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New Generation Model of Word Vector Representation Based on
CBOW or Skip-Gram

Zeyu Xiong'*, Qiangqiang Shen', Yueshan Xiong', Yijie Wang' and Weizi Li?

Abstract: Word vector representation is widely used in natural language processing tasks.
Most word vectors are generated based on probability model, its bag-of-words features
have two major weaknesses: they lose the ordering of the words and they also ignore se-
mantics of the words. Recently, neural-network language models CBOW and Skip-Gram
are developed as continuous-space language models for words representation in high di-
mensional real-valued vectors. These vector representations have recently demonstrated
promising results in various NLP tasks because of their superiority in capturing syntactic
and contextual regularities in language. In this paper, we propose a new strategy based on
optimization in contiguous subset of documents and regression method in combination of
vectors, two of new models CBOW-OR and SkipGram-OR for word vector learning are es-
tablished. Experimental results show that for some words-pair, the cosine distance obtained
by the CBOW-OR (or SkipGram-OR) model is generally larger and is more reasonable than
CBOW (or Skip-Gram), the vector space for Skip-Gram and SkipGram-OR keep the same
structure property in Euclidean distance, and the model SkipGram-OR keeps higher perfor-
mance for retrieval the relative words-pair as a whole. Both CBOW-OR and SkipGram-OR
model are inherent parallel models and can be expected to apply in large-scale information
processing.

Keywords: Distributed word vector, continuous-space language model, hierarchical soft-
max.

1 Introduction

A word vector representation is a mathematical processing object associated with each
word. Generating word representations is an essential task of natural language process-
ing (NLP) [Bengio, Ducharme and Vincent (2001);Collobert and Weston (2008)]. Many
NLP tasks such as sentiment analysis,sentence or text classification and so on consider
words as basic units. An important step is the introduction of continuous representations
of words [Bengio, Ducharme, Vincent et al. (2003)]. When it comes to texts, one of the
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most commonly used fixed-length features is bag-of-words. Traditionally, the default word
representation regards a word as a one-hot vector, which shares the same size of the vocab-
ulary. Despite its popularity, bag-of-words features have two major weaknesses: They lose
the ordering of the words and they also ignore semantics of the words. In order to address
these issues, Cao et al. use the histogram of the bag of words model (BOW) to determine
the number of sub-images in the image that convey secret information for the purpose of
improving the retrieval efficiency [Cao, Zhou, Sun et al. (2018)].

Continuous-space language models [Holger (2007); Bengio, Schwenk, Senécal et al. (2006)]
are neural-network language models in which words are represented as high dimensional
real-valued vectors. These vector representations have recently demonstrated promising
results in various tasks [Collobert and Weston (2008); Bengio, Schwenk, Senécal et al.
(2006)] due to their superiority in capturing syntactic and contextual regularities in lan-
guage.

Recent works in learning vector representations of words use neural networks [Mnih and
Hinton (2008); Turian, Ratinov and Bengio (2010); Mikolov, Sutskever, Chen et al. (2013)].
The outcome is that after the neural network model is trained, the word vectors are mapped
into a vector space such that semantically similar words have similar vector representa-
tions. Distributed word representations draw more attention for better performance in a
wider range of natural language processing tasks, ranging from speech tagging [Santos and
Zadrozny (2014)], named entity recognition [Turian, Ratinov and Bengio (2010)], part-
of-speech tagging, parsing [Socher, Lin, Manning et al. (2011)], semantic role labeling
[Collobert, Weston, Bottou et al. (2011)], phrase recognition [Socher, Lin, Manning et al.
(2011)], sentiment analysis [Socher, Pennington, Huang et al. (2011)], paraphrase detection
[Socher, Huang, Pennin et al. (2011)], to machine translation [Cho, Merriénboer, Gulcehre
etal. (2014)]. Han et al. [Kim, Kim and Cho (2017)] proposed a method to create concepts
by clustering word vectors generated from word2vec, and used the frequencies of these
concept clusters to represent document vectors.

The distributed word vector learning mainly depends on word in the vocabulary and corpus,
corpus collected is generally according to time ordered in topic related or event related. In
this paper, we divide documents into several subsets, in order to preserve accurate proxim-
ity information among subset, a combination model based on strategy of optimization and
regression, as an extension of distributed word vector is constructed.

The rest of this paper is organized as follows: Section 2 introduces prior research related to
n-gram, CBOW model and Skip-gram model. Section 3 formally presents our approach in
the integrated extension model for word vector representation. Two novel models CBOW-
OR and SkipGram-OR are proposed. Section 4 describes the experimental settings and
experimental results. At last, we conclude the paper and discuss some future work in
Section 5.
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2 Related works

2.1 n-gram model

The goal of statistical language modeling [Bengio, Ducharme, Vincent et al. (2003)] is to
learn the joint probability function of sequences of words in a language. This is intrinsically
difficult because of the curse of dimensionality: a word sequence on which the model will
be tested is likely to be different from all the word sequences seen during training.

Curse of dimensionality: For example, if one wants to model the joint distribution of 10
consecutive words in a natural language with a vocabulary V of size 100,000, there are
potentially 100000'°-1 = 105°-1 free parameters.

A statistical model of language can be represented by the conditional probability of the
next word given all the previous ones, since

T
P (w]) =TT P (e fui™) m
t=1

where w; is the t-th word, wg = (Wi, Wig1, - Wj—1,w;)

Such statistical language models have already been found useful in many technological
applications involving natural language, such as speech recognition, language translation,
and information retrieval.

Following the above mentioned models, n-gram models construct tables of conditional
probabilities for the next word and for each one of a large number of contexts, i.e., combi-
nations of the last n-1 words:

P (wy [wy) = P (w |wj =y 1,) @)
Bengio et al. [Bengio, Ducharme, Vincent et al. (2003)] proposed a neural network model
to calculate formula (2), Feature vectors of words are learned based on their probability of
co-occurring in the same documents.

The training set is a sequence w1, wa, - - - , wr of words belong to V, where the vocabulary
V is a large but finite set. The objective is to learn a good model f (wy, - wi—pt1) =
P (wt {wi_l) that can give high out-of-sample likelihood. The model is decomposed into
the following two parts:

1) A mapping C' from any element i of V' to a real vector C(i) €R™. It represents the
distributed feature vectors associated with each word in a vocabulary. In practice, C is
represented by a |V|xm matrix of free parameters.

2) A function g maps an input sequence of feature vectors of words in context
(C (wt*nJrl) oo, O (wtfl))
to a conditional probability distribution over words in V' for the next word w;. The output

of g is a vector whose i-th element estimates the probabilit P (w; = i ’wifl) shown in
Fig.1.

G we, - wing1) = g (i, C(we—1), - C (Wi—nt1)) 3)
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Figure 1: Neural architecture f (i, w¢, - ,wi—nt+1) = g(t, C(Wi—1), -+ ,C(Wi—pn41))

Training result is achieved by finding ¢ that maximizes a training corpus penalized log-
likelihood:

1
L= Tglogf(whwt—la’ t ,Wt_n+1;9) +R(0) (4)

where R () is a regularization term. R is a weight decay penalty applied to the weights of
a neural network and to the matrix C.
The softmax output layer is calculated as follows:

eYui
P (wg|lwi—t, -+ ,Wi—py1) = S 5)
ey

1y; is the unnormalized log-probability for each output word ¢, computed as follows, with
parameters b, W, U, d and H:
y=b+ Wz + Utanh(d+ Hz) (6)

where the hyperbolic tangent fanh is applied element by element, W can be optionally set
to zero (no direct connections), and x is the word features layer activation vector, which is
the concatenation of the input word features from the matrix C:

z = (C(wi-1), C(wi-2), - - C(wi—nt1)) (7)
0= (bd,w,U,H,C) ()
0 0+5810gP(wt |We—1, Wi—pt1) )

00

¢ is the “learning rate”.

2.2 The word vector model

Mikolov et al. [Mikolov, Sutskever, Chen et al. (2013)] introduced the CBOW and Skip-
Gram model. Both models include three levels: input, projection and output (Fig. 2 and
Fig. 3). The training objective is to learn word vector representations that can predict the
nearby words well.
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Figl; 2: The CBOW model Figure 3: The Skip-gram 1‘:10(161
Given a sequence of training words wy, wa, - - - , wr, the CBOW model is asked to maxi-

mize the following average log probability,

T
1
7O D logp(wlw) (10)

t=1 —c<j<c,j#0
but the Skip-Gram model is asked to maximize the average log probability

T
1
TZ > logp(weyg |wr) (11)

t=1 —c<j<c,j#0
where c is the size of the training context. The basic Skip-Gram formulation of p (w4 |w; )
is defined using softmax function as follows:

/ T
p(werj lwe) = fVX P{tu) ) (12)

; exp((vl,, )" vw,)

where vy, is input vector representation of word w;, and v{ufﬂ , Uy, are output vector rep-

resentations of words wyy ;, w;. W is the number of words in a vocabulary.

There are many methods for visualizing the relationship between words vector represen-
tation. Fig. 4 shows one way for terms’ relevancy: two-dimensional PCA projection of
the 1000-dimensional Skip-Gram vectors of countries and their capital cities [Mikolov,
Sutskever, Chen et al. (2013)]. It illustrates the ability of the model [Mikolov, Sutskever,
Chen et al. (2013)] to automatically organize concepts and learn implicitly. Without any
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supervised information about what a capital city means during training are given before the
mining relationships between them are obtained.
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Figure 4: Country and Capital Vectors Projected by PCA [Kim, Kim and Cho (2017)]

Fig. 5 shows another visualization method for clustering same word association, t-sne
clustering method is used. “t-SNE” is a technique which visualizes high-dimensional data
by giving each datapoint a location in a two or three-dimensional map. The technique is
a variation of Stochastic Neighbor Embedding [Georey and Roweis (2002)] that is much
easier to optimize, and produces significantly better visualizations by reducing the tenden-
cy to crowd points together in the center of the map. Stochastic Neighbor Embedding
(SNE) starts by converting the high-dimensional Euclidean distances between datapoints
into conditional probabilities that represent similarities [Kim, Kim and Cho (2017)]. In
t-SNE [Maaten and Hinton (2008)], it employs a Student t-distribution with one degree of
freedom as the heavy-tailed distribution in the low-dimensional map.

As Fig. 5 shown that words are represented in a continuous embedded space is very impor-
tant. Various conventional machine learning and data mining techniques can be applied in
this space to solve various text mining tasks [Cui, Shi and Chen (2016); Bansal, Gimpel and
Livescu (2014); Xue, Fu and Zhan (2014); Cao and Wang (2015); Ren, Kiros and Zemel
(2015)]. Fig. 5 also shows an example of such embedded space visualized by t-sne [Cui,
Shi and Chen (2016)]. The embedded words located in one circle represent the names of
baseball players, the names of soccer players and the names of countries are separated in
different clustering circle, and words similar meanings are located close. The words with
different meanings are located far away.

2.2.1 Hierarchical softmax

The formula (12) is a full softmax model which is impractical because the cost of comput-
ing is proportional to TV, which is often large (10°~107 terms). The hierarchical softmax
is a computationally efficient approximation of the full softmax. The main advantage of
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Figure 5: Embedded space using t-sne [Maaten and Hinton (2008);Kim, Kim and Cho
(2017)]

hierarchical softmax is that instead of evaluating W output nodes in the neural network to
obtain the probability distribution, it evaluates only log, (w) nodes.

Hierarchical probabilistic neural network language model was first proposed by Morin
[Morin and Bengio (2005)], Mnih and Hinton [Mnih and Hinton (2008)] explored a number
of methods for constructing a tree structure and ameliorated the effect on both the training
time and the resulting model accuracy. Mikol et al. [Mikolov, Sutskever, Chen et al. (2013);
Mikolov (2012)] used a binary Huffman tree, as it assigns short codes to the frequent words
which results in fast training.

The hierarchical softmax uses a binary tree representation of the output layer with the W
words as its leaves. For each word w located at the leaf, let n(w, j) be the j-th node on the
path from the root to w, and let Len(w) be the length of this path, so n(w, 1) = root and
n(w, Len(w)) = w. let child(n) be an arbitrary fixed child of inner node n, and let (x) be
1 if z is true and -1 otherwise, then the hierarchical softmax is defined as follows:

Len(w)

plwhor) = H a< (w,j +1) = child(n(w, ))>.(v;(w,j))%w,). (13)

where o(z) = 1/(1 + exp(—=x)), the cost of computing log p(wo |wy ) and
V log p(wo |wy ) is proportional to Len(wg ), which on average is no greater than log V.

3 New learning model of word vector representation

We first divide training document into several relative subsets of document, the relative
property may be considered as document collection of contextual feature and semantic
feature.

Let Cpy,---,Cpy bensubsets, Vi(w), -+, V,(w) be corresponding distributed word vec-

tors for word w generated from CBOW or Skip-Gram model. Let SAMT be a sampling
set in the vocabulary for topic words, in order to preserve accurate proximity information
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among subsets, we consider a regression model as an extension of distributed word vec-
tors. The new learning model for distributed word vector representation is described as the

following optimization problem and regression strategy.
n

Step 1. finding parameters o = (aq, 2, - , ), Y. a; = 1, which subjects to the fol-
i=1
lowing problem:
n—1
o = arg min Z Z | Vi(w) — i1 Vigr (w)|)? (14)
¢ weSAMT i=1

Step 2. reconstruct word vector for each word w

n
V(w) = afVi(w) (15)
i=1
Fig. 6 shows the integrated extension model for distributed word vector representation.
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Figure 6: The new generation model of word vector representation

4 Experiments

4.1 Task description

Our task is to develop a new method for generating word vectors and verify its efficiency
on actual document dataset. The new generation model of word vector includes two sub-
models, one is based on the combination of CBOW [Mikolov (2012)] and our regression
with optimization strategy, we denote CBOW-OR model, and the other is based on the
combination of Skip-Gram [Mikolov (2012)] and our regression with optimization strategy,
denote SkipGram-OR model. In the following experiments, we divide documents into three
sub-documents, and on the premise of sharing same vocabulary, same word vectors are
trained respectively on three subsets with same dimension. The optimization and regression
methods are used to integrate the three vectors into a vector, which is regarded as the word
vector of the word.



New Generation Model of Word Vector Representation 267

4.2 Dataset description

The dataset we are using is text8, which is download using Google word2vector. The size
of the corpus is 100 MB, vocabulary size is 71291 in documents, some auxiliary words
have been removed, for example, a, the, is, and so on. And some rare words are removed.
In addition, the whole documents contains 4406976 words. Using method, we divide the
documents into three parts in size: 36.6 MB, 36.6 MB, 26.8 MB. We name these three
sub-documents as text8_1, text8_2, and text8_3. The same word is trained separately on
the 3 sub-documents to obtain 3 vectors, and then a word vector is obtained by using the
optimization and regression mentioned above.

4.3 Evaluation mode

In order to test the effect of our method, we design two sets of comparative experiments,
one is to measure Euclidean distance of the vector in two different vector spaces with same
dimension, the other is to measure cosine distance of the two word vectors in each vector
space.

Three groups of experiment are conducted according to different SAMT in Eq. (14), for
Tabs. 1 and 3, SAMT={cat, China, computer, dog, exam, hospital, Japan, nurse, school,
software}, for Tabs. 4 and 6, SAMT={car, children, country, driver, hospital, nation, nurse,
parent, school, students}, for Tabs. 7 and 9, SAMT={army, chef, friend, fruit, gentlemen,
ladies, partner, restaurant, soldier, vegetables}. Four kinds of word vector space are re-
spectively generated by CBOW, Skip-Gram, CBOW-OR and SkipGram-OR. The last two
models is proposed in this paper.

In Tabs. 1, 2, 4, 5, 7, 8, we compare the Euclidean distance of the vector learned for the
same word under different vector spaces. We know that a vector can be represented as a
point in vector space. Since the dimension for each words of vector space is same, we
can compare the Euclidean distance of a word in different spaces. We can test the relation
between the Euclidean distance of multiple key words in any two different vector spaces,
in order to test the structure consistency of different vector spaces.

Since the cosine distance of the two similar word vectors that are trained should be relative-
ly large, the semantic relationship between words is similar in an article. In other words,
the probability of simultaneous occurrence of two words should be large, such as cats and
dogs, hospitals and nurses, school and students, etc. So in the Tabs. 3, 6, 9, we compare
the cosine distance between the vector pairs of the same set of word pairs, which are ob-
tained under three different learning mechanisms respectively, as a criterion for evaluating
the vector of words.

Tab. 1 to Tab. 9 show some interesting properties: Tabs. 1, 2, Tabs. 4, 5, Tabs. 7, 8
show that the words vector space for Skip-Gram and SkipGram-OR keep the same structure
property in Euclidean distance. Tab. 3 shows that there exists more accurate cosine distance
between two words using SkipGram-OR model than other models of CBOW, CBOW-OR
and Skip-Gram, meanwhile, Tabs. 6, 9 show that there exist more accurate cosine distance
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Table 1: Euclidean distance of the vector learned from the same word under different
methods

cat China  computer dog example
CBOW vs Skip-Gram 22.494564 23.070270 22.998427 23.701213 20.271844
CBOW-OR vs Skip-Gram  14.716238 13.883066 12.857164 15.436527 8.545754
CBOW vs CBOW-OR 25.066553 23.412062 23.468847 26.279802 19.599713

Skip-Gram vs SkipGram-OR 5.1814342 3.9224142 3.7186657 4.7696899 5.6128070
CBOW vs SkipGram-OR 22.727962 23.257147 23.103810 23.922204 19.735225

Table 2: Euclidean distance of the vector learned from the same word under different
methods

hospital Japan nurse school  software
CBOW vs Skip-Gram 24.376002 20.603936 18.884017 26.130630 23.791694
CBOW-OR vs Skip-Gram 15.119891 13.874292 7.953869 14.609852 14.428911
CBOW vs CBOW-OR 24.336653 23.291979 18.729539 27.662022 24.371412

Skip-Gram vs SkipGram-OR  4.651420 4.1706605 4.941486 3.7302991 4.1395899
CBOW vs SkipGram-OR 24.4143274 21.396625 18.407546 25.747152 24.288571

Table 3: The cosine distance of the two word vectors

China-Japan computer-software cat-dog school-exam hospital-nurse

CBOW 0.633185 0.562796 0.482052 0.457408 0.490181
CBOW-OR 0.556097 0.523432 0.462266 0.384344 0.571792

Table 4: Euclidean distance of the vector learned from the same word under different
methods

car children  country drivee hospital
CBOW vs Skip-Gram 21.497266 22.361323 18.389801 24.983802 23.996126
CBOW-OR vs Skip-Gram  14.714419 12.609392 10.146121 14.270934 14.618502
CBOW vs CBOW-OR 24.504684 22.155388 18.503288 27.343691 22.858498

Skip-Gram vs SkipGram-OR 4.3383199 3.6450409 3.4383442 4.8058831 4.6308525
CBOW vs SkipGram-OR 22.030651 22.331462 18.267592 25.393571 23.854217
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Table 5: Euclidean distance of the vector learned from the same word under different
methods

nation nurse parent school students
CBOW vs Skip-Gram 19.372371 17.867234 20.406933 25.895824 22.387821
CBOW-OR vs Skip-Gram  13.055126 7.963500 12.252224 14.181254 15.032777
CBOW vs CBOW-OR 21.542782 18.514933 22.544448 26.205820 24.907860

Skip-Gram vs SkipGram-OR 3.4048577 5.0936379 4.797587 3.680170 3.8840114
CBOW vs SkipGram-OR 19.254489 18.401096 21.260329 26.273944 22.888385

Table 6: The cosine distance of the two word vectors

car-driver children-parent country-nation hospital-nurse school-students

CBOW 0.601893  0.315147 0.578614 0.520923 0.510829
CBOW-OR  0.645621  0.363168 0.458637 0.564505 0.538678

Table 7: Euclidean distance of the vector learned from the same word under different
methods

army chef friend fruit gentlemen
CBOW vs Skip-Gram 26.168615 19.233047 23.523675 23.388722 18.979354
CBOW-OR vs Skip-Gram  14.177083 7.7553412 14.745648 13.936408 7.063437
CBOW vs CBOW-OR 26.907111 19.194172 25.834257 24.922290 19.091539

Skip-Gram vs SkipGram-OR  3.4792353 4.9905233 4.0097756 4.8250793 5.45685725
CBOW vs SkipGram-OR 26.520399 19.503424 24.481720 23.137643 19.7534149

Table 8: Euclidean distance of the vector learned from the same word under different
methods

ladies partner restaurant  soldier vegetables
CBOW vs Skip-Gram 19.75417 21.064983 23.074531 20.532218 22.398374
CBOW-OR vs Skip-Gram 8.933997 11.632876 12.532995 11.880395 12.304071
CBOW vs CBOW-OR 19.118866 22.784325 21.823904 21.828869 22.398122

Skip-Gram vs SkipGram-OR 5.0244142 4.5168005 5.0830350 3.9900769 5.3432736
CBOW vs SkipGram-OR 20.169336 21.470190 22.823085 20.832961 22.543230
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Table 9: The cosine distance of the two word vectors

army-soldier chef-restaurant friend-partner fruit-vegetables gentlemen-ladies

CBOW 0.396233 0.446979 0.305729 0.500937 0.486808
CBOW-OR 0.464227 0.538376 0.193126 0.568196 0.492330

between two words by using CBOW-OR model than other models of CBOW, SkipGram-
OR and Skip-Gram.

By combining Tabs. 3, 6, 9, we get the synopsis for 15 different words towards four
different models. Fig. 7 shows that the model SkipGram-OR keeps higher performance for
retrieval the relative words-pair as a whole.
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Figure 7: the comparative result of four models for 15 different words-pair

5 Conclusions

We develop two kinds of models for generating words of vector: CBOW-OR and SkipGram-
OR. The key strategy for these two models is using optimization in contiguous training
documents and regression method in combination of vectors. CBOW-OR and SkipGram-
OR can be performed in parallel. Experimental results show that for some words pair, the
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cosine distance obtained by the CBOW-OR or SkipGram-OR model is generally larger and
is more reasonable than CBOW and Skip-Gram.

We also achieved exciting results. The Euclidean distance between the vectors of the same
word learned under different mechanisms is nearby. It can be seen that the vector space
obtained by different models has some consistency. That is, the Euclidean distance of
different word vectors in any two vector spaces is approximately the same. Especially, we
also find that the vector space for Skip-Gram and SkipGram-OR keep the same structure
property in Euclidean distance.

Based on the inherent parallel in generating words of vector and semantic validity in words
pair, the proposed models in this paper can be expected to apply in large-scale information
processing.
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