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Abstract: The pavement layered structures are composed of surface layer, road base and 
multi-layered soil foundation. They can be undermined over time by repeated vehicle loads. 
In this study, a hybrid numerical method which can evaluate the displacement responses 
of pavement structures under dynamic falling weight deflectometer (FWD) loads. The 
proposed method consists of two parts: (a) the dynamic stiffness matrices of the points at 
the surface in the frequency domain which is based on the domain-transformation and 
dual vector form equation, and (b) interpolates the dynamic stiffness matrices by a 
continues rational function of frequency. The mixed variables formulation (MVF) can 
treat multiple degree of freedom systems with considering the coupling term between 
degree of freedoms. The accuracy of the developed method has been demonstrated by 
comparison between the proposed method and published results from the other method. 
Then the proposed method can be applied as a forward calculation technique to emulate 
the falling weight deflectometer test for multi-layered pavement structures. 

Key words: Falling weight deflectometer, dynamic stiffness, mixed-variable formulation, 
forward calculation model, time-domain. 
 
1 Introduction 
Roads play an important role in urban infrastructure which are regarded as the lifeblood 
of the city. Meanwhile, the cost for their maintenance is expensive. Hence the local 
governments and expressway companies always make the detection and diagnostic of 
road system a top priority. Various detection methods have been presented to detect the 
pavement structures. Nowadays, the FWD test has been widely applied to measure 
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pavement deflections as a non-destructive testing method because of high testing 
efficiency and applying dynamic loads with high-amplitude familiar to the acting loads 
by the wheels of a truck or car. The modulus, layer thickness and other material 
properties of the pavement can be calculated by inverse model of FWD deflection basin 
without destroying pavement. The accuracy of the forward calculation model which can 
represent the dynamic responses of the pavement structures is a major concern for inverse 
calculation. However, the inversion process applied to analyze the FWD testing data is 
mainly based on static analysis of layered pavement structures. The dynamic behaviors of 
the FWD loads are ignored in the static analysis method. To overcome the shortcoming, a 
high precise dynamic simulation model has been presented with the effect of dynamic 
FWD load is completely considered. And the deflection displacement histories were 
compared with the FWD testing data. 
Over the decades, people usually used the empirical methods to evaluate pavement 
behavior. However, in these years, the increase in the number of vehicles added the 
weight on the roads. As a result, the empirical methods are no longer applicable. Various 
approaches have been developed to simulate the mechanical behavior in layered media 
under the traffic load. Kausel et al. [Kausel and Roësset (1981)] and Kausel [Kausel 
(1981)] gave the modified stiffness matrices of stratified soils for calculating responses to 
dynamic loads by the thin layer method. Magnuson [Magnuson (1988)] integrated 
oscillation functions by a special method to obtain a numerical result. The functions are 
expanded into Fourier-Bessel series. Later, Stolle [Stolle (1991)] presented a discrete 
layer model to analyze the static response of a pavement structure subjected to a dynamic 
FWD load with an explicit time marching. The displacement field is also expressed by a 
Fourier-Bessel series expansion. A three-dimensional infinite elements method for the 
dynamic response analysis in a multi-layered media underlain by a half-space was 
performed by Yun et al. [Yun and Kim (2006)], and an efficient integration procedure 
was also proposed for calculating the element matrices involving multiple wave 
components. Al-Khoury et al. [Al-Khoury, Kasbergen and Scarpas (2001)] and Gu et al. 
[Gu, Wang, Cheng et al. (2014)] developed the spectral element method for dynamic 
analyses of pavement structures under the FWD load pulse, respectively. Liang and Zeng 
[Liang and Zeng (2002)] presented an efficient solution technique for the transient wave 
propagation in a multi-layered soil medium due to axisymmetric dynamic loads applied at 
the surface. Guzina et al. [Guzina and Fata (2015)] proposed a numerical method to 
simulate the forced vertical vibration when an annular foundation rests on a stratified soil 
by the second kind Fredholm integral equation. Uddin et al. [Uddin and Garza (2010)] 
proposed a 3D finite-element model of pavement structure subjected to an FWD load to 
calculate the structural dynamic response of pavement; Kim et al. [Kim and Mun (2008)] 
presented a fast spectral analysis way to simulate the dynamic response of an 
axisymmetric layered structure imposed FWD impulse load. However, these models are 
defective in terms of engineering applications due to some disadvantages. For instance, 
the time calculation consumption of stiffness matrices method is a question due to the 
complicated transforms; the precision of finite-element model is restricted by calculation 
mesh size, i.e., Focusing on acquiring high accuracy, large size memory and high 
efficiency are needed. 
The precise integration method, which can obtain a precise numerical result, was 
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presented by Zhong et al. [Zhong and Williams (1994)] and Zhong et al. [Zhong, Cheung 
and Li (1998)]. It is a semi-analytical method to solve the first-order liner ordinary 
differential equations. This method not only avoids the computer truncation errors due to 
meticulous dividing, but also increases the numerical solution of matrix exponential to 
the accuracy of the computer. For this reason, it was quickly applied to solve the initial 
value problem of structural dynamics [Zhong, Williams and Bennett (1997)]. On this 
basis, in combination with the simulation theory of optimal control and computational 
structural mechanics, Zhong et al. [Zhong, Lin and Gao (2004)] and Gao et al. [Gao, 
Zhong and Howson (2004); Gao, Lin, Zhong et al. (2006)] established a precise 
integration method for two-point boundary value problems. For linear time-invariant 
systems, both initial value and two-point boundary value problems, the precise 
integration method can give the exact solution with the computer, and it is almost 
independent of step size. After the precise integration method is put forward, it has been 
widely applied to structure dynamic response, the optimal control, random vibration, heat 
conduction, wave propagation, the complex dynamic elastoplastic analysis, dynamic load 
identification, and many other research fields. Lin et al. [Lin, Han and Li (2013, 2014)] 
obtained the dynamic stiffness matrix of arbitrary-shaped rigid foundation supported on 
an isotropic or cross-anisotropic multi-layered soil by using the precise integration 
method. The precise integration method has following features: (1) It has extensive 
applicability for arbitrary horizontal multi-layered soil. There is no limitation to the layer 
number, thickness of layers and the material property. (2) It is with high efficiency for the 
matrices in the algorithm with small dimension. (3) The precise integration method used 
in the proposed method can ensure the high accuracy. In a sense, the accuracy of the 
proposed method only depends on the precision of computer applied. (4) The 
computation is always stable. 
The objective of this paper is to simulate the behavior of the pavement structure based on 
the FWD dynamic test with the help of precise integration method and the mixed-variable 
formulation. The hybrid numerical method proposed in this paper can evaluate the 
dynamic response of the pavement structures subjected to the dynamic FWD loads. The 
numerical results can be compared with the deflection’s history measured by the FWD. 
The integral transform is used to obtain the displacement response in frequency domain. 
Then the results are expressed into rational function to construct a first-order ordinary 
differential equation. The latter can be solved accurately by the precise integration 
method. The dynamic numerical model proposed by this paper is closer to the physical 
reality of the pavement structures. The accuracy of the developed method has been 
demonstrated by comparison between the proposed method and published results from 
the other method. Then the proposed method is used to simulate the FWD test on a 
practical pavement structure as a forward calculation model. 
 
2 Problem definition 
Then, we study the forced steady state vibrations at the surface of a pavement structure. 
The describe wave motions in a multi-layered medium, a pavement structure consists of 
surface layer, road base and multi-layered soil foundation shown in Fig. 1 is considered. A 
circular area of radius a is assumed to be subjected at the surface to a normal transient load. 
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All l  layers as well as the half-space are defined as homogeneous and isotropic 
characteristic. The material properties are determined by Lame constants iλ  and iG , mass 
density iρ , Poisson’s ratio iν , damping ratio iξ ( 1,2,...,i l= ). For convenience of 
calculation, a cylindrical coordinate system is established, and its origin is placed at the 
center of the circular area. The displacements at points 1, 2, 3 and so on along the x axis 
can be evaluated by the following numerical method.  

 
Figure 1: Schematic representation of the problem 

 
Firstly, the displacement and stress vectors are expressed as following 

{ }T
r zu u uθ=U , { }T

rz z zθτ τ σ=S                                      (1) 

with ru , uθ  and zu  represents the displacement components in r , θ  and z  
directions in cylindrical coordinates respectively. rzτ  and zθτ  are the tangential stress 
components in the directions identified by the subscripts. zσ  is the normal stress 
component in z direction. 
For describing expediently, one individual layer is addressed in the following with the 
subscript i is ignored. The advantage of the axisymmetric geometry of the circular area is 
taken to calculate the dynamic displacement response as shown in Fig. 2. Then the 
displacement components ru , uθ  and zu  are decomposed into symmetric part and 
anti-symmetric part about the r-axis with a Fourier series as 
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The summation is performed over the integer ( 0,1,2,...)α α = . And displacement 
components are the function of radial r , circumferential θ , vertical z  and α . The 
symmetric and anti-symmetric terms are denoted by the superscripts s  and a  
respectively.  
For the solution in frequency-spatial domain cannot been obtained directly, the problem 
is solved firstly in the frequency-wave number domain. The superscript bars of the 
symbols are referred to the function in frequency-wave number domain. Thus, the 
relationships for the displacement and stress vectors between the amplitudes in spatial 
and wave-number domain are established in Bessel transformation pairs as following 
[Kausel and Roësset (1981)]: 
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and 
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The wave-number κ  in radial direction r  runs from zero to infinitely. Therefore, 
every type of waves is included. The displacement and stress in the Eqs. (3) and (4) can 
be seen as an Fourier expansion in the circumferential direction θ . aα  as 
normalization factor is an orthogonalization scalar. It is equal to 1 2π  when α  is equal 
to zero. Otherwise it is equal to 1 π . The matrices ( )αθD  and ( )rα κC  are identified 
as 
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where ( )J rα κ  in the matrix ( )rα κC  represents the Bessel function of order α  of 
the first kind. 
The wave motion equation in cylindrical coordinate system can be expressed in the form 
of Lame equations as following 
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with 
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3 Solution in frequency-wave-number domain 
For the evaluation of displacement during a circular area uniformly distributed load, the 
integer n  only select as 0 and 1 in Eq. (2). The zeroth symmetric Fourier term ( )0α =  
corresponding to a vertical distributed load acting on the circular area, while the first 
symmetric Fourier term is involved when a horizontal distributed load acting on the 
circular area in the x direction [Kausel and Roësset (1981)]. 
It is worth noting that the wave motion equation in Eq. (6) can be decoupled into two 
different plane waves: in-plane wave motion corresponding to P-SV wave and out-of-plane 
wave motion corresponding to SH wave [Zhang and Wolf (1985)]. The differential equation 
of wave motion in Eq. (6) can be transformed from time domain into frequency domain by 
Fourier transform. Then it can be further transformed from spatial domain into wave-number 
domain. In the in-plane wave motion, the displacement ( )uθ κ  is decoupled. The equation 
is only related to the displacements ( )ru κ  and ( )zu κ  as 
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               (8) 

The displacement ( )uθ κ  is related to the out-of-plane wave as following 

( ) ( ) ( )2 2, 0zzG u G uθ θκ κ ρω κ  − − =                                         (9) 

In the Eqs. (8) and (9), the subscript after the comma in ( ) ,r zu κ    represents 
differentiation with respect to vertical coordinate z  and the rest can be inferred by 

analogy. Hereinafter, the differentiation with respect to z  is rewritten as ( )′X , that is 

( ) ( ) / z′ = ∂ ∂X X . 

The two cases of Eqs. (8) and (9) can be unified into a general formula 
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( ) ( )( ) ( )'' ' 2
22 21 12 11
m m m m m m m mρω+ − − − =K q K K q K I q 0                            (10) 

with superscript 1m =  and 2m =  related to the P-SV wave and SH wave respectively. 
mI  is a unit matrix. The coefficient matrices ( ), , 1,2m

ij i j m =K  are defined as (the 
superscript H denotes Hermitian transpose) 
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mq  is the displacement vector. For 1m =  and 2m =  its expression are 

( ) ( )1 ,
T

r zu uκ κ=   q , ( ){ }2 uθ κ=q                                         (12) 

The linear hysteretic material damping is used according to the principle. The Lame 
constants λ  and G  are replaced by ( )1 2iλ ξ+  and ( )1 2iG ξ+  respectively with 
the damping ratio ξ . It's pretty obvious that Eq. (10) is a second order ordinary 
differential equation which cannot be solved directly. Then a dual vector of displacement 
vector mq  is introduced to transform the Eq. (10) into a first order ordinary differential 
equation as given in Eq. (13). 
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T
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zθτ κ= −p                                     (13) 

The relationship between dual vector mp  and displacement vector mq  satisfies 
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Then the Eq. (10) can be written as two first order ordinary differential equations as 
following 
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Eq. (15) can be merged into one first order ordinary differential equation for briefly. 
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Zhong et al. [Zhong, Lin and Gao (2004)] presented an efficient and accurate method 
which is called precise integration method to solve the first order ordinary differential 
equation. 
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The stress vector should be equal to zero at the free surface ( )0z z=  as given in Eq. (18). 
m
i =p 0                                                                (18) 

and at the interfaces between adjacent layers the vectors mq  and mp  should satisfy the 
continuity conditions as following 

m m
i i

+ −=q q , m m
i i

+ −=p p  ( )1,2,..., 1,i l l= −                                      (19) 

In addition, for the half-space soil, the radiation condition should be considered. The 
relationship between the stress and displacement vectors at the surface of the 
homogeneous isotropic half-space leads to [Zhong, Lin and Gao (2004)] 
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After the Eq. (17) is solved by precise integration method, the relationship between the 
tractions and the displacements at the surface of the pavement structure can be obtained 
combining with the boundary condition as the following form 

( ) ( ) ( )0 0
mm mz k z=q F p                                                  (23) 

The detailed forms of the Eq. (23) for the two cases 1m =  and 2m =  are 
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                         (24) 

 
4 The displacement response in frequency-spatial domain 

The displacements at the surface points of the pavement structure are evaluated for a 
circular area subjected to the vertical and horizontal uniformly distributed loads as shown 
in Fig. 2. 
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(a) (b) 

Figure 2: Vertical and horizontal uniformly distributed loads (a: vertical; b: horizontal) 

4.1 Vertical distributed load 
The circular area of radius a  is subjected by a vertical uniformly distributed load with 
amplitude 0zp  (Fig. 2(a)). Only the zeroth symmetric Fourier term resulting in constant 
values around the circumference arises in Bessel transformation pairs. Then the load 
amplitude in frequency-wave-number domain can be formulated through Eq. (4) and (5) 
as following 
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Then the related horizontal and vertical displacement amplitudes are evaluated by Eq. (24) 

( ) ( ) ( )r rz zu F pκ κ κ= , ( ) ( ) ( )z zz zu F pκ κ κ=                                  (26) 

By using Eq. (3), the horizontal and vertical displacement ( )ru r  and ( )zu r  can be 
transformed from wave-number domain into spatial domain as 
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Substituting Eqs. (26) into (27) leads to the displacement responses for the vertical load 
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                                      (28) 

4.2 Horizontal distributed load 
Another consideration is that a distributed horizontal load acting on the circular area in 
x-direction, which is assumed to have the constant amplitude 0xp  as shown in Fig. 2(b). Its 
radial and circumferential distributions are 0 cosxp θ  and 0 sinxp θ− , respectively. Only 
the first symmetric Fourier term is considered in Eq. (2). By using Eq. (4) the amplitude of 
horizontal load in frequency-wave-number domain is evaluated as given in Eq. (29). 

( ) ( ) ( )0
1= x

r
p ap p J aθκ κ κ
κ

=                                               (29) 
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Then the related displacement in the radial, circumferential and vertical directions can be 
derived from Eq. (24) as 

( ) ( ) ( )=r rr ru F pκ κ κ , ( ) ( ) ( )=u F pθ θθ θκ κ κ , ( ) ( ) ( )=z rz ru F pκ κ κ                (30) 

The inverse transformation of Eq. (30) leads to the displacement ( ),ru r θ , ( ),u rθ θ  and 

( ),zu r θ  in spatial domain according to the Eq. (3). Through a series of derivations, the 
formula for displacements in spatial domain are 
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(31) 
For the circular area subjected by a uniformly distributed horizontal load with amplitude 

0yp  in the y -direction, the same formulas Eq. (31) are used, with cosθ  and sinθ−  
substituted by sinθ  and cosθ , respectively. 
The displacements at centers of n  circular areas are evaluated for these circular areas 
subjected to distributed loads in three directions by using Eqs. (28) and (31). Finally, the 
dynamic flexibility equation of the whole system can be assembled as following form 
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n n n nn n
p u u u

     
     
    =                





   






u H H H p
u H H H p

u H H H p

                                         (32) 

where i
pu  ( )1,2,...,i n=  denotes the amplitudes of the displacements at point i . 0

jp  

( )1,2,...,j n=  denotes the amplitudes of the unknown loads acting on the circular areas. 
And 

Ti i i i
p r zu u uθ =  u  ( )1,2,...,i n=  

( )2
0 0 0 0

Tj j j j
x y za p p pπ  =  p ( )1,2,...,j n=                                    (33) 

The element ij
uH ( ), 1,2,...,i j n=  in Eq. (32) denotes the flexibility matrix between the 

displacement vector i
pu  and load vector 0

jp . The detailed form of ij
uH  is 

ij ij ij
xr yr zr

ij ij ij ij
u x y z

ij ij ij
xz yz zz

H H H
a H H H

H H H
θ θ θπ

 
 =  
  

H                                                 (34) 

Eq. (32) can be rewritten in the following form for briefly. 
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0P u=u H p                                                                (35) 

The dynamic stiffness matrix ( )ωS  of the whole system can be evaluated by the inverse 
of the flexibility matrix uH  as 

( ) 1
uω −=S H                                                               (36) 

 
5 The dynamic equation in time domain 
The displacements in frequency domain is mainly used to analysis the essential dynamic 
properties of the pavement structure. However, the results obtained from FWD test is a 
curve of displacement over time. Usually, researches used the inverse Fourier transform 
which cannot ensure a high accuracy to obtain the time domain solution. Ruge et al. 
[Ruge, Trinks and Witte (2001)] presented a mixed-variable formulation to establish the 
dynamic equation in time domain by using the dynamic stiffness matrix ( )ωS  in 
frequency domain as given in Eq. (36). It is worth to note that all degrees of freedom of 
the dynamic stiffness matrix ( )S ω  are fully considered. As we obtain the discrete 
dynamic stiffness matric ( )ωS  by the proposed method in Sections 3 and 4, a matrix 
valued rational function is applied to interpolate the dynamic stiffness into a series of 
linear functions in iω .  

( ) ( ) ( )1i iω ω ω−=S L R                                                      (37) 

where 

( ) ( )
( ) ( )

1

1
0 1 1

i i ... i

i i ... i

M
M

M
M

ω ω ω

ω ω ω +
+

= + + +

= + + +

L I L L

R R R R
                                      (38) 

A curve fitting technique is used to determine the coefficient matrices 
( )1,2,..., 1j j M= +R  and jL  ( )1,2,...,j M=  which is based on the least square 

method. I  is an identity matrix which has the same dimension as ( )S ω . Then the 
dynamic stiffness Eq. (35) can be expressed as 

( )
( )

1
0 1 1

0
1

i ... i

i ... i

M
M

pM
M

ω ω

ω ω

+
++ + +

=
+ + +

R R R
u p

I L L
                                       (39) 

The rational function in (39) have a numerator degree +1M  and a denominator degree 
M . Hence, it can always be divided into a linear function in iω  and another rational 
function of numerator degree ( )1M − . In the next step, a new internal variable is defined 
by the division process. As a result, the rational function is rewritten in a series of 
equations with different variables. These variables are combined into a mixed-variable 
which includes not only displacements but also forces. Thereafter, the dynamic equation 
of the whole system in time domain is established which is a first order ordinary 
differential equation. 
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( ) ( ) ( )t t t+ =Az Bz f                                                       (40) 

where A  and B  can be calculated by matrices jR  and jL . The detailed solution 
process can refer to Ruge et al. [Ruge, Trinks and Witte (2001)]. In additional, the 
number of degrees of freedom of Eq. (40) is increased to ( )3 1n M× +  instead of the 
degrees of freedom of matrix ( )ωS  which is 3n . The dynamic equation in time 
domain (Eq. (40)) can be solved by precise integration time history method numerically. 

6 Solution in time domain 
From the theory of linear ordinary differential equations, we need to solve the general 
solution of the homogeneous equation first, and then combine it with the superposition 
principle to find the particular solution of the inhomogeneous equation. So, we remove 
the inhomogeneous term ( )tf  first from Eq. (40), and then it is converted to the 
following: 

( ) ( ) ( )1t t t−= − =z β αz Hz                                                 (41) 

As the matrix H  is a constant matrix, the solution to Eq. (41) is the exponential form, as 
follows:  

( ) ( ) 0expt t=z H z                                                       (42) 

If the length of the time step for the solution is γ , then 

( ) 0γ =z Tz  with ( )exp γ=T H                                            (43) 

Thus, if the matrix T  can be solved, then the schedule of integral becomes 

1 0 2 1 1, , ,l l−= = =z Tz z Tz z Tz                                            (44) 

Expressing the matrix T  in the following form:  

( )exp
υ

γ υ=   T H                                                      (45) 

In order to facilitate the interval merge operation of the fine integration algorithm, υ  
needs to be equal to 2, such as 02N , where 0N  is an integer. For structure-ground-based 
dynamic interaction problems, the time interval γ  is small, so ε γ υ=  is very small. 
Thus, for the interval period ε , the exponential function can be calculated using a Taylor 
series expansion. Based on experience, in order to obtain sufficient accuracy, it is 
necessary to use the fourth order Taylor series, as follows:  

( ) ( ) ( )2 31 1exp
2 3

ε ε ε ε≈ + + + = +H I H H H I T                                

 (46) 

with ( ) ( )2 31 1
2 3

ε ε ε= + +T H H H  

Since ε  is very small, the absolute values of the terms in T  are also small. When 
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calculating the storage, it is easy to lose the effective number when adding the unit matrix. 
So, T  needs to be stored separately in the program. 
The solution of Eq. (45) can be calculated using the following algorithm:  

( ) ( ) ( )
1 10 0 02 2 2N N N− −

= + = + × +T I T I T I T                                      (47) 

It can be seen that Eq. (47) is only given 0N  times to get the final matrix T . First of all, 
the matrix multiplication gives 

( ) ( ) 2+ × + = + + ×I T I T I T T T                                           (48) 

In 0N  cycles, every time when 2 + ×T T T  is computed gives a new T . Hence, after 

0N  cycles, the sum of final T  and I  is the final matrix solution of T . 

Assuming that the inhomogeneous terms of ( )tf  is linear within the time step, Eq. (41) 
can then be written as follows:  

( ) ( ) ( )0 1 lt t t t= + + −z Hz η η                                               (49) 

with ( ) ( )1
0 1 lt t t− = + −β f η η  

Eq. (49) can be solved using the superposition principle. The solution T  of the 
homogeneous Eq. (41) is obtained previously in Eq. (47), and the solution of the 
inhomogeneous equation is as follows:  

( ) ( )1 1 1 1
1 0 1 0 1 1l l γ− − − −

+
 = + + − + + z T z H η H η H η H η η                         (50) 

 
7 Numerical examples 
In this section, two different examples are presented to illustrate the proposed method. 
The first example is given to verify the accuracy and capacity of this method, and a 
pavement structure including four different layers is considered. The second example is 
provided to simulate the FWD test for a practical pavement structure which can prove the 
applicability of the proposed algorithm. 

7.1 Verification 
In this example, a pavement structure consists of three layers underlain by a 
homogeneous subgrade is considered. The material properties for each layer and subgrade 
are given in Tab. 1, including Lame constants iλ  and iG , Poisson’s ratio iν , density iρ , 
thickness ih  and damping ratio iξ . The FWD load is applied over a circular area at the 
surface of the pavement structure with a radius of 15 cm. The load-time curve is provided in 
Fig. 3 which has a magnitude of 40 kN. The displacements were evaluated at radial distances 
of 0, 30, 60, 90, 120, 150 and 200cm from the center of the load area. The maximum 
displacements for every point obtained by the proposed method are shown in the Fig. 4. And 
the displacements at radial distances of 0cm are presented over time in Fig. 5. All these 
results are compared with the reference solution obtained by Simon et al. [Simon, 
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Jean-Marie and Denis (2009)]. As the figures shown, the agreement is excellent perfect, and 
the proposed approach proved to be accurate and capable. 

Table 1: The material properties of the pavement structure 

Layer iλ (Mpa) iG (Mpa) iν  iρ (kg/m3) ih (m) iξ  

1 2592.6 1111.1 0.35 2400 0.15 5% 
2 259.3 111.1 0.35 2300 0.30 2% 
3 129.6 55.6 0.35 1900 0.60 2% 
4 64.8 27.8 0.35 1800 infinite 2% 

 

 
Figure 3: Load-time curve 
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Figure 4: The maximum displacements along the radial distance 

 
Figure 5: Displacements at radial distances of 0 m 

7.2 FWD test simulation 

Table 2: Material properties for multi-layered half-space 

Layer iλ (Mpa) iG (Mpa) iν  iρ (kg/m3) ih (m) iξ  

1 2385.4 1022.3 0.35 2400 0.10 5% 
2 951.9 951.9 0.25 2300 0.30 2% 
3 612.0 153.0 0.40 1900 infinite 2% 

 

 
Figure 6: Load-time curve 

 



 
 
 
868  Copyright © 2019 Tech Science Press      CMC, vol.59, no.3, pp.853-871, 2019 

A practical pavement structure in Henan province, China, including 100 mm thick surface 
layer, a 300 mm thick subbase rests on the subgrade is considered in this numerical 
example. The material properties for each layer and half-space of this practical pavement 
structure are provided in Tab. 2. The dynamic FWD test load is captured from the sensor 
on the falling weight deflectometer with a magnitude of 52.52 kN (Fig. 6). The duration 
of the FWD load is 60 ms. The same as the first example, the FWD load is applied over a 
circular area with a radius of 15 cm. The displacements of basins are evaluated at radial 
distances of 0, 30, 60, 90, 120, 150 and 180 cm from the center of the load area. A 
comparison between the measured data from the dynamic FWD test and results 
calculated by the proposed method is made to verify the applicability of the proposed 
method to simulate the dynamic FWD test. The maximum displacements for every point 
evaluated by the proposed method is compared with the measured results in Fig. 7. As we 
can see from the figure, the agreement is very good between two sets of results. Only the 
maximum displacements of the measured results at radial distance of 0.3, 0.9 and 1.2 is 
smaller than the results obtained by the proposed method. And the difference is no more 
than 30%. The reason for the difference may be due to data collection during the FWD 
test. The displacements at radial distances of 0cm evaluated by proposed method are 
plotted versus time in Fig. 8 which is also compared with the measured results. There is 
an excellent agreement between the two results at the rising section of the curve, 
especially for the peak value. However, the descent section of the curve displays different 
behaviors. The results obtained by proposed method is falling faster than the measured 
results. The results show that the proposed method can be used as a forward calculation 
model to simulate the dynamic FWD test on a multi-layered pavement structure. 

 
Figure 7: The maximum displacements along the radial distance 
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Figure 8: Displacements at radial distances of 0.0 m 

 
8 Conclusion 
A hybrid numerical method is developed to calculate the dynamic displacement response 
of the pavement structure based on the integral transformation and mixed variable 
technique. Comparison with spectral element method for a multi-layered pavement 
structure subjected to an impulse load, the proposed method has shown to be accurate and 
capable. Furthermore, a comparison for a practical pavement structure between the 
results obtained by the proposed method and the measured data from a dynamic FWD 
test proves the proposed method is accurate. All the results show that the proposed 
methodology can be used as a forward tool for the simulation of wave propagation in a 
multi-layered pavement structure.  
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