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Abstract: The level of chemical oxygen demand (COD) is an important index to evaluate 

whether sewage meets the discharge requirements, so corresponding tests should be 

carried out before discharge. Fourier transform infrared spectroscopy (FTIR) and 

attenuated total reflectance (ATR) can detect COD in sewage effectively, which has 

advantages over conventional chemical analysis methods. And the selection of 

characteristic bands was one of the key links in the application of FTIR/ATR 

spectroscopy. In this work, based on the moving window partial least-squares (MWPLS) 

regression to select a characteristic wavelength, a method of equivalent wavelength 

selection was proposed combining with paired t-test equivalent concept. The results 

showed that the prediction effect of the selected wavelength was very close to that of the 

MWPLS method, while the number of wavelength points was much smaller. SEPAve, 

RP,Ave, SEPStd, and RP,Std which characterized the modeling effect were 26.3 mg L-1, 0.969, 

3.49 mg L-1, and 0.006, respectively. The validation effect V-SEP and V-RP were 28.64 

mg L-1 and 0.960, respectively.The selected waveband was between 1809 cm-1 and 1568 

cm-1. The method was of more reference value for the design of FTIR/ATR spectral 

instrument for COD detection. 
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1 Introduction 

The discharge of waste water from sugar refinery leads to severe environment pollution. 

There are many sugar industries in China. In order to cope with the corresponding 

environmental problems, the sugar industries have established waste water disposal 

facilities successively. The COD is the code name of chemical oxygen demand, which 

represents the oxygen required for the oxidation of organic matters in a liter of sewage by 

potassium dichromate under strong acidic conditions. It assesses the quality of water and 

serves as a significant indicated parameter for the discharge of sugar factory liquid waste. 

[Bekiari and Avramidis (2014)]. The higher the COD is, the more serious the water is 
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polluted by organic matter. Toxic organic matter into the water not only does harm to the 

organisms in the water, but also hurts the human through the enrichment of the food chain, 

causing chronic poisoning. Sewage with COD lower than 100 mg L-1, which is the value 

of emission standard in China, is permitted to be discharged, otherwise, it will be 

recycled to a carrousel oxidation ditch system and discharged after treatment. Therefore, 

it is necessary to analyze samples of the treated wastewater at specific points to determine 

whether their COD meet discharge standards or not.  

The conventional method of measuring COD in wastewater with chemical reagents further 

pollutes the environment. The FTIR is an infrared spectroscopy technique used to obtain the 

absorption and emission of photoconductivity or Raman scattering of solid, liquid and gas. 

Conventional detection methods use pressure sheets or coatings for measurement, but this 

test method is not applicable to some special samples (such as insoluble and fragile samples). 

And the ATR technology solves the above problems. Both technologies, which have been 

widely used in many fields, are effective methods for the determination of molecular 

structure and content of components. They are characterized by convenient operation, high 

sensitivity of measurement and high quality of infrared spectra. [Rios, Rojas and Delgado 

(2012); Saguer, Alvarez and Sedman (2013); Ofelia, Maria, Pablo et al. (2015); Engel, 

Postma and Peufflik (2015); Rafig, Mehmet and Feride (2016)]. 

Besides, the existing researches mainly focused on COD analysis in effluent by 

near-infrared spectroscopy, but this technology has not been mature in monitoring and 

analyzing COD. As a result, many researchers are working on the establishment of 

correlation spectral models. [Sarraguca, Paulo, Alves et al. (2009); Ren, Ricardo and 

Onno (2017); Andreo, García, Quesada et al. (2017)]. The research and the application of 

FTIR-ATR in sugar refinery waste water are few. Considering that the pollution sources 

of sugar refinery waste water are different from that of domestic sewage, the analytic 

waveband would be diverse as well, whose selection for the measurement of COD in 

sugar refinery waste water needs further study. 

Partial least squares (PLS) regression is a statistical method related to principal 

component regression. But instead of finding the hyperplane with the minimum variance 

between response and independent variables, it finds a linear regression model by 

projecting predictive variables and observational variables into a new space. This method 

can scan spectral data synthetically and fetch information variables comprehensively. 

[Tenenhaus, Esposito, Chatelinc et al. (2004); Jun, Han, Jian et al. (2018)]. However, 

several experiments indicated that it is necessary to select waveband properly. The 

signal-to-noise ratio of the modeling waveband influences the prediction result, that is, 

the prediction effect is difficult to improve if it is not high enough. The COD refers to the 

oxidation dose consumed when water samples are treated with a certain strong oxidant 

under certain conditions. It reflects the degree to which water is polluted by reducing 

substances. This index is also one of the comprehensive indexes of relative organic 

matter content. In fact, it is difficult to determine the corresponding band of COD in the 

waste water spectrum directly, so the rationality of the selection of stoichiometric 

waveband is of great importance for modeling. 

In multi-component spectral analysis, moving window partial least squares (MWPLS) is 

an optimization method of waveband selection based on PLS model, which can select the 
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band with the highest signal-to-noise ratio. MWPLS model varies with window size and 

window position in full spectrum [Jian, James, Heinz et al. (2002)]. The wavebands 

selected by MWPLS are expected to construct better PLS models than the whole spectral 

region. Comparing with the results obtained by using whole spectral region, MWPLS can 

find out some wavebands, which often significantly improves the prediction performance. 

The optimal waveband selected by MWPLS is not limit to the number of wavelengths. 

On the other hand, from the statistical point of view, the wavebands with minor 

fluctuations of prediction accuracy are equivalent, because of randomness and the 

limitations of modeling samples. Therefore, studying waveband equivalence in certain 

sense and finding the equivalent waveband with smaller number of wavelengths are great 

significance for reducing model complexity and solving the practical limitations in the 

instrument design. This is where the MWPLS method in particular needs advancement. 

The application of this method not only has theoretical basis, but also has practical 

significance. In statistics, paired t-test is an effective method to measure the fluctuation 

allowed [Montgomery and Runger (2003)]. 

In this work, the paired t-test was implemented for equivalent waveband selection based 

on MWPLS method. The waveband selection, which is valuable for the design of 

specialized spectral instruments, not only has equivalent prediction effect but also only 

uses smaller number of wavelengths. 

A collection of experimental results indicated that differences in partitioning of 

calibration and prediction sets would make the prediction effects for spectral analysis 

fluctuate. As a result, the parameters of optimal band varied greatly. The stability of 

model parameters was seldom involved in previous studies, because such studies were 

based on a large number of experiments. In view of the above, this work proposed a new 

modeling method combining the parameters of the stability model based on varied 

partitioning of the calibration and prediction sets. In the meanwhile, based on certain 

similarities, the calibration set and the prediction set were divided to avoid the distortion 

of model evaluation. Besides, a part of the samples were randomly selected from the 

whole samples as the verification set, which were not involved in modeling optimization 

to ensure the objective rationality of the model itself. 

2 Experimental and methods 

2.1 Experimental materials, instruments, and measurement methods 

One hundred and five samples of treated waste water with low COD were collected from a 

sugar refinery. The COD was measured by the potassium permanganate oxidation method. 

The COD ranged from 45 mg L-1 to 470 mg L-1. The values of the mean and standard 

deviation were 294.7 and 100.2 mg L-1, respectively.  

The optical measuring apparatus was VERTEX 70 FTIR spectrometer (BRUKER Company) 

equipped with a KBr beam splitter and a deuterium triglycine sulfate KBr detector. With a 

horizontal ATR sampling accessory with a diamond internal reflection element on a ZnSe 

crystal (SPECAC Company, 45° angle of incidence, 3 times reflective), the scanning band 

range was 4000 cm-1 to 600 cm-1. Each sample was measured three times and the average of 

the three spectra served as the spectrum of the sample. The environmental condition of the 

laboratory was controlled at 25°C±1°C and 46%±1% RH. 
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2.2 Model evaluation indicators and division method for sample sets 

A total of 105 samples were used in this experiment. One part of them served as the 

validation set consisting of 45 samples that were chosen randomly, and the others served 

as the modeling set. In addition, 40 samples of the modeling set were used as the 

calibration set, and the remaining 20 samples made up the prediction set for coming to 30 

times. The division method is described as follows. Firstly, it is necessary to note that 

M-SEPi and M-RP,i represent modeling root mean square error of prediction and modeling 

correlation coefficient of model prediction respectively. M-SEPAve, M-RP,Ave, are the code 

name of values of the mean for all divisions, while M-SEPStd and M-RP,Std represent the 

standard deviation for all divisions. The choice of model parameters was determined by 

the smallest M-SEPAve. Furthermore, V-SEP and V-RP represent the predicted 

verification square root error and the predicted verification correlation coefficient. Finally, 

the prediction error in the correction set reflects the final result of modeling. 

2.3 The moving window partial least-squares (MWPLS) model 

Multiple spectral data points of adjacent waveshapes were divided into a window, and the 

PLS model was established by using different PLS factor numbers for the spectral region 

in the window. According to the prediction effect, the optimal PLS factor number was 

selected to obtain the optimal model of the window. The location or size of the window 

was changed separately to establish the PLS model in the window and select the optimal 

analysis band. According to the different size of the window, the different position of the 

window in the full spectrum, and the different number of factors in the window, different 

models can be obtained.  

The parameters of the MWPLS method include the starting wavelength number (B), the 

number of spectral data points in the window, that is, the number of wavelength points 

(N), and the number of PLS factors (F). 

𝐵𝑚𝑖𝑛 ≤ 𝐵 ≤ 𝐵𝑚𝑎𝑥 , 𝑁𝑚𝑖𝑛 ≤ 𝑁 ≤ 𝑁𝑚𝑎𝑥 , 𝐹𝑚𝑖𝑛 ≤ 𝐹 ≤ 𝐹𝑚𝑎𝑥                          (1) 

Bmin,Bmax,Nmin,Nmax,Fmin,Fmax are the threshold ranges of values of B,N and F respectively, 

which can be set according to different research objects. 

Different combination of model parameters (B, N, F) can obtain different prediction 

effects. For any fixed B and N, the resulting window is different, and the optimal F is 

usually changed accordingly. The best F can be filtered out, and all data points in this 

window can be used for modeling to achieve the best effect. 

The SEPmin corresponding to each window (waveband) can be obtained by projecting the 

minimum SEP with different PLS factor numbers onto the two planes of window starting 

position and window size respectively. 

A computer algorithm platform was established for the above MWPLS method with 

variable parameters (B, N, F) by using Python3.4 software. On this platform, all models 

of entire windows can be established to find the global optimal model and the local 

optimal model. 
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2.4 Equivalent waveband based on paired t-test. 

The modelling root mean square error of prediction corresponding to i-th division in j-th 

waveband was denoted simple by SEPi,j. The prediction effect vector corresponding to all 

M divisions was denoted by Eq. (2) 

)SEP, ,SEP ,(SEP M,2,1, jjjj =
                                             (2) 

For the optimal waveband for MWPLS method, the prediction effect vector was denoted 

by Eq. (3) 

)SEP, ,SEP ,(SEP M,*2,*1,** =
                                              (3) 

In order to measure the equivalence between waveband j and the optimal waveband, the 

statistically difference between j
and *  was test by the paired t-test method, as Eq. (4) 

S

SEPSEP
 

*Ave,Ave, −
=

j
t

                                                      (4) 

Where S as Eq. (5) 

M

SEPSEP
 S

*Std,Std, +
=

j

                                                    (5) 

Take t value determined into the table of Student's t-distribution, the corresponding 

p-value can be found. If the p-value is below the threshold of statistical significance 

(usually is 0.05), the result is that j and
* are different, and otherwise, they are 

equivalent. 

All the wavebands which were satisfied with equivalent condition above can all be as the 

waveband with equivalent prediction performance for the optimal waveband. 

3 Results and discussion 

The spectra of the 105 samples are shown in Fig. 1. For the whole region, the minimum 

M-SEPAve was 38.1 mg L-1, and the corresponding M-SEPStd, M-RP,Ave, and M-RP,Std were 

equal to 3.21 mg L-1, 0.944, and 0.013, respectively. In addition, the optimal F 

corresponding to the minimum M-SEPAve was 4 at the same time. 
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Figure 1: Spectra of 105 samples 

In the MWPLS, the M-SEPAve of the partial optimization model for each B and N are 

presented in Fig. 2 and Fig. 3, respectively. 

 

Figure 2: The optimal M-SEPAve for each BW 

 

Figure 3: The optimal M-SEPAve for each NW  
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In the global optimal model, the B, N, F were 2681 cm-1, 430, 6, respectively. The 

waveband was 2681 cm-1 to 1853 cm-1, and the M-SEPAve was 25.7 mg L-1. Modeling was 

performed using the selected optimal waveband, whose result was much better than using 

the full spectrum. The comparison of different models is presented in Tab.1. It can be 

seen that this optimization model was better than the whole region model obviously and 

reduced the wavenumbers dramatically. 

Table 1: Comparison of different models 

Waveband (cm-1) NW F SEPAve (mgL-1) SEPStd (mgL-1) RP,Ave RP,Std 

4000-600 1756 4 38.1 3.21 0.944 0.013 

2681-1853 430 6 25.7 2.68 0.971 0.006 

1809-1568 126 4 26.3 3.49 0.969 0.006 

Using paired t-test method above, 57 wavebands with equivalent prediction performance 

for the optimal waveband were selected based on MWPLS method. These wavebands 

were sorted by beginning wavenumber, and their positions are shown in Fig. 4. In Fig. 4, 

waveband a was the global optimal waveband (2681 cm-1 to 1853 cm-1), waveband b 

(1809 cm-1 to 1568 cm-1) was the shortest waveband in 57 equivalent wavebands, its 

number of wavenumbers was 126, which is only 29.3% of ones of optimal waveband. So, 

model complexity was further reduced greatly. Besides, it is valuable for the design of 

specialized spectral instruments. 

 

Figure 4: Position of 57 equivalent wavebands 

In the band of 1809 cm-1 to 1568 cm-1, the PLS model coefficients were calculated 

according to the chemical values of all samples in the calibration set and the spectral data 

corresponding to each sample at these wavelength points. And then the calculated 

coefficients were substituted into the validation set to calculate the chemical values of all 

the samples in the validation set. The comparison between the predicted value and the 

real chemical value of the validation set is shown in Fig. 5. As a result, it tells us 

intuitively that there is little difference between the two bands. 
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Figure 5: Comparison of predicted and measured values 

4 Conclusions 

In the study of using FTIR/ATR spectral technology to analyze the amount of COD in 

sewage, the selected characteristic bands should not only have a high signal-to-noise ratio 

to achieve a low prediction error, but also minimize the number of wavelength points. 

The paired t-test band selection method proposed in this work was compared with the 

results obtained by MWPLS method. It can be found that the mean square error of the 

prediction was basically solved, but in comparison, the number of wavelength points was 

much smaller. It showed that the method proposed in this work is indeed effective. 

Finally, the method proposed in this work not only had reference value for the design of 

FTIR/ATR instrument used for the analysis of COD in sewage specially, but also had 

certain reference significance for the application of spectral technology to the analysis of 

material composition in other fields. 
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