICE

Transactions on Communications, vol. 98, no. 1, pp. 190-200.

Fu, Z.; Sun, X.; Linge, N. (2014): Achieving effective cloud search services: multi-

keyword ranked search over encrypted cloud data supporting synonym query. IEEE

Transactions on Consumer Electronics, vol. 60, no. 1, pp. 164-172.

Fu, Z.; Wu, X.; Guan, C. (2016): Toward efficient multi-keyword fuzzy search over

encrypted outsourced data with accuracy improvement. IEEE Transactions on

Information Forensics and Security, vol. 11, no. 12, pp. 2706-2716.

Fu, Z.; Wu, X., Wang, Q. (2017): Enabling central keyword based semantic extension

search over encrypted outsourced data. IEEE Transactions on Information Forensics and

Security, vol. 12, no. 12, pp. 2986-2997.

Fu, Z.; Xia, L.; Sun, X. (2018): Semantic aware searching over encrypted data for cloud

computing. IEEE Transactions on Information Forensics and Security, vol. 13, no. 9, pp.

2359-2371.

Gao, C. Z.; Cheng, Q.; He, P. (2018): Privacy-preserving naive bayes classifiers secure

against the substitution-then-comparison attack. Information Sciences, vol. 444, pp.72-88.

Har-Peled, S.; Indyk, P.; Motwani, R. (1998): Approximate nearest neighbor: towards

removing the curse of dimensionality. ACM Symposium on Theory of Computing, pp.

604-613.

Huang, F.; Fu, Z.; Sun, X. (2016): Privacy-preserving outsourced gene data search in

encryption domain. Security and Communication Networks, vol. 9, no. 18, pp. 5178-5186.

Kurasawa, H.; Takasu, A.; Adachi, J. (2008): Huffman-DHT: index structure

refinement scheme for P2P information retrieval. Information Retrieval. International

490 Copyright © 2019 Tech Science Press CMC, vol.59, no.2, pp.473-491, 2019

Symposium on Applications and the Internet, pp. 111-117.

Kuzu, M.; Islam, M, S.; Kantarcioglu, M. (2012): Efficient similarity search over

encrypted data. International Conference on Data Engineering, pp. 1156-1167.

Leslie, H.; Jain, R.; Birdsall, D. (1995): Efficient search of multi-dimensional b-trees.

International Conference on Very Large Data Bases, vol. 95, pp. 11-15.

Li, H.; Liu, D.; Dai, Y. (2018): Personalized search over encrypted data with efficient

and secure updates in mobile clouds. IEEE Transactions on Emerging Topics in

Computing, vol. 6, no. 1, pp. 97-109.

Li, H.; Yang, Y.; Dai, Y. (2017): Achieving secure and efficient dynamic searchable

symmetric encryption over medical cloud data. IEEE Transactions on Cloud Computing.

Li, H.; Yang, Y.; Luan, T, H. (2016): Enabling fine-grained multi-keyword search

supporting classified sub-dictionaries over encrypted cloud data. IEEE Transactions on

Dependable and Secure Computing, vol. 13, no. 3, pp. 312-325.

Li, J.; Chen, X.; Chow, S. S. M. (2018): Multi-authority fine-grained access control

with accountability and its application in cloud. Journal of Network & Computer

Applications, vol. 112, pp. 89-96.

Li, J.; Liu, Z.; Chen, X. (2015): L-EncDB: a lightweight framework for privacy-

preserving data queries in cloud computing. Knowledge-Based Systems, vol. 79, pp. 18-26.

Li, J.; Wang, Q.; Wang, C. (2014): Fuzzy keyword search over encrypted data in cloud

computing. International Journal of Engineering Research and Applications, vol. 4, pp.

441-445.

Li, R.; Liu, A, X.; Wang, A, L. (2016): Fast and scalable range query processing with

strong privacy protection for cloud computing. Transactions on Networking, vol. 24, no.

4, pp. 2305-2318.

Liang, K.; Huang, X.; Guo, F. (2016): Privacy-preserving and regular language search

over encrypted cloud data. IEEE Transactions on Information Forensics and Security,

vol. 11, no. 10, pp. 2365-2376.

Lin, D. (1998): An information-theoretic definition of similarity. International

Conference on Machine Learning, vol. 1, pp. 296-304.

Miller, G. (1990): Wordnet: an on-line lexical database. International Journal of

Lexicography, vol. 3, no. 4, pp. 235-244.

Qiu, T.; Chen, N.; Li, K. (2018): How Can Heterogeneous Internet of Things Build our

Future: A Survey. IEEE Communications Surveys & Tutorials.

Song, D, X.; Wagner, D.; Perrig, A. (2002): Practical techniques for searches on

encrypted data. Proceeding 2000 IEEE Symposium on Security and Privacy, pp. 44-55.

Wang, B.; Li, M.; Wang, H. (2015): Circular range search on encrypted spatial data.

Communications and Network Security, vol. 11, pp. 182-190.

Wang, J.; Yu, X.; Zhao, M. (2015): Privacy-preserving ranked multi-keyword fuzzy

search on cloud encrypted data supporting range query. Arabian Journal for Science and

Engineering, vol. 40, no. 8, pp. 2375-2388.

Weng, J.; Weng, J.; Zhang, Y. (2018): BENBI: scalable and dynamic access control

Privacy-Preserving Content-Aware Search 491

on the northbound interface of SDN-based VANET. IEEE Transactions on Vehicular

Technology.

Wong, W, K.; Cheung, D, W.; Kao, B. (2009): Secure KNN computation on encrypted

databases. ACM SIGMOD International Conference on Management of Data, pp. 139-152.

Xu, W.; Li, H.; Dai, Y. (2019): Enabling efficient and geometric range query with

access control over encrypted spatial data. IEEE Transactions on Information Forensics

and Security, vol. 14, no.4, pp. 870-885.

Yang, J.; Liu, Z.; Li, J. (2014): Multi-key searchable encryption without random oracle.

International Conference on Intelligent Networking and Collaborative Systems, pp. 79-84.

Yang, A.; Xu, J.; Weng, J. (2018): Lightweight and privacy-preserving delegatable proofs

of storage with data dynamics in cloud storage. IEEE Transactions on Cloud Computing.

Zhang, S.; Li, H.; Dai, Y. (2018): Verifiable outsourcing computation for matrix

multiplication with improved efficiency and applicability. IEEE Internet of Things Journal,

vol. 5, no. 6.

