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Abstract: Wearable devices are becoming more popular in our daily life. They are 

usually used to monitor health status, track fitness data, or even do medical tests, etc. 

Since the wearable devices can obtain a lot of personal data, their security issues are very 

important. Motivated by the consideration that the current pairing mechanisms of 

Bluetooth Low Energy (BLE) are commonly impractical or insecure for many BLE based 

wearable devices nowadays, we design and implement a security framework in order to 

protect the communication between these devices. The security framework is a 

supplement to the Bluetooth pairing mechanisms and is compatible with all BLE based 

wearable devices. The framework is a module between the application layer and the 

GATT (Generic Attribute Profile) layer in the BLE architecture stack. When the 

framework starts, a client and a server can automatically and securely establish shared 

fresh keys following a designed protocol; the services of encrypting and decrypting 

messages are provided to the applications conveniently by two functions; application data 

are securely transmitted following another protocol using the generated keys. Prudential 

principles are followed by the design of the framework for security purposes. It can 

protect BLE based wearable devices from replay attacks, Man-in-The-Middle attacks, 

data tampering, and passive eavesdropping. We conduct experiments to show that the 

framework can be conveniently deployed with practical operational cost of power 

consumption. The protocols in this framework have been formally verified that the 

designed security goals are satisfied. 

Keywords: Bluetooth Low Energy, security, privacy, protocol, wearable devices, 

Internet of Things. 

1 Introduction of the proposed security framework of BLE devices 

1.1 Motivation 

Bluetooth Low Energy (BLE) is first introduced in 2010 as part of the Bluetooth 

specification 4, which has a remarkable capability to keep devices working for a long 

time (months to years [Nick (2015)]). Comparing to Classic Bluetooth, which is used 

usually to establish short-range and continuous wireless connection, BLE is usually used 

for short bursts of some long-range radio connection [Bluetooth Special Interest Group 
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(2017)], that is a reason why BLE is energy efficient. Therefore, most wearable devices 

use BLE in communication nowadays because of the size limit of batteries in these 

devices. In recent years, with the fast development of the Internet of Things (IoT), 

wearable devices are growing rapidly. Smart watches and wristbands and similar devices 

are booming in the market, since they can provide convenient services to people such as 

monitoring their health, tracking their fitness, and conducting medical tests. Wearable 

devices are indispensable in the personal area network (PAN) scenario, and they form the 

foundation of Medical Internet of Things (MIoT). IoT-based intelligent services depend 

on the data of various wireless devices that perform interoperability functions through 

technologies including RFID (Radio Frequency Identifier), GPS (Global Positioning 

System), NFC (Near Field Communication), BLE et al. Among these technologies, BLE 

is especially helpful to build intelligent human-oriented services because it supports 

many wearable devices. It is evident that the security and privacy issues of wearable 

devices are becoming more and more important. It is evident that the security and privacy 

issues of wearable devices are becoming more and more important. 

The BLE specification allows two devices to conduct a process called pairing to 

exchange keys for data encryption of further communication. At present, there are four 

methods used in Bluetooth pairing [Bluetooth Special Interest Group (2016)], which are 

“Just Works”, “Passkey Entry”, “Out-Of-Band”, and “Numeric Comparison with ECDH”. 

The Numeric Comparison method is the most secure one because it uses the ECDH 

algorithm to prevent passive eavesdropping and uses human visual channel to prevent 

Man-in-The-Middle (MiTM) attacks. However, the Numeric Comparison method 

requires that both devices are capable of performing input and output (each device has a 

display and two buttons at least). In practice, most BLE based wearable devices, which 

are usually very small and lack complex hardware support, cannot fulfill these 

requirements. Hence, these BLE based wearable devices have to use one of the other 

three methods of pairing; however, these three methods are proved insecure [Ryan (2013); 

Qu and Chan (2016); Padgette, Bahr, Batra et al. (2017)]. 

In practice, paring and data encryption are not necessary in order to let two BLE devices 

connect with each other; doing so can save power consumption with the sacrifice of 

dropping security protection. Unfortunately, this could be a common case for the BLE 

wearable devices nowadays. In a recent research we have found that several popular BLE 

based wearable devices (smart bracelets) are vulnerable [Zhang and Liang (2017)]. By 

sniffing unencrypted packets, an attacker can easily steal sensitive data from these 

devices and control their reactions using fake commands. 

In order to mitigate the disadvantages of the existing inconvenient or insecure pairing 

mechanisms, and to fix the vulnerabilities of the BLE based wearable devices, we decide 

to develop a security framework to protect the data transmitted via BLE. The security 

framework can be seen as a supplement to Bluetooth pairing mechanisms. It can protect 

BLE based wearable devices that cannot fulfill the requirements of the Numeric 

Comparison method. We do not aware of any other work that is similar to our research. 

The designed protocols of the framework have been formally verified using ProVerif 

[Blanchet (2016)], which is an automatic protocol verification tool (details are not 

included in this article because of the size limit). Chang and Shmatikov [Chang and 
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Shmatikov (2007)] presented a formal analysis of authentication of the Simple Pairing 

protocol of Bluetooth, also using ProVerif. 

1.2 Related research 

Security issues related to wearable devices can occur in different aspects, that are 

challenging when considering a broad scenario of IoT devices such as a network of MIoT, 

as discussed in the survey paper by Sun et al. [Sun, Cai, Li et al. (2018)]. Researchers 

have proposed solutions with different aims and approaches. Gong et al. [Gong, Huang, 

Li et al. (2015)] designed a new encryption algorithm that is suitable for IoT devices and 

can provide improved transmission success rate. Li et al. [Li, Yu, Zheng et al. (2013)] 

pro- posed a scheme for enhanced access control of personal health records (PHR) based 

on cloud services. Unlike these works, the framework that we propose is aimed at the 

simple and fundamental task of how to establish the security of direct communications 

between two BLE devices, such as a smart bracelet and a mobile phone. The framework 

does not assume any change, extension, or customized function provided by the 

underlying hardware, operating system, cloud service, or BLE architecture. 

1.3 Design of the security framework 

1.3.1 Architecture 

Generic Attribute Profile (GATT) is a specification defining the way that two BLE 

devices transfer data. Information in a GATT profile is organized by the concepts of 

Services and Characteristics. In the protocol stack of BLE, the application layer sits 

above the GATT layer, where the proposed framework is between these two layers. An 

application will send data to, and receive data from, the security framework. The 

architecture of the security framework is shown in Fig. 1. 

The security framework is built on above GATT and as a module of the application. It is 

transparent to the application. The security framework encrypts the data to be sent and 

decrypts the received encrypted data. 

Since the security framework is built above GATT, it does not need to process any detail 

of BLE transmissions or connections, such as concurrent connections, timeout 

retransmission, error checking, etc. The link layer and the L2CAP (Logical Link Control 

& Adaption Protocol) layer will handle these details. 

The operations of the framework have three parts:  

1. Distributing initial information. The public key of a GATT server, such as a smart 

bracelet, will be obtained by a GATT client, such as a mobile phone. It should be 

done not by message transmission using a BLE channel. We propose that the public 

key of a GATT server can be encoded as a QR code which can be conveniently 

scanned by a client. 

2. Establishing a fresh session key that is shared by the client and server. 

3. Securely transmitting data. The session key will be used to encrypt the data 

transmitted between the client and server in a session. 

Details of the parts 2 and 3 are discussed in the rest of this section. 
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Figure 1: The architecture of the security framework 

 

 

Figure 2: The architecture of securely transmitting data between two BLE devices 

In our implementation, for the ease of using the framework, two functions SecureSend 

and SecureRecv are provided by the framework. When a session key is established, these 

two functions can be called by the modules of the application layer so that data are 

encrypted and decrypted transparently. The architecture of securely transmitting data 

between two BLE devices is shown in Fig. 2. 



 

 

 

Developing a New Security Framework for Bluetooth Low                                      461 

1.3.2 Cryptography  

There are four cryptographic algorithms used in the security framework. The Advanced 

Encryption Standard 128-bit (AES-128) algorithm, the Elliptic Curve Diffie-Hellman 

(ECDH) algorithm, the Secure Hash Algorithm 256 (SHA-256) algorithm, and the Time-

based One-Time Password (TOTP) algorithm. 

AES-128 The AES-128 algorithm is used in the framework to encrypt or decrypt 

messages transmitted via BLE. This algorithm has a high level of security and it is also 

an officially supported algorithm in BLE specifications (including versions 4.0, 4.1, 4.2 

and 5.0). The AES-128 algorithm is a symmetric key algorithm, which means that it uses 

the same cryptographic keys for both encryption of plaintext and decryption of ciphertext. 

Therefore, participants in BLE communication need to establish a cryptographic key 

before transmitting encrypted messages. Since it is not secure for transmitting a 

cryptographic key via BLE without encryption, another algorithm, TOTP, is used to 

generate a cryptographic key in the framework. 

ECDH The ECDH algorithm allows two parties, each having an Elliptic Curve public- 

private key pair, to establish a shared secret key (SSK) over an insecure channel 

[Wikipedia (2017)]. Therefore, ECDH can be used for secure key exchange and 

anonymous key agreement. The SSK is generated from a local private key and a remote 

public key and is never transmitted via BLE in the operations of the framework. The 

public key and the shared secret key (SSK) will be used by the TOTP algorithm to 

generate a session key. 

SHA-256 The SHA-256 algorithm is used to calculate the Hash-based Message 

Authentication Code (HMAC), which is used by TOTP in its computation. 

TOTP The TOTP algorithm is used to generate a session key (SK), which is used by 

AES-128 to encrypt messages. A session key (SK) is computed using three terms: the 

public key of a GATT server, the SSK, and a time value. If a GATT server and a GATT 

client have the same three terms, they can generate the same SK. The computation of SK 

is described in Eq. 1. Therefore, both the GATT server and the GATT client can encrypt 

or decrypt messages without exchanging a SK before. Since a SK is never exchanged via 

BLE, it is protected from being stolen by an attacker during the execution of the 

framework. 

𝑆𝐾 = 𝑇𝑂𝑇𝑃(𝑠𝑒𝑟𝑣𝑃𝑢𝑏𝐾𝑒𝑦 + 𝑆𝑆𝐾, 𝑡𝑖𝑚𝑒)             (1) 

1.4 Security goals and principles 

In this section, we describe the security goals that should be achieved by this security 

framework, and the principles that are followed by the design of this framework in order 

to achieve these security goals. Checking security goals for cryptographic protocols is 

generally a very difficult problem, undecidable with unbounded settings [Liang and 

Verma (2008)] and NP-complete with bounded settings [Liang and Verma (2009)]. On 

the other hand, by following prudential principles, some secure protocols can be designed. 

Secrecy  Valuable information (plaintext, application data) transmitted via BLE should 

not be revealed to attackers, even if an attacker can obtain some cyphertext (by 

eavesdropping). Secrecy is achieved by the following principles. 
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• All the ciphertexts transmitted via BLE are encrypted by the AES-128 algorithm, 

which is very secure. It will be impractical for an attacker to crack a ciphertext 

without knowing the key, since it may take about 1.02 × 1018 years [Arora (2012)]. 

• The keys that are used to encrypt and decrypt messages do not appear in the content 

of any messages sent in BLE; therefore, no way to obtain these keys by decrypting or 

analyzing the messages. The client obtains the public key of the server by scanning a 

QR code. The other two shared keys (a long-term key SSK and the session key SK) 

are known by the two parties by their internal computation using the ECDH and 

TOTP algorithms, not by reading received messages. 

Authentication   When a principal executes a protocol in a session, at a certain step, it 

will accept the received messages only if they are sent by the corresponding authorized 

interlocutor with the correct semantics according to the protocol; otherwise the message 

will be rejected. Authentication is achieved in the framework by the following 

considerations: 

• Fake messages. Since the encryption keys of a regular user are not leaked to an 

unauthorized principal, and all the important messages are encrypted, an attacker 

cannot do attacks by creating some fake message that can be accepted by another 

principal. 

• Replay attacks. The following mechanisms are used to prevent replay attacks. 

- When a client and a server are trying to establish a session key, each principal 

generates a fresh nonce, which is sent to and received from the other principal, in 

encrypted messages. This mechanism is called an authentication test [Guttman (2002)]. 

A replayed message cannot be accepted since it does not contain a fresh nonce.  

- Each session of data exchange uses a new session key (SK); therefore, messages 

from previous sessions cannot be replayed. 

- The messages in a session of data exchange contains a counter (an integer) which is 

monotonously growing; therefore, a message that is previously sent or accepted 

cannot be replayed in the same session. 

• Forward & backward security. Even if a key of some round (SSK) or session (SK) 

has been leaked, attackers cannot crack any data transmitted before and after the 

round/session, because the encryption keys are freshly generated. The details of the 

freshly generated keys are listed as follows: 

- Each time when a client starts to connect with a server, the client generates a new 

pair of asymmetrical keys (clientPubKey, clientPriKey). The clientPubKey is sent to 

the server. 

- Based on the known keys and new keys, using the ECDH algorithm, both the client 

and the server freshly generate a new key SSK (a shared secret key), which is used 

to encrypt the messages that are designed to exchange a time value, and to perform 

authentication tests by exchanging nonces generated by the client and the server. 

Note that a new time value is generated and exchanged repeatedly after a certain 

regular time interval. 

- Based on the fresh SSK and the sequence of new time values, a sequence of short 

term session keys (SK) are generated by the client and the server using the TOTP 

algorithm. Each SK corresponds to a new time value. Each SK is used to encrypt the 
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exchanged (business) data between the client and the server. 

Therefore, the security framework should guarantee forward and backward security. 

• Man-in-The-Middle attacks. Since the term structure of the messages are different 

from each other (because of the different encryption keys and increasing counter 

values), an attacker cannot confuse a regular principal by forwarding messages 

around. Therefore, MiTM attacks such as the one to the Needham-Schroeder 

protocol [Lowe (1995)] are prevented. 

• Insider attacks.  Consider the case that an attacker is a legitimate client (an insider) 

of a device (GATT server), and the device is shared by multiple users. The attacker 

can obtain the public key of the GATT server (servPubKey) but cannot obtain the 

private key of another GATT client (clientPriKey), because each client will 

independently establish its keys for communication with the server device. Hence, 

the attacker cannot obtain and calculate the SSK and SK of any other client; 

therefore, the attacker cannot steal information from data transmission of regular 

agents or confuse them. 

Availability When the security framework operates, if an agent receives some wrong 

message, it will drop the session and stop replying any message to the sender until some 

correct messages are received from the sender. This feature can prevent Denial of Service 

(DoS) attacks to a certain extent and maintain the availability of a BLE wearable device. 

On the other hand, the computation load of the framework is light, and no noticeable lag 

of performance is introduced. Therefore, the security framework should be easy to use 

and should work normally under some attacks attempts. 

1.4.1 Design of the synchronizing time protocol 

The business data of a client and a server will be encrypted by the AES-128 algorithm 

using a session key SK. Before the SK is generated by the TOTP algorithm, TOTP needs 

to obtain first a shared secret key SSK and a time value as the computation parameters. 

Therefore, the security framework needs to maintain some specific time values for the 

TOTP algorithm. We call such a value as a “framework time”. Note that a framework 

time is just used in the security framework, not affecting any other time value used by the 

devices for functions outside the security framework that we propose. 

Before a SK is generated, we need to make sure that the same SSK and the time value are 

shared by the client and the server; for this purpose, we design a new protocol called the 

“synchronizing time protocol”, whose sequence diagram is in Fig. 3, which is described 

as follows:  

1. Each GATT server holds a unique and fixed public-private key pair (servPubKey, 

servPriKey) of the Elliptic Curve Diffie-Hellman (ECDH) algorithm. The public key 

servPubKey must be sent to a GATT client via some non-BLE way. In the current 

design, the servPubKey is generated as a QR code. A GATT client obtains the 

servPubKey by scanning a QR code. 

2. Each GATTclient will generate a fresh ECDH public-private key pair (clientPubKey, 

clientPriKey) every time when it starts the synchronizing time protocol. The public 

key clientPubKey will be sent to the GATT server. 
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3. The GATT client and the GATT server each computes a shared secret key (SSK) by 

the ECDH algorithm using the other’s public key and its own private key. Both the 

GATT client and the GATT server have the same SSK. The GATT server generates a 

fresh nonce (servNonce), encrypts the servNonce using the AES-128 algorithm with 

the key SSK, and sends it to the GATT client. 

4. The GATT client generates a fresh nonce (clientNonce), and encrypts its own time 

(clientTime), the servNonce, and the clientNonce together in a message with the SSK 

as the encryption key. Then, the GATT client sends the message to the GATT server. 

5. The GATT server checks the received servNonce with its own servNonce. If they 

match, the GATT server set the received clientTime as its own framework time. Then, 

the GATT server encrypts the clientNonce using the SSK as the encryption key and 

sends it to the GATT client. Otherwise, if the nonces do not match, the protocol is 

aborted. 

6. The GATT client checks the received clientNonce with its own clientNonce. If they 

match, the protocol is successfully completed. Otherwise, the protocol is aborted. 

1.4.2 Design of securely transmitting data 

When two devices transmit data to each other in a session, they maintain a counter. The 

counter will be increased by one when a device successfully sends or receives data. The 

procedure of securely transmitting data is shown in Fig. 4.  

In order to securely transmit data via BLE, two functions are designed in the security 

framework: SecureSend and SecureRecv. An application forwards its plaintext to the 

function SecureSend, which will append the plaintext to the counter and encrypt these 

two terms (counter, plaintext) together in a message using a session key (SK) that is 

generated earlier by the TOTP algorithm as the encryption key. Then, the application 

sends the ciphertext message to the other device. After that, the sender increments the 

counter by one. 

The other device receives the ciphertext and forwards it to the function SecureRecv, 

which decrypts the ciphertext using the key SK (generated earlier by the TOTP algorithm) 

and extracts the counter and the plaintext. The function SecureRecv checks if the 

received counter is equal to its own counter. If the two counters match, the counter of the 

receiver will be incremented by one, and the plaintext will be forwarded to the 

application. Otherwise, if the two counters do not match, the function SecureRecv will 

drop the received message and return error. 

It is impossible to use a message from another session with the same expected counter 

value for some attacking purpose since the SK is fresh and unique in each session. 

1.4.3 Advantage features  

The security framework can provide very strong cryptography protections with low 

power consumption, and its code size is tiny. All data transmitted via BLE are encrypted 

and prevented from replay attacks, Man-in-The-Middle attacks, data tampering, etc. 

Convenience of using is another advantage of the security framework. A user only needs 

to scan a QR code (using a camera-capable device like a mobile phone) to start secure 

data transmission with another BLE device. 
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1.4.4 Compatibilities  

Since the security framework is a module of the application, the deployment of the 

security framework does not need to make any change to the BLE protocol stack. Hence, 

the security framework is compatible with all versions of the BLE specification (from 4.0 

to 5.0). For now, the security framework has been tested and it is completely compatible 

with nRF51/nRF52 series BLE chips and Android smartphones. 

2. Implementation of the security framework 

The implementation of the security framework is divided into two parts. One is for GATT 

servers and the other is for GATT clients. The part for GATT servers is implemented in the 

C language while the GATT clients’ part is implemented in the Java language. Developers 

can call the classes provided by the framework when they are needed. Both parts of the 

security framework are very easy to use because developers only need to add a few lines of 

code to the code of other BLE services in order to use them. 

 

Figure 3: The sequence diagram of the synchronizing time protocol 
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 Figure 4: The protocol of securely transmitting data between two BLE devices 

2.1 Implementation of cryptography 

In addition to ensuring that the designed security goals are satisfied by the security 

framework, we try to make the security framework as simple as possible so that it 

requires less computation and power consumption. AES-128 with CTR mode is used for 

encrypting and decrypting data. A key length of 160-bit (P-160) is used in the ECDH 

algorithm. The purpose of this choice is to balance efficiency, security and compatibility, 

because the versions 4.0 and 4.1 of BLE specification limit the Maximum Transmission 

Unit (MTU) of GATT to 20 bytes. The RSA algorithm is not suitable because it needs a 

very long key (length more than 1024 bits) and its calculation is very demanding and 

needs high power consumption. 

2.2 Implementation of the synchronizing time protocol  

The synchronizing time protocol is implemented as a GATT service. The service enables 

the Indicate Notify properties (in Bluetooth specification) for enabling retransmission 

mechanisms. 

2.3 Implementation of the secure transmitting data protocol 

Two functions are implemented: SecureSend and SecureRecv. Developers can add these 

two functions to any other BLE services demand the security of transmitting data via BLE.  

3 Performance & power consumption 

3.1 Testing environment 

Tab. 1 lists the system setting of the tests. 

Table 1: Setting of the tests 

Hardware Software 

A nRF52832 development board The security framework (server part) 

A smartphone (Android 6.0, BLE 4.1) The security framework (client part) 

An Oscilloscope N/A 

 

1: Device A → Device B: {1, data}SK 

2: Device B → Device A: {2, data}SK 

3: Device A → Device B: {1, data}SK 

4: … 

n: Device A → Device B: {n, data}SK 
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3.2 Performance 

The nRF52832 BLE chip provides a Real-Time Counter (RTC), which is increased 

32,678 times every second, for timekeeping. In the tests, we record an RTC value before 

each protocol starts and record an RTC value after each protocol ends. A for loop is used 

to execute every protocol 10 times and then an average code execution time of every 

protocol is calculated. For each protocol in the security framework, formula 2 and 

formula 3 are used to calculate its average code execution time. 

𝐶𝑜𝑑𝑒𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = (𝑅𝑇𝐶𝑎𝑓𝑡𝑒𝑟 − 𝑅𝑇𝐶𝑏𝑒𝑓𝑜𝑟𝑒)/32768                                     (2) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑑𝑒𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = (∑ 𝐶𝑜𝑑𝑒𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒10
𝑛=1 ) /10                        (3)               

The results of average code execution time of each protocol are shown in Tab. 2.  

Table 2: The average code execution time of each protocol 

Task Time (ms) 

Synchronizing Time Protocol 0.823959 

SecureRecv 3.204285 

SecureSend 0.427238 

3.3 Power consumption 

In the experiments, a 22 Ω resistor is connected in series with the nRF52832 BLE chip in 

the development board. An oscilloscope is used to measure real time voltages of the 

resistor. The Ohm’s Law formula (Eq. (4)) is used to calculate the real time currents of 

the nRF52832 BLE chip [Nordic Semiconductor ASA (2017)]. Since we cannot measure 

the real time voltages of the nRF52832 BLE chip, we cannot use Eq. (5) to calculate the 

power consumption. Besides, since most wearable devices use mAh (milliamp-hour) to 

represent its battery power, using current is more convenient for calculating power 

consumption. 

𝐼 = 𝑈/𝑅                                                    (4) 

𝑃 = 𝐼 ∗ 𝑈                                                    (5) 

Because our security framework is a module in application, it does not affect the BLE 

protocol stack. Therefore, its power consumption is produced by the calculation of 

cryptographic algorithms and does not add extra power consumption to BLE protocol stack. 

In order to measure the power consumption of the calculation of cryptographic 

algorithms, an infinite for loop running for 5 ms is set to calculate the power consumption 

without using the security framework. The oscilloscope snapshot of the infinite for loop 

is shown in Fig. 5. We use Eq. (6) and Eq. (7) as the formulas to calculate the average 

current consumption of the infinite for loop; it is 4.36 mA. 

A timer is set for each protocol. All these timers will be activated every 10 ms. When a 

timer is activated, it will use a for loop to execute every protocol 10 times and then go to 

sleep and wait for the next activation. 

The real time current values of the nRF52832 BLE chip are measured, and the average 

current of every protocol is calculated. Figs. 6, 7, and 8 show the oscilloscope snapshots 
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of each protocol. Among them, Fig. 6 shows the details of its waveform diagram. The 

timer cycle value is 10 ms. The work mark represents the working period of the 

nRF52832 chip. The sleep mark represents the sleeping period of the nRF52832 chip. 

The numbers marked upon the waves correspond to each execution of the protocol. Each 

division (div) of X axis represents 1ms and each div of Y axis represents 25 mV. The first 

wave of each waveform diagram represents a mixed voltage of chip’s wake up and the 

first-time execution of a protocol. The rest waves (9 times) of each waveform diagram 

represent voltage values when each protocol is being executed. 

Therefore, we use Eq. (6) and Eq. (7) as the formulas to calculate an average current of 

the rest waves (9 times) of each waveform diagram. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑊𝑎𝑣𝑒𝑉𝑜𝑙𝑡𝑎𝑔𝑒/22                                                  (6) 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = (∑ 𝑊𝑎𝑣𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡9
𝑛=1 ) /10                                                  (7) 

The results of average current consumption of each protocol are shown in Tab. 3. 

The comparison of current consumption is shown in Tab. 4. 

From Tab. 4, we can know that the security framework adds extra current consumption 

about 1.19 mA to 1.37 mA. We can calculate the power consumption (mAh) by using 

current multiplied by time (which is shown in Tab. 2). As shown by Tab. 5, the extra 

power consumption is very small, only about 8.47 ∗ 10−6 to 1.88 ∗ 10−5.  

Table 3: The average current consumption of each protocol 

Task Current (mA) 

Sync. Time Protocol 5.73 

SecureRecv 5.55 

SecureSend 5.55 

Table 4: The comparison of the current consumption 

Task Using the 

framework 

Without using   

the framework 

Extra current 

Sync. Time Protocol  5.73 mA 4.36 mA 1.37 mA 

SecureRecv 5.55 mA 4.36 mA 1.19 mA 

SecureSend 5.55 mA 4.36 mA 1.19 mA 

For practical applications, the power consumption of the security framework can be 

ignored because it is very small and will not affect the applications’ battery life.  

Table 5: The extra cost caused by each task 

Task Extra current  

(mA) 

Extra time  

(ms) 

Extra power consumption 

(mAh) 

Sync. Time Protocol  1.37 0.823959 1.88137305 ∗ 10−5 

SecureRecv 1.19 3.204285 6.35516525 ∗ 10−5 
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SecureSend 1.19 0.427238 8.473553667 ∗ 10−6 

 

Figure 5: The oscilloscope snapshot of the 

infinite for loop that without using the 

security framework 

 

Figure 6: The oscilloscope snapshot of the 

synchronizing time protocol. 

 

Figure 7: The oscilloscope snapshot of the 

secure transmitting data function 

(SecureRecv) 

 

Figure 8: The oscilloscope snapshot of the 

secure transmitting data function (Secure- 

Send) 

4 Summary  

We have designed and implemented a framework for secure communication and usage of 

BLE devices. This framework has been tested using BLE wearable devices. The 

protocols of this framework have been formally verified. Since the framework does not 

assume additional support of hardware, operating system, or existing BLE architecture, it 

can be seamlessly integrated into the security solutions of IoT of various scenarios. 

In the future we plan to apply the framework to more devices and develop applications 

based on this framework with more convenient user interface. It is possible to utilize 

some advanced method to securely transfer the public key of a GATT server, such as 

some smart key management scheme when more resources or options are allowed, in 

addition to the current way of scanning a QR code. 

 



 

 

 

470   Copyright © 2019 Tech Science Press             CMC, vol.59, no.2, pp.457-471, 2019 

 

References  

Arora, M. (2012): How secure is aes against brute force attacks? http://www.eetimes. 

com/document.asp?doc_id=1279619. 

Blanchet, B. (2016): Modeling and verifying security protocols with the applied pi 

calculus and proverif. Foundations and Trends in Privacy and Security, vol. 1, no. 1-2, 

pp. 1-135. 

Bluetooth Special Interest Group (2016): Security features in blue tooth low energy. 

https://www.bluetooth.com/~/media/files/specification/bluetooth-low-energy-security. 

ashx?la=en. 

Bluetooth Special Interest Group (2017): Bluetooth core specification. https://www. 

bluetooth.com/specifications/bluetooth-core-specification. 

Chang, R.; Shmatikov, V. (2007): Formal analysis of authentication in bluetooth device 

pairing. (FCS-ARSPA) Foundations of Computer Security and Automated Reasoning for 

Security Protocol Analysis, pp. 45-62. 

Gong, T.; Huang, H.; Li, P.; Zhang, K.; Jiang, H. (2015): A medical healthcare system 

for privacy protection based on iot. Seventh International Symposium on Parallel 

Architectures, Algorithms and Programming, pp. 217-222. 

Guttman, J. D. (2002): Security protocol design via authentication tests. Proceedings of 

15th IEEE Computer Security Foundations Workshop, pp. 92-103. 

Li, M.; Yu, S.; Zheng, Y.; Ren, K.; Lou, W. (2013): Scalable and secure sharing of 

personal health records in cloud computing using attribute-based encryption. IEEE 

Transactions on Parallel and Distributed Systems, vol. 24, no. 1, pp. 131-143. 

Liang, Z.; Verma, R. M. (2008): Improving techniques for proving undecidability of 

checking cryptographic protocols. Third International Conference on Availability, 

Security and Reliability, pp. 1067-1074. 

Liang, Z.; Verma, R. M. (2009): Correcting and improving the np proof for 

cryptographic protocol insecurity. Information Systems Security, pp. 101-116.  

Lowe, G. (1995): An attack on the needham-schroeder public-key authentication protocol. 

Information Processing Letters, vol. 56, no. 3, pp. 131-133. 

Nick (2015): The hitchhikers guide to ibeacon hardware: a comprehensive report by 

Aisle-labs. http://www.aislelabs.com/reports/beacon-guide/. 

Nordic Semiconductor ASA (2017): nRF51 development kit user guide v1.2. 

http://infocenter.nordicsemi.com/pdf/nRF52_DK_User_Guide_v1.2.pdf. 

Padgette, J.; Bahr, J.; Batra, M.; Holtmann, M.; Smithbey, R. et al. (2017): Guide to 

bluetooth security: NIST special publication 800-121 revision 2. https://nvlpubs. 

nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf. 

Qu, Y.; Chan, P. (2016): Assessing vulnerabilities in bluetooth low energy (BLE) wireless 

network based IOT systems. IEEE 2nd International Conference on Big Data Se- curity on 

Cloud, IEEE International Conference on High Performance and Smart Computing, and 

IEEE International Conference on Intelligent Data and Security, pp. 42-48.  

http://www.eetimes.com/document.asp?doc_id=1279619
http://www.eetimes.com/document.asp?doc_id=1279619
https://www.bluetooth.com/~/media/files/specification/bluetooth-low-energy-security.%20ashx?la=en
https://www.bluetooth.com/~/media/files/specification/bluetooth-low-energy-security.%20ashx?la=en
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
http://www.aislelabs.com/reports/beacon-guide/
http://infocenter.nordicsemi.com/pdf/nRF52_DK_User_Guide_v1.2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf


 

 

 

Developing a New Security Framework for Bluetooth Low                                      471 

Ryan, M. (2013): Bluetooth: with low energy comes low security. 7th USENIX Work- 

Shop on Offensive Technologies. 

Sun, W.; Cai, Z.; Li, Y.; Liu, F.; Fang, S. et al. (2018): Security and privacy in the 

medical internet of things: a review. Security and Communication Networks, vol. 2018, 

no. 1, pp. 9.  

Wikipedia (2017): Elliptic curve diffie-hellman. https://en.wikipedia.org/wiki/Elliptic-

curve_Diffie%E2%80%93Hellman. 

Zhang, Q.; Liang, Z. (2017): Security analysis of bluetooth low energy based smart 

wristbands. 2nd International Conference on Frontiers of Sensors Technologies, pp. 421-425. 


