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An Influence Maximization Algorithm Based on the Mixed
Importance of Nodes

Yong Hua1, Bolun Chen1,2,∗, Yan Yuan1, Guochang Zhu1 and Jialin Ma1

Abstract: The influence maximization is the problem of finding k seed nodes that
maximize the scope of influence in a social network. Therefore, the comprehensive
influence of node needs to be considered, when we choose the most influential node
set consisted of k seed nodes. On account of the traditional methods used to measure
the influence of nodes, such as degree centrality, betweenness centrality and closeness
centrality, consider only a single aspect of the influence of node, so the influence measured
by traditional methods mentioned above of node is not accurate. In this paper, we obtain
the following result through experimental analysis: the influence of a node is relevant not
only to its degree and coreness, but also to the degree and coreness of the n-order neighbor
nodes. Hence, we propose a algorithm based on the mixed importance of nodes to measure
the comprehensive influence of node, and the algorithm we proposed is simple and efficient.
In addition, the performance of the algorithm we proposed is better than that of traditional
influence maximization algorithms.
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1 Introduction
With the prosperous development of social network in recent years, the research on
social network has attracted attention of many scholars. The social network, such as
facebook, twitter and blogs, is composed of social relationships among individuals, as a
result the potential business value of social network is enormous. One of the classical
applications in social network is viral marketing, in generally, using the ‘word of mouth’
effect [Guille (2013); Goldenberg, Libai and Muller (2001)] to market products online. For
instance, a software company plans to sell a software through network. The salesman
of the software company will look for k influential initial users and pay the k initial
users rewards in the social network. Then, the k initial users promote the software to
their acquaintances. The social relationships among acquaintances become the key of
viral marketing, because acquaintances are more convinced than strangers [Hill, Provost
and Volinsky (2006); Sadovykh, Sundaram and Piramuthu (2015); Schmitt, Skiera and

1 HuaiYin Institute of Technology, Huaian, 223003, China.
2 University of Fribourg, Fribourg, 1700, Switzerland.

 ∗ Corresponding Author: Bolun Chen. Email: chenbolun1986@163.com.

CMC. doi:10.32604/cmc.2019.05278 www.techscience.com/cmc



518 Copyright c© 2019 Tech Science Press CMC, vol.59, no.2, pp.517-531, 2019

Den Bulte (2011); Verbraken, Goethals, Verbeke et al. (2014); Iyengar, Den Bulte and
Valente (2011)]. Therefore, the scope of promotion of the software will be expanded
through the ’word of mouth’ effect. As described in the previous example, the problem
above is called the influence maximization problem [Domingos and Richardson (2001)],
whose essential problem is how to find the most influential initial k users.
The problem of influence maximization was first proposed by Kempe et al. [Kempe,
Kleinberg and Tardos (2003)]. They demonstrated that finding the subset of nodes with
optimal influence in social network is an NP-hard problem and a approximate guarantee
of optimal solution is obtained by using the simple greedy algorithm. In addition, they
put forward using independent cascading model or linear threshold model to simulate
the propagation of information in discrete time in social network. The key of selecting
influential initial k users in the influence maximization is how to measure the ability of
spreading influence of node. A variety of central methods, such as degree centrality,
betweenness centrality and closeness centrality, were proposed in the original study of
the problem of influence maximization. The ability of node to spread the influence in a
social network can be measured directly through the methods above. In the subsequent
research in the problem of influence maximization, the property of the submodular
function [Nemhauser, Wolsey and Fisher (1978)] was used in many greedy algorithms to
approximate the optimal solution through extensive iterations. Chen et al. [Chen, Wang
and Yang (2009)] proposed a degree discount heuristic algorithm, compared with CELF
algorithm proposed in Leskovec et al. [Leskovec, Krause, Guestrin et al. (2007)], which
greatly reduces the time complexity and makes the seed set choosed by this algorithm
having more influence. Lee et al. [Lee and Chung (2014)] proposed a 2-hop greedy
algorithm based on the phenomenon that the influence of node reach most nodes needing
only 2-hop, whose time complexity is less than CELF++ and achieves a more influential
seed set [Goyal, Lu and Lakshmanan (2011)]. Chen et al. [Chen, Wang and Wang (2010)]
proposed PMIA algorithm, which uses MIIA (maximum influence in-arborescence) and
MIOA (maximum influence out-arborescence) to model the influence of node. The PMIA
algorithm has a lower time complexity than the simple greedy algorithm, but the space
complexity of PMIA is higher than the simple greedy algorithm, because PMIA needs to
build influence propagation tree for each node. Jung et al. [Jung, Heo and Chen (2012)]
proposed a novel algorithm IRIE, which combines the influence ranking algorithm and the
influence estimation algorithm, and achieved lower time complexity and more efficient than
PMIA. Many novel algorithms with excellent results in measuring the influence of node
have been proposed in recent studies. Kitsak et al. [Kitsak, Gallos, Havlin et al. (2010)]
found that the most effective influence spreaders are often not the nodes with large degrees,
but the nodes are in the core location of the social network. The correlation between the
coreness and the propagation ability of node in the social network was analyzed by k-shell
decomposition [Carmi, Havlin, Kirkpatrick et al. (2007)], which provided a new solution to
the problem of influence maximization. Gao et al. [Gao, Ma, Chen et al. (2014)] presented
that the influence of node is related to their local structure. A algorithm based on local
structure centrality, which uses the topology and centrality of node and its neighbors to
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measure the ability of spreading influence of node, was proposed. This algorithm is more
accurate than the previous algorithm when evaluating the influence of node. Xia et al. [Xia,
Song, Jing et al. (2018)] construct double-layer network and use markov chains theory to
study disease spreading, who proposed that the scale of disease spreading can be reduced
by increasing the rate of spreading.
In real social network, the larger degrees a node has, the more likely it is to be chosen as
a initial node. However, the ability of a node to spread influence is related not only to the
degree of node and its neighbors, but also the coreness of node and its neighbors. In other
words, the ability of a node to spread influence is also related to the degree and coreness of
its neighbors. In this paper, we study the correlation between the mixed importance and the
ability of node to spread influence, and we propose an influence maximization algorithm
based on the mixed importance of nodes. In contrast to the traditional algorithms, we
consider the cost of selecting initial nodes in social network. Moreover, our algorithm is
more adaptive [Zhang, Zheng and Xia (2018)] and achieves good performance.

2 Description of the problem
2.1 Influence maximization problem

We define a undirected social network G = (V,E), where V represents the node set in
social network G, and E represents the collection of edges between nodes. Moreover,
n = |V |, where n is the total number of nodes in social network G. If node u and v exist in
the social network G, we use (u, v) ∈ E to represent an edge between the u and v, and use
p to represent a propagation probability. We use m to represent the total number of edges
in social network G. The influence maximization problem is to find the subset of node set
in the graph G, which is a set composed of seed nodes. We use S to represent seed set,
k = |S|. In addition, the influence of the k seed nodes is maximum.

2.2 Independent cascade model

We use the independent cascade model to simulate the influence of node and measure the
ability of node to spread influence [Chen, Fan, Li et al. (2015); Liu, Cong, Xu et al. (2012)].
The principle of the independent cascade model is as follows: in the network G, all nodes
have only two states: active or inactive. Ai is the set of nodes activated at time i. The
initial phase is the time t = 0. A0 = S represents that the nodes in the seed set S are
active and other nodes are inactive at time t = 0. At time t = i, u ∈ Ai−1 and the node
v is in the inactive state. u attempts to activate node v with propagation probability p for
edge (u, v) ∈ E. If v is successfully activated, v maintains activated state from t = i + 1.
If v fails to be activated by u, v can not be activated by u at a later time. If node v has
multiple neighbors that have already been activated, the neighbors of v will activate v with
a probability of 1− (1− p)l, where l is the number of neighbors that have been activated.
When Ai is empty, that is, at time t = i, no nodes are activated, the propagation process
ends, and the number of activated nodes in the whole process represents the influence of
the seed set S [Kim, Kim, Oh et al. (2017); Kimura, Saito, Nakano et al. (2010)].
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2.3 Influence function

We denote the influence function as influence(·), where the function influence(·) maps
a subset of the node set V to a nonnegative integer. For example, influence(u) is the
number of node activated by node u, and influence(S) is the number of node activated
by seed set S. We calculate the value of function influence(·) through the independent
cascade model.

2.4 Cost

In the initial phase of the influence maximization problem, the initial users need to be
selected as seeds, but we need to give the seeds certain rewards. In a real social network, a
node with a greater degree has a wider social range. Therefore, a node with large degrees
will be given more rewards than a node with small degrees. In this paper, we define the
initial cost by Eq. (1), where degreeu is the degree of node u and the function mean(·) is
the average function.

cost = mean({degreeu|u∈S}) (1)

3 Detailed process of the algorithm
In this paper, we use the mixed importance to measure the influence of node. In the
mixed importance algorithm, we consider that the influence of node affected by its n-
order neighbors. The obvious representation of a node affected by its neighbors is the
degree of node, but only using the degree of node to measure the influence of node results
in incomprehensive measurement. If node u and v have the same degrees, the influence
of the node u is better than node v, when the number of 2-order neighbors of node u is
more than node v. Furthermore, if node u and node v have the same degrees, but node
u and its neighbors are in the core location of social network, the ability of the node u to
spread influence may be better. Many scholars have put forward that the influence of node
is limited. Therefore, we limit the propagation scope of node to the 2-order neighbors,
ignoring the rest of neighbors, that is, we measure the influence of node by using the mixed
importance of the degree and the coreness of the node’s 1-order and 2-order neighbors. The
mixed importance algorithm show in Tab. 1.
The input of the mixed importance algorithm is social networkG = (V,E) and the number
of seed nodes k. The output of this algorithm is the seed set S. By traversing the values of α
and β, the mixed importance algorithm calculates the mixed importance of node in different
α and β. The optimal values of α and β, that is αbest and βbest, are obtained and put into Eq.
(2) by calculating the kendall correaltion coefficients. Then, the mixed importance values
of all nodes are calculated, and k nodes with the maximum mixed importance values are
selected as the seed nodes. Among the mixed importance algorithm, Step 1 is the input of
algorithm: the number of social network G = (V,E) and the number of seed nodes k. In
Steps 2 and 3, let α and β cycle from 0.1 to 0.9 with an increase of 0.1 per iteration. The
key steps are described detailedly in the following subsections.
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Table 1: Mixed importance algorithm

Input: social network G = (V,E), the number of seed nodes k
Output: seed set S

(1) Initializing seed set S = ∅
(2) for α = 0.1 : 0.1 : 0.9
(3) for β = 0.1 : 0.1 : 0.9
(4) for each vertex v∈V
(5) put α and β into equation (2) to calculate MI(v)
(6) calculate influence(v)
(7) end for
(8) calculate Kendall coefficients ταβ
(9) end for
(10) end for
(11) αbest,βbest=max(ταβ)
(12) for each vertex v∈V
(13) put αbest and βbest into equation (2) to calculate MI(v)
(14) end for
(15) selects k nodes with largest MI(v) as seed set S

3.1 Mixed importance

Step 5 calculates the mixed importance value MI(v) of the node v. In the social network
G, we set the 1-order neighbor node set of the node u to Γ1, where du = |Γ1| and du are
the number of the 1-order neighbors of the node u, which is also the degree of node u. We
set the set of 2-order neighbor node set of node u to Γ2. Thus, the total number of 1-order
and 2-order neighbors of node u is Ne(u) = |Γ1∪Γ2|. We set the coreness of node u to
Core(u). The coreness of node u is small, when node u is at the edge of network. The
coreness of node u is high, when node u is at the core location of network. We define the
mixed importance of node as shown in Eq. (2).

MI(u)=β(αdu+(1−α)Core(u))+(1−β)(α(
∑

w⊂|Γ1∪Γ2|

dw−Ne(u))+(1−α)
∑

w⊂|Γ1∪Γ2|

Core(w))

(2)

where MI(u) is the mixed importance of node u,
∑

w⊂|Γ1∪Γ2| dw − Ne(u) is the total
degrees of the 1-order neighbors and the 2-order neighbors of node u after node u is
removed, and

∑
w⊂|Γ1∪Γ2|Core(w) is the sum of the coreness of the 1-order neighbors

and the 2-order neighbors of node u. α is a parameter used to balance the degree and
the coreness. β is a parameter used to balance the relationship between a node and its
neighbors. Both α and β are both between 0.1 and 0.9.
In Eq. (2), if the value of α is large, it indicates that the degrees of node and its neighbors
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in the 2-order scope play a greater role in the influence of node. If the α value is small, it
indicates that the coreness of node and its neighbors in the 2-order scope play a greater role
in the influence of node. If the value of β is large, it indicates that the degree and coreness
of node play a greater role in the influence of node. If the value of β is small, the degrees
and coreness of neighbors in the 2-order scope of node play a greater role.
Step 6 is to simulate the influence of node v by using the independent cascade model, and
obtain the influence of node v, influence(v).

3.2 Kendall correaltion coefficient

Step 8 is to calculate the kendall correlation coefficient under the current value of α and β.
The kendall correlation coefficient ταβ [Kendall (1938)] is described as follows: consider
the joint observation pairing of two sets of random variables X and Y . If xi > xj and
yi > yj or xi < xj and yi < yj for the observation pairs (xi, yi) and (xj , yj), we say that
the pairs are consistent. If xi > xj and yi < yj or xi < xj and yi > yj , we say that the
pairs are inconsistent. If xi = xj and yi = yj , we say that the pairs are neither consistent
nor inconsistent. The kendall correlation coefficient is defined by Eq. (3).

τ =
ηc − ηd

0.5η(η − 1)
(3)

In Eq. (3), ηc and ηd represents consistent pairs and inconsistent pairs respectively. Because
X and Y have the same number of elements, η represents the number of elements in X or
Y . In this paper, we calculate the mixed importance MI(u) of every node u in network
G and use the independent cascade model to perform multiple influence simulations on
node u to obtain the average value, that is, the influence value Influences(u) of node
u. Therefore, set X is {MI(u)|u∈V } and set Y is {Influences(u)|u∈V }. Through the
calculation of kendall correlation coefficient τ , we can analyze the correlation between the
mixed importance of node and the influence of node to more accurately measure the ability
of node to spread influence. The value of τ is in the range of [−1, 1]. The value of τ is
high, when the ability of node to spread influence is great and the mixed importance value
of node is high.
The mixed importance value and influence of all nodes can be respectively obtained from
Step 5 and Step 6, and ταβ is calculated by Eq. (3). Each pair of α and β values
corresponds to an ταβ value, and Step 11 is to select the maximum ταβ value and assigns
the corresponding α and β values to αbest and βbest. From Steps 12 to 14, αbest and βbest
are put into Eq. (2) to calculate the mixed importance value of all nodes. Finally, Step 15
selects k nodes with the maximum mixed importance value to be the seed set S.

4 Experimental results and analysis
We perform the experiments on four real social network datasets and 4 random network
datasets. The four real social datasets are email [Yin, Benson, Leskovec et al. (2017)],
socfbBowdoin47 [Traud, Mucha and Porter (2012)], hamsterster [Dünker and Kunegis
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Table 2: Topological properties of 8 different datasets
Network n m dmax d̄ r C D
email 986 16064 345 32.58 -0.0257 0.4071 0.0331
socfbBowdoin47 2252 84387 670 74.94 0.0562 0.2887 0.0333
hamsterster 2426 16630 273 13.70 0.0474 0.5375 0.0057
socfbSmith60 2970 97133 349 65.40 0.0436 0.2835 0.022
random1 752 6930 142 18.43 0.0824 0.1109 0.0245
random2 1446 59589 375 82.41 0.0675 0.3230 0.0570
random3 2000 50080 72 50.08 -0.0003 0.0248 0.0251
random4 2916 77609 601 53.22 0.0928 0.0924 0.0183

(2015)], and socfbSmith60 [Traud, Kelsic, Mucha et al. (2011)]. The data of Email derived
from the large European research institutions and consisted of email sent and received
by users. If one email at least is sent and received between user u and user v, there is
an edge between u and v. SocfbBowdoin47 and socfbSmith60 are extracted from the
data of facebook. If there is a friend relationship between user u and user v, there is an
edge between u and v. Hamsterster is a collection of friends and loved ones from the
hamsterster.com website. The four random datasets are undirected networks generated by
Pajek and are denoted as random1, random2, random3, and random4. The topological
attributes of all the datasets are shown in Tab. 2, where n is the total number of nodes in
the dataset, m is the number of edges, dmax is maximum degree, d̄ is average degree, r is
same coefficient, C is clustering coefficient, and D is network density.

4.1 Selection of the optimal parameters

Firstly, we analyze the value of α and β, because the value of α and β in the Eq. (3) is
variable. Therefore we need to calculate the optimal value of α and β in different datasets.
Moreover, the value of Eq. (2), that is the value of mixed importance, is positive correlation
with the influence of node, so we use kendall correlation coefficient τ to measure the
correlation between the mixed importance of node and the influence of node. The optimal
value of α and β is obtained when the value of τ is maximum. In the network G, we
calculate the mixed importance MI(u) of each node u according to Eq. (2), where the
range of α and β ranges from 0.1 to 0.9. We traverse the double circulation constructed by
α and β, and the value of α or β increase 0.1 in each circulation. Secondly, we simulate the
influence Influences(u) of each node u by using the independent cascade model in each
circulation. In this paper, we set the probability of propagation p = 0.01 in the independent
cascade model. Finally, we calculate τ after the double circulation constructed by α and
β, and select the optimal value of α and β when the value of τ is maximum, in detail, the
value of τ is calculated by Eq. (3).
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Figure 1: Heat map on four real social network: we analyze the value of α and β in
different real social network because α and β are unknow in Eq. (3). We study the
correlation between the influence of node and the mixed importance of node by using
kendall correaltion coefficient. The maximum τ in the heat map illustrate that the value
of Eq. (3) with current α and β accord optimally with the real influence of node

4.1.1 Real network

In this section, we perform the mixed importance algorithm in the 4 real social networks to
find the optimal value of α and β in the every dataset respectively. In Fig. 1, the vertical
axis represents the value of α, the horizontal axis represents the value of β, and (α, β)
corresponds to the value of τ calculated by Eq. (3). Fig. 1(a) shows the result of the email
dataset. we find the value of τ is the best when α = 0.9 and β = 0.5. In other words,
When α = 0.9 and β = 0.5, the value MI(u) of each node u is consistent with the value
Influences(u), that is, the mixed importance value of node u is positive correlation with
the influence of node u. Similarly, Fig. 1(b) show that the value of τ of the socfbBowdoin47
dataset is the best, when α = 0.8 and β = 0.7; Fig. 1(c) show that the value of τ of the
hamsterster dataset is the best, when α = 0.1 and β = 0.1; Fig. 1(d) show that the value of
τ of the socfbSmith60 dataset is the best, when α = 0.8 and β = 0.1.

4.1.2 Random network

In this section, we perform the mixed importance algorithm in the 4 random networks to
find the optimal value of α and β in the every dataset respectively. In Fig. 2, the vertical
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Figure 2: Heat map on four random social network: we analyze the value of α and β
in different random social network because α and β are unknow in Eq. (3). We study
the correlation between the influence of node and the mixed importance of node by using
kendall correaltion coefficient. The maximum τ in the heat map illustrate that the value of
Eq. (3) with current α and β accord optimally with the real influence of node

axis represents the value of α, the horizontal axis represents the value of β, and (α, β)
corresponds to the value of τ . In Fig. 2(a), the τ value of the random1 dataset is optimal,
when α = 0.9 and β = 0.3; In Fig. 2(b), the τ value of the random2 dataset is optimal,
when α = 0.8 and β = 0.9; In Fig. 2(c), the τ value of the random3 dataset is optimal,
when α = 0.3 and β = 0.8; In Fig. 2(d), the τ value of the random4 dataset is optimal,
when α = 0.1 and β = 0.2.

4.2 Comparison and analysis of the scope of influence

In the above experiment content, we achieve optimal α and β in the every dataset
respectively. Then, we compare the influence of seed set selected by the mixed importance
algorithm with the influence of seed set selected by other algorithms, such as Degree
Centrality, PageRank [Page, Brin, Motwani et al. (1999)]. We analyze the trend of the
influence of the seed set selected by each algorithm, when we change the size of seed set.
The experimental results show in Fig. 3 and Fig. 4.
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Figure 3: The scatter figure of influence of the seed set selected by mixed importance
algorithm on 4 real dataset: every scatter figure has 10 point for every algorithm and we
connect 10 points with a dotted line for observing the trend of influence
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Figure 4: The scatter figure of influence of the seed set selected by mixed importance
algorithm on 4 random dataset: every scatter figure has 10 point for every algorithm and we
connect 10 points with a dotted line for observing the trend of influence



An Influence Maximization Algorithm Based on the Mixed Importance of Nodes 527

4.2.1 Real network

In Fig. 3 and Fig. 4, the horizontal axis and the vertical axis respectively represents the
size of seed set and the influence of the seed set. Fig. 3(a) shows the influence range of
the email. The influence of the mixed importance algorithm is almost the same as that of
the degree centrality. The influence of the mixed importance algorithm is generally higher
than that of PageRank. The seed set selected by the mixed importance algorithm has a good
influence on the email. Fig. 3(b) shows that the influence of the seed set selected by the
mixed importance algorithm on the socfbBowdoin47 is less than that of degree centrality,
but the differences between the two algorithms are small. Fig. 3(c) is the influence range
of the hamsterster, and Fig. 3(d) is the influence range of the socfbSmith60. Similarly, the
influence of mixed importance is at least slightly less than the influence of degree centrality,
but the scope of mixed importance is much larger than PageRank.

4.2.2 Random network

Fig. 4(a) shows the influence range of the random1 dataset, and the influence of the mixed
importance algorithm is almost the same as that of degree centrality. Fig. 4(b) shows the
influence range of the random2 dataset. The influence of the mixed importance algorithm
exceeds that of degree centrality. In general, the influence range of the mixed importance
algorithm is slightly smaller than that of degree centrality. Fig. 4(c) shows the influence
range of the random3 dataset. The influence ranges of the mixed importance algorithm
and degree centrality are generally the same. Fig. 4(d) shows the influence range of the
random4 dataset, where the influence of the mixed importance algorithm and the influence
of degree centrality are generally the same.

4.3 Comparison and analysis of impact cost

Finally, we compare the mixed importance algorithm with other algorithms, such as Degree
Centrality, PageRank. We analyze the cost of the seed set selected by each algorithm, when
we change the size of seed set. The experimental results show in Fig. 5 and Fig. 6.

4.3.1 Real network

In Fig. 5 and Fig. 6, the horizontal axis and the vertical axis respectively represents the
size of seed set and the cost of the seed set. Fig. 5(a) shows the cost of the email, where the
cost of mixed importance algorithm, degree centrality and PageRank are similar. Fig. 5(b)
shows the cost of the socfbBowdoin47, Fig. 5(c) shows the cost of the hamsterster, and
Fig. 5(d) shows the cost of the socfbSmith60. The cost of mixed importance algorithm and
degree centrality are much higher than that of PageRank, and the cost of mixed importance
algorithm is small compared to the Degree Centrality.
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Figure 5: The scatter figure of cost of the seed set selected by mixed importance algorithm
on 4 real dataset: every scatter figure has 10 point for every algorithm and we connect 10
points with a dotted line for observing the trend of cost
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Figure 6: The scatter figure of cost of the seed set selected by mixed importance algorithm
on 4 random dataset: every scatter figure has 10 point for every algorithm and we connect
10 points with a dotted line for observing the trend of cost
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4.3.2 Random network

Fig. 6(a) shows the cost of the random1, where the cost of mixed importance algorithm
is slightly less than the cost of the Degree Centrality. Fig. 6(b) shows the cost of the
random2, and Fig. 6(c) shows the cost of the random3. The cost of mixed importance
algorithm is small compared to the cost of the Degree Centrality. Fig. 6(d) shows the cost
of the random4, where the cost of mixed importance algorithm and Degree Centrality are
flat. In Fig. 6, the cost of mixed importance algorithm is greater than the cost of PageRank.
Based on the experimental comparison, the cost of PageRank is always less than the cost of
mixed importance algorithm and Degree Centrality, but the range of influence of PageRank
is also much smaller than that of mixed importance algorithm and Degree Centrality. The
influence range of the mixed importance algorithm is equal to that of Degree Centrality, and
the cost of mixed importance algorithm is much smaller than the cost of Degree Centrality.
When the influence range of mixed importance algorithm is better than that of Degree
Centrality, the cost of mixed importance algorithm is also less than the cost of Degree
Centrality. The experiments show that the mixed importance algorithm has achieved good
results.

5 Conclusion
This paper mainly analyzes how to effectively measure the influence of node in the process
of influence maximization. The experiments show that the influence of a node is related
not only to its degree, but also related to its coreness, as well as the degree and coreness
of its neighbors. Therefore, we proposed an influence maximization algorithm based on
the mixed importance of node. In this algorithm, the independent cascade model is used
to simulate the influence of nodes. The Kendall correlation coefficient is used to measure
the correlation of the mixed importance of node and the influence of node and the optimal
values of two important parameters are achieved through calculation. The experimental
comparisons of algorithms on four real datasets and four random datasets show that the
influence maximization algorithm based on the mixed importance of node we propose in
this paper achieved excellent performance.
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