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Abstract: Traffic sign recognition (TSR), as a critical task to automated driving and 
driver assistance systems, is challenging due to the color fading, motion blur, and 
occlusion. Traditional methods based on convolutional neural network (CNN) only use 
an end-layer feature as the input to TSR that requires massive data for network training. 
The computation-intensive network training process results in an inaccurate or delayed 
classification. Thereby, the current state-of-the-art methods have limited applications. 
This paper proposes a new TSR method integrating multi-layer feature and kernel 
extreme learning machine (ELM) classifier. The proposed method applies CNN to extract 
the multi-layer features of traffic signs, which can present sufficient details and 
semantically abstract information of multi-layer feature maps. The extraction of multi-
scale features of traffic signs is effective against object scale variation by applying a new 
multi-scale pooling operation. Further, the extracted features are combined into a multi-
scale multi-attribute vector, which can enhance the feature presentation ability for TSR. 
To efficiently handle nonlinear sampling problems in TSR, the kernel ELM classifier is 
adopted for efficient TSR. The kernel ELM has a more powerful function approximation 
capability, which can achieve an optimal and generalized solution for multiclass TSR. 
Experimental results demonstrate that the proposed method can improve the recognition 
accuracy, efficiency, and adaptivity to complex travel environments in TSR. 
 
Keywords: Traffic sign recognition, multi-layer features, multi-scale pooling, kernel 
extreme learning machine. 

1 Introduction 
Traffic sign recognition (TSR) has been applied in transportation practice to provide 
guidance information to drivers or vehicles to ensure the traffic safety and mobility. With 
the advances in artificial intelligence and machine learning, TSR methods are integrated 
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into driver assistance systems and intelligent driverless vehicles as an indispensable 
component [Yang, Long, Sangaiah et al. (2018)]. Though many TSR algorithms are 
available, their limited computational efficiency prevents them from real-time 
applications due to the complex travel environment including various lighting and 
weather conditions. 
In a TSR method, feature extraction and traffic sign classification are two critical steps. 
In the feature extraction step, traditional methods adopt hand-crafted feature descriptors, 
including Histogram of Orientated Gradient (HOG), Scale-Invariant Feature Transform 
(SIFT) and Local Binary Pattern (LBP). For example, Wang et al. [Wang, Ren, Wu et al. 
(2013)] extracted the HOG features of five classes traffic signs and obtained better 
classification results. However, the generalization ability of the method is not strong 
enough for practical applications because it requires prior knowledge for extracting 
object characteristics. Zhu et al. [Zhu, Wang, Yao et al. (2013)] combined HOG, SIFT 
and LBP features to characterize the traffic sign, however, the dimension of the combined 
features is too high to conduct a real-time recognition.  
At present, convolutional neural networks (CNN) based feature extraction methods are 
popular because of the efficiency of deep leaning. Compared to traditional hand-crafted 
features, CNN can automatically learn more targeted features based on the classification 
type. Furthermore, CNN works well by simulating perceptual processing of human visual 
cortex, thus can learn discriminative features more robustly. Jin et al. [Jin, Fu, and Zhang 
(2014)] proposed a CNN-based TSR method and suggested a hinge loss stochastic 
gradient descent method to train CNNs, which offered a faster and more stable 
convergence. Zeng et al. [Zeng, Xu, Fang et al. (2015)] proposed a CNN-based TSR 
method, in which only end-layer features are used in the classifier to recognize the traffic 
signs. Their proposed method achieved higher recognition rate than the methods based on 
hand-crafted features. A further study in Zeiler et al. [Zeiler and Fergus (2014)] found 
that the feature maps generated in different layers in CNNs correspond to different 
features of the object. For example, the features in shallow layers can express the object 
details such as texture and edge. However, the features in deep layers express the 
semantically abstract information. If we combine multiple features in different layers 
from CNNs, a higher accuracy of TSR would be achievable. 
For object recognition, support vector machine (SVM) and neural networks have good 
performance in classifier design [Maldonado, Lafuente, Gil et al. (2007)]. In general, 
SVMs have a low recognition accuracy when high-dimension features are used. Ciresan 
et al. [Cireşan, Meier, Masci et al. (2012)] designed a classifier using a deep network for 
TSR and gained a high recognition accuracy (99.46%). However, the adopted gradient 
descent method must adjust many parameters in the training process, leading to long 
training time. In addition to the SVM and neural network classifiers, extreme learning 
machine (ELM) is another promising classifier. It adjusts less number of parameters in 
the training process. Huang et al. [Huang, Yu, Gu et al. (2017)] demonstrated that the 
ELM classifier can provide more accurate recognition results promptly for TSR. Other 
studies [Aziz, Mohamed and Youssef (2018); Zeng, Xu, Shen et al. (2017)] also 
demonstrated the kernel ELM has a strong generalization ability and more powerful 
function approximation capability. 
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To improve the efficiency of TSR, this paper proposes a new method based on multi-
layer features and kernel extreme learning machine (MLF-KELM). The main 
contributions of our study are as follows. First, we extract multi-layer features using the 
CNN, including shallow and deep layer features that can express the local details and 
semantic information of traffic signs. Such multi-attribute features can improve 
representation ability for classifying traffic signs. Second, a multi-scale pooling operation 
is proposed to extract multi-scale features of traffic signs, leading to the improved 
robustness against scale variation. Finally, unlike traditional classifiers that only used a 
single end-layer feature, we propose to combine the extracted multi-attribute features in 
the KELM-based classifier for an accurate and robust classification. The proposed 
KELM-based classifier has fast convergence speed conveying a low computation 
complexity to practical applications. 
The rest of this paper is organized as follows. Section 2 presents our proposed MLF-
KELM architecture, which contains feature extraction via CNN (Section 2.1), multi-layer 
features fusion (Section 2.2), and kernel ELM-based classifier (Section 2.3). Section 3 
shows the experimental results and performance analysis. Section 4 provides concluding 
remarks and future research directions. 

2 MLF-KELM architecture 
The study [Zeiler and Fergus (2014)] showed the feature maps in different layers 
corresponding to different feature attributes of the recognition object. If we can use the 
CNN multi-layer feature attributes, the recognition accuracy can be improved. Also, we 
concern the training time of TSR method. The ELM algorithm requires fewer parameters 
to be adjusted in training, leading to reduced training time [Huang, Zhu and Siew (2006)]. 
Furthermore, the kernel ELM has a powerful function approximation ability, which 
handles nonlinear problems efficiently. Therefore, we construct an MLF-KELM model 
that integrates the CNN multi-layer features with kernel ELM classifier for better 
recognition efficiency and accuracy.  
Fig. 1 describes the proposed MLF-KELM architecture, which includes three successive 
steps: (1) Feature extraction via CNN, (2) Multi-layer features fusion, and (3) Kernel ELM-
based classifier. The following three subsections describe the detailed steps, respectively. 
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Figure 1: The proposed MLF-KELM architecture 

2.1 Feature extraction via CNN 
CNN is a hierarchical learning model that can automatically extract deep features in 
images through alternating convolutional and max-pooling layers. The CNN structure 
constructed in this study consists of three convolutional layers, three max-pooling layers, 
and one fully-connected layer. As summarized in Tab. 1, notations C1, C3, and C5 
represent convolutional layers with 100 maps, 150 maps and 250 maps defined by 
different sizes convolution kernels. In our architecture, convolution kernels and bias are 
randomly produced, and the activation function is the hyperbolic tangent function: 

( ) tanh( ) ( ) / ( )x x x xf x x e e e e− −= = − +  (1) 
The P2, P4, and P6 layers following each convolution layer are max-pooling layers, 
which reduce the computational complexity in training while remaining invariance. We 
refer to Cireşan et al. [Cireşan, Meier, Masci et al. (2011)] to build up the CNN 
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architecture, which achieved highly competitive performance. Tab. 1 shows the whole 
parameters setting of the CNN architecture. 

Table 1: CNN architecture parameters 

 Number of maps and neurons Kernel size Stride 
Input 1 map of 48×48 neurons — — 
C1 100 maps of 46×46 neurons 3×3 1 
P2 100 maps of 23×23 neurons 2×2 2 
C3 150 maps of 20×20 neurons 4×4 1 
P4 150 maps of 10×10 neurons 2×2 2 
C5 250 maps of 8×8 neurons 3×3 1 
P6 250 maps of 4×4 neurons 2×2 2 
F7 43 neurons — — 

This study regards the CNN structure as a feature extractor. We propose to combine the 
extracted features as an input to the classifier in the next section. 

2.2 Multi-layer features fusion 
Following convolution and max-pooling operations, the traditional CNN maps the end-
layer feature to a one-dimension vector, which is an input of the Softmax classifier. The 
back propagation algorithm is used in the end to train the network. This network only 
considers the information of the end-layer feature map. This section proposes a network 
framework with multi-feature expression. We use multi-layer feature maps to form a 
feature vector with multi-attributes to express traffic signs. 
Li et al. [Li, Jiang, Pang et al. (2017)] extracted the last three layers features maps of 
hepatocellular carcinoma nuclei with CNN and obtained the ideal identification 
characteristics. They proved that the multiple-layer features maps contain the different 
identifying attributes and characteristic information of the object. Inspired by this 
observation, we extract three layers (P2, P4, and P6) features to express the multiple 
attributes of traffic signs. First, the P2, P4, and P6 layers’ feature maps are extracted in 
the feedforward training. Then, the multi-scale features are extracted using multi-scale 
pooling. Last, we combine the extracted features to form a multi-scale multi-attribute 
feature vector of traffic signs. 
Multi-scale pooling is an improved method based on spatial pyramid pooling. The spatial 
pyramid has a multi-scale hierarchical structure, which retains the spatial information in 
the local space blocks combining [He, Zhang, Ren et al. (2014)]. These multi-scale 
features following multi-scale pooling can adapt to the scale change of the object. 
Furthermore, the multi-scale pooling can enhance the invariance of the extracted features 
with CNN, thus improving the accuracy and robustness of object recognition [Gong, 
Wang, Guo et al. (2014)]. Fig. 2 illustrates the process of multi-scale pooling in detail. 
We adopt multiple sampling sizes and sampling strides for multi-scale pooling. 
Regardless of the size of the feature maps, each feature map outputs three feature 
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matrices of different scales after multi-scale pooling, i.e. 1 1 m× × , 2 2 m× × and 3 3 m× × , 
where m represents the number of feature maps. Then, these three feature matrices in 
each feature map are concatenated into a column vector, i.e. (14 ) 1m× × . In particular, the 
P2-layer, P4-layer, and P6-layer can form three column vectors respectively after multi-
scale pooling, i.e. 1400 1× , 2100 1×  and 3500 1× . Finally, we combine these three column 
vectors into a multi-scale multi-attribute traffic sign feature vector. 
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Figure 2: Multi-scale pooling 

Multi-scale pooling is an improved method based on spatial pyramid pooling. The spatial 
pyramid has a multi-scale hierarchical structure, which retains the spatial information in the 
local space blocks combining [He, Zhang, Ren et al. (2014)]. These multi-scale features 
following multi-scale pooling can adapt to the scale change of the detection object. 
Furthermore, the multi-scale pooling can enhance the invariance of the extracted features 
with CNN, thus improving the accuracy and robustness of object recognition [Gong, Wang, 
Guo et al. (2014)]. Fig. 2 illustrates the process of multi-scale pooling in detail. We adopt 
multiple sampling sizes and sampling strides for multi-scale pooling. Regardless of the size 
of the feature maps, each feature map outputs three feature matrices of different scales after 
multi-scale pooling, i.e., 1 1 m× × , 2 2 m× ×  and 3 3 m× × , where m represents the number 
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of feature maps. Then, these three feature matrices in each feature map are concatenated into 
a column vector, i.e., (14 ) 1m× × . Specifically, the P2-layer, P4-layer and P6-layer can form 
three column vectors respectively after multi-scale pooling, i.e., 1400 1× , 2100 1×  and 
3500 1× . Finally, we combine these three column vectors into a multi-scale multi-attribute 
traffic sign feature vector. 

2.3 Kernel ELM-based classifier 
After combining the multi-layer features, the dimension of the features is higher than the 
single-layer features. Therefore, it is necessary to find a classifier with computational 
simplicity, short training time, and high computational efficiency. ELM is a promising 
supervised algorithm based on the single hidden layer feedforward neural network that 
has two advantages. First, the weights between the input and hidden layers and biases in 
the hidden layers are randomly assigned. Compared to conventional learning techniques 
that adjust many parameters in training, the ELM algorithm can reduce the computational 
complexity, and training time is reduced significantly. The second advantage of ELM is 
its strong generalization ability. Furthermore, because the strong mapping ability of the 
kernel function, the ELM with the kernel function has a more powerful function 
approximation capability, which handles nonlinear problems efficiently. Due to these 
advantages, we apply the kernel ELM-based classifier to solve the multiclass recognition 
problems in TSR. 

2.3.1 Structure of ELM-based classifier 
The structure of the ELM-based classifier is shown in Fig. 3. 

.   .   .

.   .   .

...

N input nodes

L hidden nodes
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Figure 3: ELM structure 

From Fig. 3, in the input layer of ELM, the traffic sign multi-layer features vector x  is 
inputted. The dimension of x  is denoted by P . In the hidden layer of ELM, the number 
of hidden nodes is denoted by L. The output of the ith ( 1,2,i L=  ) hidden node is 
represented by 
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( ; , ) ( )i i i ig b g b= +x w x w    (2) 
where g is a nonlinear piecewise continuous activation function. Our method in this study 
applies the sigmoid function to represent g. Here, iw  is the random weight vector that 
connects the ith hidden node with the input vector, and ib  is the random bias of the ith 
hidden node. For a given multi-layer feature vector x , its mapped feature vector can be 
expressed as 

1 1( ) [ ( ; , ), , ( ; , )]L Lg b g b=h x x w x w   (3) 
In the output layer of ELM, the number of output nodes is denoted by M. In this paper, 
each output node corresponds to a traffic sign class. The function below calculates the 
value of the jth ( 1,2 ,j M=  ) output node, 

,
1

( ) ( ; , )
L

j i j i i
i

f g bβ
=

= ×∑x x w    (4) 

where ,i jβ  is the output weight between the ith hidden node and the jth output node. Thus, 
the output vector in the output layer is expressed as 

1( ) [ ( ), , ( )] ( )Mf f= =f x x x h x β   (5) 

where  

1 1,1 1,

,1 ,

M

L L L M

β β

β β

  
  = =   
     

β
β

β



   



  (6) 

In the recognition process, for a traffic sign multi-layer feature vector x  of the test 
sample, its class label of x  can be determined as 

1, ,label( ) arg max ( )j M jf==x x


  (7) 

2.3.2 Training the ELM-based classifier 
The training process of ELM focuses on the three parameters: the input weights w , 
biases b , and the output weights β . Because the input weights and biases are randomly 
assigned, we only need to train the output weights β . 

For the given N training samples ( , )k kx t , kx  is the traffic sign feature vector and kt  is 
the binary traffic sign class label for kx , 1,...,k N= . Taking the training samples into (4) 
yields a linear representation: 

=Hβ Y   (8) 

where Y  is the output vector, 

1 1,1 1,

,1 ,

M

N N N M

y y

y y

  
  = =   
     

y
Y

y



   



  (9) 
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and H  is the output vector in the hidden layer: 

1 1 1 1 1

1 1

( ) ( ; , ) ( ; , )

( ) ( ; , ) ( ; , )

L L

N N N L L

g b g b

g b g b

   
   = =   
      

h x x w x w
H

h x x w x w



   



  (10) 

The training process aims to minimize the training error 2-T Hβ  and the Euclidian 

norm of output weight β . The resulting training process can be represented as a 
constrained optimization problem:  

2 21 1min :ψ( , )
2 2

st :  -

C= +

=

β ξ β ξ

Hβ T ξ
  (11) 

where C is the regularization coefficient, ξ  denotes the tolerance parameter, which can 
enhance the generalization ability of the model. 
This paper applies Lagrange multiplier method [Huang, Zhou, Ding et al. (2012)] to solve 
the constrained optimization problem: 

1( / )T TC −= +β H I HH T   (12) 

2.3.3 Kernel ELM-based classifier 
In fact, as the form of the feature mapping function ( )h x  is unknown, the kernel 
technique can be introduced into the ELM based on Mercer’s condition [Huang, Ding, 
and Zhou (2010)]. Namely, we can replace THH with a kernel function. In this paper, we 
propose to use the RBF function as the kernel ( , )i jK x x . 

( , ) ( , )T
i ji j K=HH x x   (13) 

1 1 1

ELM

1

( , ) ( , )
=

( , ) ( , )

N
T

N N N

K K

K K

 
 Ω =  
  

x x x x
HH

x x x x



  



 (14) 

Substituting Eq. (14) into Eq. (12) yields the output vector ( )f x  of the kernel ELM: 

1
1 1

ELM

( , )
( )= ( ) ( ) ( ) ( )

( , )

T T

k

K

C C
K

− −

 
 = + = +Ω 
  

x x
I If x h x β h x H HH T T

x x
  (15) 

The kernel ELM improves the function approximation capability, which can handle 
nonlinear problems efficiently. Therefore, the kernel ELM classifier can achieve an 
optimal and generalized solution for multiclass TSR. 
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3 Experiments and analysis 

3.1 Experimental setup 
For experimentation purpose, we normalize the size of input images because the CNN 
only accepts images with uniform size. The normalization algorithms include the nearest 
interpolation, bilinear interpolation, and cubic convolution interpolation. Considering the 
normalized image quality and the computational complexity during interpolation, we 
scale the image to the fixed size of 48 48×  pixels using bilinear interpolation. 
To reduce the computational complexity, our experiments only utilize the gray scale 
images calculated through the following formula, 

0.299 0.587 0.114Gray R G B= × + × + ×   (16) 
where R, G and B represent red, green and blue channels of each traffic sign image 
respectively. Note that the proposed method can handle color images with additional 
computation time and training time. 
We verify the proposed algorithm using the German Traffic Sign Recognition 
Benchmark (GTSRB) [Stallkamp, Schlipsing, Salmen et al. (2011)] as the experiment 
dataset that contains 43 classes of traffic signs. The GTSRB dataset contains 51,839 
images in total captured from the real world travel environment. The dataset has been 
divided into 39,209 training images and 12,630 test images. The images sizes are not 
same, varying from 15×15 pixels to 250×250 pixels. All experiments are conducted on a 
PC with 3 GHz i7 CPU 16 GB RAM and a NVIDIA GTX1060 graphics card with 6 GB 
ram. The CNN training process terminates once the default training epoch (e.g. 50 
iterations) is reached. Initial weights of the CNN are drawn from a uniform random 
distribution in the range [ 0.01,0.01]− . 
We randomly select an image of the traffic sign and input it into the trained network to 
illustrate the multi-layer features. The feature maps of each network layer are shown in 
Fig. 4. We find that different feature maps have different characteristics in terms of 
textures, corners, and edges. Moreover, the features in deep layers are more abstract 
through alternating convolution and pooling. The hierarchical and distinguishable 
features are similar to the human visual system. 

C1 P2 C3 P4 P6C5

 

            Figure 4: Feature map visualization 
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3.2 Comparison of multi-layer feature and single-layer feature 
To verify the efficacy of multi-layer features for TSR, we conduct the experiment to 
compare the average accuracy of multi-layer feature (MLF) against single-layer feature 
(SLF) based on the ELM-based classifier. The experiment adopts the end-layer feature of 
CNN as the SLF.  
The number of hidden layer nodes (i.e., L) influences the accuracy of classification 
significantly. Fig. 5 shows the average recognition accuracy of different numbers of 
hidden nodes. The accuracy of the multi-layer feature is higher than that of the single-
layer feature, about two percent on average. 
Fig. 5 also illustrates that the average recognition accuracy increases with the number of 
hidden nodes L. After L>8000, the increase of accuracy slows down. To balance 
recognition accuracy and computational complexity, we choose the number of hidden 
nodes L=8000 in all experiments. As shown in Fig. 5, the average accuracy of the single-
layer feature is 95.43%, and the average accuracy of the multi-layer feature is 97.54%.  

 
Figure 5: Recognition accuracy of different numbers of hidden nodes L 

Since the single-layer features do not adequately represent the comprehensiveness and 
multi-attribute characteristics of the traffic sign, the recognition accuracy is not high 
enough for real-time applications. The multi-layer features make full use of the diversity 
of features and improve the recognition accuracy significantly. 
We use traffic sign images captured in complex travel environments to verify the 
robustness of the proposed method. Fig. 6 shows examples of traffic sign images 
captured under three categorized conditions: light deficiency, partly occluded, and motion 
blur. For each category, we use 100 images as a testing subset. Tab. 2 shows the average 
recognition accuracy of multi-layer feature and single-layer feature using images 
captured under the complex travel environments. The accuracy of the multi-layer feature 
is still higher than that of the single-layer feature under the complex travel environments, 
mainly because of the comprehensiveness of the multi-layer feature. Compared to the 
experiment results in Fig. 5, the average accuracy reduces, especially in the case of 
partial occlusion. Nevertheless, our method can obtain a good performance. The 
recognition accuracy under most conditions is above 95%. It demonstrates that our 
proposed method is robust to various travel environmental conditions. 
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Figure 6: Examples of traffic sign images captured under complex travel environments 

Table 2: Recognition accuracy under the complex travel environments 

Method 
Accuracy 

Light deficiency Partly occluded Motion blur 
SLF-ELM 94.43% 93.08% 93.91% 
MLF-ELM 96.68% 95.24% 96.01% 

3.3 Comparison of classifiers 
We verify the advantage of kernel ELM-based classifier in our proposed method by 
conducting experiments using kernel ELM-based classifier, ELM-based classifier, Softmax 
classifier, and SVM classifier, with the same multi-layer features. The comparison applies 
three evaluation metrics: the average recognition accuracy, training time, and recognition 
time. Tab. 3 summarizes the comparison results. 

Table 3: Results of different classifier 

Classifier Recognition accuracy Training time Recognition time 
Softmax 96.53% 44.8 min 16.5 ms/frame 
SVM 96.87% 32.9 min 39.2 ms/frame 
ELM-based 97.54% 6.4 min 7.68 ms/frame 
Kernel ELM-based 97.93% 3.8 min 5.83 ms/frame 

Tab. 3 highlights that the average accuracy of kernel ELM-based classifier is superior to 
all other three classifiers with an accuracy of 97.93%. As the kernel ELM classifier has a 
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powerful function approximation capability, its training time is much less than other 
classifiers. Furthermore, the kernel ELM-based classifier also has advantages in 
recognition time with an average value of 5.83 ms per frame. The short recognition time 
can satisfy the computational requirement of practical applications. 

3.4 Verification in other dataset 
This study verifies the transferability and the generalization ability of the model trained 
by GTSRB by using a new dataset to an experiment. The datasets from Laboratory for 
Intelligent & Safe Automobiles (LISA) [Mogelmose, Trivedi and Moeslund (2012)] and 
Belgium Traffic Sign Classification Benchmark (BTSCB) [Mathias, Timofte, Benenson 
et al. (2013)] are combined as a new dataset. Since LISA contains 47 traffic sign classes, 
and BTSCB contains 62 traffic sign classes, and our proposed model only has 43 output 
nodes. Therefore, we only choose 43 traffic sign classes from LISA and BTSCB to be the 
new testing dataset. In total, there are 200 images (100 images in each dataset) in the new 
dataset. The experimental results show that the average accuracy is 96.41%, and the 
average recognition time of each image is 9.15 ms, which demonstrate a consistent 
performance and the transferability of the proposed method.  

4 Conclusions 
This paper has proposed a novel MLF-KELM architecture for TSR. In the feature 
extraction step, we use the CNN to extract deep features of images and multi-layer 
features to express traffic signs. In classification step, we adopt the kernel ELM-based 
classifier to categorize traffic signs. To our knowledge, this is the first time when an 
MLF-KELM classifier is used for TSR. TSR experiments on the GTSRB dataset show 
that the proposed method exhibits promising performance and a strong generalization in a 
much shorter period of training. 
Future research will focus on two aspects. First, we plan to embed our proposed method 
in a more general system that first localizes traffic signs in realistic scenes and then 
classifies them. Second, we will apply the deep reinforcement learning with visual 
attention to TSR to find key areas of traffic signs, which can improve the recognition 
accuracy efficiently. 
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