
 
 
 
Copyright © 2019 Tech Science Press                          CMC, vol.60, no.1, pp.15-39, 2019 

CMC. doi:10.32604/cmc.2019.06497                                                                        www.techscience.com/cmc 

 
 

A Hybrid Model for Anomalies Detection in AMI System 
Combining K-means Clustering and Deep Neural Network 

 
Assia Maamar1, * and Khelifa Benahmed2 

 
 
Abstract: Recently, the radical digital transformation has deeply affected the traditional 
electricity grid and transformed it into an intelligent network (smart grid). This mutation 
is based on the progressive development of advanced technologies: advanced metering 
infrastructure (AMI) and smart meter which play a crucial role in the development of 
smart grid. AMI technologies have a promising potential in terms of improvement in 
energy efficiency, better demand management, and reduction in electricity costs. 
However the possibility of hacking smart meters and electricity theft is still among the 
most significant challenges facing electricity companies. In this regard, we propose a 
hybrid approach to detect anomalies associated with electricity theft in the AMI system, 
based on a combination of two robust machine learning algorithms; K-means and Deep 
Neural Network (DNN). K-means unsupervised machine learning algorithm is used to 
identify groups of customers with similar electricity consumption patterns to understand 
different types of normal behavior. DNN algorithm is used to build an accurate anomaly 
detection model capable of detecting changes or anomalies in usage behavior and 
deciding whether the customer has a normal or malicious consumption behavior. The 
proposed model is constructed and evaluated based on a real dataset from the Irish Smart 
Energy Trials. The results show a high performance of the proposed model compared to 
the models mentioned in the literature. 
 
Keywords: Anomaly detection, advanced metering infrastructure (AMI), smart grid, 
behavior, machine learning, deep neural network (DNN), cyber-security. 

1 Introduction 
In recent years, there has been a global trend to optimize the use of electrical networks by 
automating and transforming all parts of the traditional electrical power grid: from the 
user’s household electrical appliances to the power-generating stations into an interactive 
and intelligent grid. The need to improve reliability, increase efficiency, enhance 
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flexibility and reduce losses in the conventional power grid has led to the development of 
smart meters and advanced metering infrastructure, which are the basis for smart grid and 
smart energy solutions. 
AMI is system that replaces traditional mechanical electric meters with a system that 
integrates electronic smart meters, communication networks, data centers and software to 
improve and automate meter data collection in order to improve customer service by 
providing better quality power, dynamic pricing, and billing accuracy. Additionally, the 
AMI system enables the improvement of power grid operations such as: remote meter 
reading, load management and demand response, power outage identification and 
equipment monitoring.  
However, digitization and automation of the AMI system exposed this system and even 
its components to cyber-security risks. Many cyber-security experts [Zetter (2015); 
Weaver (2015); Ayers (2017)] have proven that the smart meter, which is the foremost 
component of AMI system, has become a potential target of cyber-attacks and hacking 
attempts. These malicious attempts (on AMI system) usually aim to realize several 
outcomes: 1) data theft; 2) electricity theft; and 3) localized or widespread denial of 
electricity [Wilshusen (2015); Weaver (2017); Foreman and Gurugubelli (2015); Hansen, 
Staggs and Shenoi (2017)]. Electricity theft is among the most dangerous and popular 
attacks on the AMI system. 
According to a recent study, global losses due to electricity theft in 2015 were estimated 
to around $89.3 billion [Sanders (2016)]. Electricity companies have launched smart 
meters deployment to prevent electricity fraud. However, these digital devices have not 
proven to be effective defense measures against these phenomena. In May 2010, the 
federal bureau of investigation (FBI) reported what it considered to be the first case of 
widespread smart grid fraud. The event dates back to 2009: the puerto rico electric power 
authority (PREPA) discovered that about 10% of its smart meters were hacked, leading to 
electricity theft, which cost companies $400 million per year, according to estimates 
reported in Krebs [Krebs (2012)]. In October 2014, BBC News claimed that smart meters 
in Spain were hacked; causing several fraudulent acts [Ward (2014)]. In Quebec, the 
director of Physical Security estimates that the energy theft can reach up to 1% of the 
volume of electricity sales ($11.6 billion in 2015) [Boily (2016)]. 
Experts have recently implemented various approaches to address this situation. These 
approaches can be categorized as: a) Game-theory based, b) State based, c) Artificial-
intelligence and machine learning (AI&ML) based 
The game-theory based approaches [Amin, Schwartz and Tembine (2012); Cardenas, 
Amin, Schwartz et al. (2013)], consist in modeling the energy theft detection issue as a 
game between the power company and the electricity thief. These techniques present a 
medium detection rate (DR) and medium false positive rate (FPR). The most challenging 
issue about these models is how to define and formulate interactions between individuals 
(called “players”) in the form of a utility function. 
State-based detection approaches used a monitoring paradigm which can be realized by 
means of a combination of information generated from advanced devices such as: AMI 
technologies [Kadurek, Blom, Cobben et al. (2010)], wireless sensors [McLaughlin, 
Holbert, Zonouz et al. (2012); Lo and Ansari (2013); Yerra, Bharathi, Rajalakshmi et al. 



 
 
 
A Hybrid Model for Anomalies Detection in AMI System Combining                              17 

(2011)], and RFID [Khoo and Cheng (2011)]. State-based models are characterized by a 
high DR and low FPR. However the cost of implementing these models is very high due 
to the use of specific equipment. 
Artificial-intelligence and machine learning based approaches [Glauner, Meira, Valtchev 
et al. (2017); Messinis and Hatziargyriou (2018)] play a major role in detecting electricity 
theft. The main idea of these systems is to perform a behavioral analysis based on smart 
meters data. This analysis aims at extracting normal or usual energy consumption 
patterns and building typical consumption profiles. Any deviation from the expected 
behavior or pattern can be interpreted as a sign of fraudulent or malicious activity. 
This paper lays focus on the detection of anomalies in AMI systems as a result of 
electricity theft. AI & ML approaches are among the most used and efficient solutions in 
this regard. These approaches can be classified into four subcategories:  classification-
based, load forecasting-based, clustering-based and hybrid-based. 
In the following part, we review the existing Electricity theft detection models in the 
literature, according to the AI & ML algorithms utilized.  
Supervised classification-based: This subcategory refers to the case where a model or 
classifier can be constructed only based on labeled dataset in order to classify consumers’ 
behavior into normal and fraudulent. 
Nizar et al. [Nizar, Dong and Wang (2008)] used an extreme learning machine (ELM) 
algorithm to build an energy theft detection model based on 48 smart meter readings per 
day. ELM algorithm refers to a type of neural network whose specificity is to have only 
one hidden layer neurons; the network weights connecting input with the hidden layer 
neurons are randomly assigned and never updated, while weights between the hidden and 
output layer neurons are calculated just in a single step. In addition, due to the possible 
changes in consumer characteristics for some applications (these changes are usually not 
presented in the current training set); the authors have developed an online version of 
ELM (OS-ELM) to solve this problem. An intelligent system proposed by Muniz et al. 
[Muniz, Figueiredo, Vellasco et al. (2009)]. This system is composed of two modules: 
filtering and classification, each one comprises a set of five artificial neural networks. 
The features used by each neural network are calculated based on historical data and 
some pre-computed attributes specific to the customer. The filtering module was 
implemented to identify normal and suspect consumers for the classification module 
training. In order to improve the detection accuracy rate, this work is extended in [Muniz, 
Vellasco, Tanscheit et al. (2009)] by introducing a neuro-fuzzy hierarchical system in the 
classification step. In [Nagi, Yap,  Tiong et al. (2010)], the authors used support vector 
machine (SVM) method to build a binary classifier by using historical data of energy 
consumption, which is able to detect anomalous consumption behavior, known to be 
highly associated with fraudulent acts. In addition to the calculation of daily average 
consumptions features per month, a credit worth ranking (CWR) was calculated to 
indicate whether a customer delays or evades the payment of bills. These features are 
usually implemented during the training process in the case of a SVM with a Gaussian 
kernel. This work is extended in Nagi et al. [Nagi, Yap, Tiong et al. (2011)] where 
authors combined SVM classifier with a fuzzy inference system-FIS in order to improve 
the detection hit-rate. The SVM model for energy theft detection was developed in 
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Depuru et al. [Depuru, Wang and Devabhaktuni (2011)]. The main idea of this model is 
to generate an approximation of electricity consumption patterns of customers based on 
historical consumption data. In the training phase, the SVM classifier was trained with 
both normal and theft samples. During the validation phase, new samples were classified 
by a parallel combination of the SVM model and three other rules into three classes: (a) 
genuine, (b) illegal, or (c) suspicious customers. An extended version of this work is 
presented in other studies. In Depuru et al. [Depuru, Wang and Devabhaktuni (2012)] a 
data encoding technique was utilized to minimize the complexity of the instantaneous 
energy consumption data for evaluation. Furthermore, Depuru et al. applied a system 
with  high performance computing (HPC) algorithms in order to generate a simple and 
faster classification model for illegal consumers detection with a high accuracy rate 
[Depuru, Wang, Devabhaktuni et al. (2013)]. 
Clustering-based methods consist of unsupervised machine learning techniques. 
Clustering is used to perform an exploratory analysis of unlabeled input data in order to 
identify hidden patterns in the data or to assemble the similar data into clusters. 
In Angelos et al. [Angelos, Saavedra, Cortes et al. (2011)], five features were extracted 
from historical data of energy consumption of over a period of six months: average 
consumption, maximum consumption, standard deviation, number of inspections and 
average consumption of the residential area. These features are used in a fuzzy c-means 
clustering algorithm to group customers with similar electricity usage profiles. Then, a 
fuzzy membership matrix and the euclidean distance measure were used to classify 
normal and irregular customers. Density-based spatial clustering of application with noise 
(DBSCAN) algorithm was used in Badrinath Krishna et al. [Badrinath Krishna, Weaver 
and Sanders (2015)] to detect and mitigate electricity theft attempts by detecting 
abnormal electricity consumption patterns. This approach includes two steps; in the first 
step, dimensionality reduction is applied using the principal component analysis (PCA) 
on electricity smart meters readings, where each point refers to a week of consumption 
readings for a single customer in a 2D space. Afterwards, DBSCAN algorithm is applied 
to irregular point detection that are far from the dense cluster and represent weeks with 
anomalous patterns of electricity consumption, which imply the existence of potential 
electricity theft attempts. Density clustering method is used in Zheng et al. [Zheng, Wang, 
Chen et al. (2018)] to detect irregular electricity patterns. This method depends on the 
calculation of two values for each data sample  𝜌𝜌𝑖𝑖: its local density and its distance 𝛿𝛿𝑖𝑖 
from samples with high density. In the majority of cases, the data samples with large 
𝛾𝛾𝑖𝑖 =𝜌𝜌𝑖𝑖 ∗ 𝛿𝛿𝑖𝑖  are considered as cluster centers and those with small 𝜌𝜌𝑖𝑖  and large 𝛿𝛿𝑖𝑖  are 
considered as abnormal points. Electricity consumption data of 391 users for a period of 
one month are used to test and validate this method. The load profiles of 100 users are 
processed by five types of attacks to evaluate the performance of density clustering 
method according to the assumed scenarios. 
The load forecasting-based techniques can be used to realize an electricity load 
forecasting model during a specific period of time followed by a comparison of the 
forecast value of electricity consumption of customer with the one measured in reality. 
An auto regressive moving average (ARMA) model is used by Mashima et al. [Mashima 
and Cardenas (2012)] for the sake of modeling the probability distributions for both 
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normal and abnormal consumption electricity patterns, they also applied the generalized 
likelihood ratio (GLR) test to detect electricity theft attacks, assuming that the probability 
distribution applied by the attacker decreases the average value of real consumption. In 
Krishna et al. [Krishna, Iyer and Sanders(2016)], the authors used an auto-regressive 
integrated moving average (ARIMA) model to build an electricity theft detection model 
which consists in comparing the measured and predicted values, assuming that the 
prediction model has been trained solely with normal samples. The possibility of 
fraudulent behavior increases with the rise of the difference between the real and the 
predicted values. In Ford et al. [Ford, Siraj and Eberle (2014); Cody, Ford and Siraj 
(2015)], authors used respectively a neural network and decision tree algorithm to build a 
predicting model by learning the electricity consumption behavior of the consumer using 
historical data. Afterwards, the model will be able to predict future electricity 
consumption measurements. The root mean squared error (RMSE) is used to detect any 
deviation between predicted and measured values in order to indentify fraudulent 
activities. 
Hybrid-based methods: researchers designed hybrid methods by combining the different 
algorithms and techniques described above. In Jokar et al. [Jokar, Arianpoo and Leung 
(2016); Jindal, Dua, Kaur et al. (2016)] the authors combined an SVM classifier 
respectively with K-means and the decision tree algorithm to build an electricity theft 
detection model with a higher detection performance. 
According to the above discussion, the proposed machine learning models for electricity 
theft detection have several shortcomings that can be summed up as follows: 
• In most study cases, available datasets are unlabeled; in fact, it is hard to obtain theft 

samples, which leads to limitations in the DR. 
• In the majority of the abovementioned approaches, only electricity consumption data 

are utilized as inputs. 
• Many non-malicious factors such as the number of residents, seasonality and 

different usage habits during weekdays were not taken into consideration during the 
development of those models. These factors can alter the electricity consumption 
patterns and therefore generate false alarms. 

This paper is interested in anomaly detection within the AMI data, which is the result of 
electricity theft. In this context, we suggest a novel hybrid approach based on a 
combination of two robust machine learning algorithms; K-means and deep neural 
network algorithm.  
The principal idea behind the proposed approach is to model the normal consumption 
behavior of customers based on electricity consumption data and looking for eventual 
deviations from this model. 
The main contributions of this paper can be summarized as explained below: 
1. We present a novel and robust hybrid approach for anomaly detection in AMI data, 

by combining the advantages of both unsupervised clustering and supervised 
classification, K-means-DNN approach is particularly effective for anomaly 
detection in the case of unlabeled and large data sets. 

2. Introducing a new neural network model for electricity theft detection by 
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incorporating specific features: residents number, season and day type as input 
elements. This model provides a practical solution to eliminate non-malicious 
factors effects and reduces the possibility of false alarms. 

3. We evaluate the performance of the K-means-DNN model with real data obtained 
from the Irish Smart Energy Trials. 

In order to assess our proposed model and perform a comparison with the best and most 
recent electricity theft detection solutions, we generate a synthetic attack dataset based on 
threat model that has already been defined and used in these solutions. The results 
obtained demonstrate that the proposed model is quite accurate and significantly effective 
in detecting electricity theft in comparison with the previous proposals. 
Besides the discussion of previous work performed in electricity theft detection, this 
paper comprises four sections; the first provides the description and preprocessing steps 
of the available data, the second describes the architecture of the proposed K-means-
DNN electricity theft detection model, the following section is devoted to the results 
obtained, and in the next section we discuss our findings and compare them with the 
preceding ones, and the last section concludes the whole paper. 

2 Data 
In Ireland, CER started a process of installing thousands of smart meters in Irish 
residential consumers, small and medium enterprises (SMEs) buildings, as part of a trial 
that aimed at studying and adopting smart metering technologies. This experiment lasted 
eighteen months during which a dataset [Irish Social Science Data Archive (2012)] was 
generated by collecting readings of smart meters from consumers. In addition, pretrial 
and post-trial surveys have been contributed by consumers. A pre-trial survey was done 
with the purpose of getting residential consumers information about the following aspects: 
• Demographic profile of residents to provide information such as number of persons 

residing in each home and their age ranges, household revenue, age categories and 
employment status. 

• Physical features of the residence such as floor size, residence type, number of 
bedrooms. 

• Type and number of electrical devices in the residence. 
The smart metering data are stored in six different CSV files, each file has been formatted 
as follows: meter’s ID, the date and time of data collection, and the amount of consumed 
electricity in KW each 30 minutes. 

2.1 Data preprocessing  
The data preprocessing phase is relatively important. This phase determines the quality of 
the machine learning models generated since, the development of an effective machine 
learning model does not depend only on the algorithm used but also on the quality of the 
data with which the model is built and evaluated. Generally, real data are often 
incomplete (missing values, simplified data), noisy (errors and exceptions), inconsistent 
(naming, coding). Therefore, to achieve better results in energy theft detection, a variety 
of data pre-processing techniques were used before implementing any machine learning 
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algorithm [Han, Kamber and Pei (2012)]. Fig. 1 describes the major data pre-processing 
methods utilized on the raw energy consumption data: data integration, data cleaning, 
missing values imputation and feature selection. 

 
Figure 1: Essential pre-processing steps of data before applying machine learning 
techniques 

2.1.1 Data integration 
During the integration phase, we have combined smart metering files and demographic 
data into a single structure in order to set up single formatted dataset. 

2.1.2 Data cleaning 
Data in the dataset can comprise several types of errors such as missing information, 
inaccuracies, and so on. The improper part of the processed data can be replaced, 
modified or deleted. Data cleansing refers to the operation of detecting, identifying and 
removing errors that are present within the data stored in the dataset. Electricity 
consumption data are processed as time series data, so to find the missing values; it 
suffices to find the missing timestamps. When the percentage of missing values is high 
for a particular consumer, the data related to this consumer will be eliminated. However, 
if the missing values for a particular consumer for a specific day and time are scarce, they 
will be replaced by the average electricity consumption for that particular day and time. 

2.1.3 Feature extraction and selection 
These are two major methods of pre-processing that directly impact the accuracy of the 
model. Feature selection is a method of selecting some features out of the dataset and 
leaving out the irrelevant ones, while the extraction feature consists in transforming, 
calculating, and combining the original features, to construct a new set of features 
according to the specific requirements of the ML algorithm. In Section 3, more details 
about this process will be provided. 

3 Proposed methodology 
This section describes the proposed methodology for the detection of eventual anomalies 
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in AMI system. K-means-DNN methodology has two principal stages, as shown in Fig. 2. 
In the first stage, K-means algorithm is implemented to group customers with similar 
electricity consumption patterns to understand different types of normal behavior. The 
second stage utilizes an accurate deep neural network algorithm, besides using electricity 
consumption data our proposed DNN incorporates specific variables as inputs such as: 
residents number, season and day type in order to build an accurate detection model 
capable of classifying customers as a normal or abnormal (malicious) based on 
consumption patterns. Fig. 2 exemplifies the principle idea behind the proposed 
methodology. The two major steps composing this methodology are explained in the 
subsequent sections in detail. 

 
Figure 2: Illustration of the proposed K-means-DNN methodology 

3.1 The k-means clustering method 
The clustering procedure is an essential step to identify the different normal types of 
customers. It generates homogeneous clusters from a heterogeneous population of 
customers, according to their electricity usage behavior. The k-means algorithm is 
probably the most commonly used clustering method in this context, on the one hand due 
to its simplicity of implementation and on the other hand because it can provide a good 
approximation of the desired segmentation. The k-means method groups customers into 
separate clusters. Thus K-means algorithm serves to construct a typical pattern of 
electricity consumption by observing different customers clusters. Before starting the 
clustering process, it is necessary to define or extract a set of features that describes the 
consumption behavior of each customer. Such features are then used to group customers 
into k clusters. The features set is constructed by computing the following average and 
percentage measurements for each customer. 
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• The percentages of electricity consumed during each week day (from Monday 
through Sunday). 

• The percentage of electricity consumed during six different day segments: early 
morning (7 h-9 h), morning (9 h-13 h), early afternoon (13 h-17 h), late afternoon 
(17 h-21 h), night (21 h-1 h) and late night (1 h-7 h). 

• The total electricity consumed over the test period in KW. 
• The average yearly, monthly, weekly, daily, and hourly consumed electricity in KW.  
• The percentages of electricity consumed over the weekend (WE) and over business 

days (BD).  
The different steps of k-means clustering process are demonstrated in Fig. 3. The initial 
phase consists in performing features extraction from the previously processed data. The 
extracted features are then used to run k-means clustering. In general, during the k-means 
clustering process, it is necessary to choose an optimal number of clusters that will 
highlight the interesting patterns of energy consumption within the dataset. Therefore, the 
final phase in this process is to assess the k-means clustering process by using the 
clustering validity indices: silhouette, dunn and davies-bouldin. Afterward, we eliminate 
groups with a limited number of members. In the next step, only the remaining groups are 
used for the training of the DNN classifier. Using k-means in this level aims at enhancing 
classification and reducing false positives. 

 
Figure 3:  The three Steps of the K-means process 

3.2 Deep neural network methodology 
Deep learning is a sub-domain of machine learning which utilizes algorithms inspired 
from the brain’s neural networks structure and function. For this reason, the models used 
in the deep learning process are the artificial neural networks (ANNs). An artificial neural 
network is a computational system that includes many small processing-units called 
neurons that are arranged in several layers of input, hidden, and output neurons. Their 
immense capability to learn from massive and complex data has made them the best 
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alternative for machine learning experts. It is worth mentioning that different ANN 
structures are used to solve machine learning problems. The ANN structure chosen in this 
paper is a multi-layer neural network (MLNN) that contains multiple hidden layers, also 
called a deep neural network. A multi-layer neural network is an oriented network of 
artificial neurons organized into several layers in which information flows from the input 
layer to the output layer. Neurons are interconnected by weighted connections. The 
implementation of a multilayer neural network to solve a specific problem requires the 
determination of the most appropriate weights for each inter-neuronal connection. This 
determination is carried out through a back-propagation algorithm [Kim (2017)]. MLNN 
consists of a variable number of neurons and layers. A single-layer neural network is the 
simple architecture of a neural network with single input and output layers. A multilayer 
neural network is produced by adding hidden layers to a single-layer neural network; 
therefore, the multi-layer neural network is composed of an input layer, one or more 
hidden layers, and an output layer. A multi-layer neural network that contains two or 
more hidden layers is called a deep neural network [Kim (2017)]. Fig. 4 shows a 
descriptive representation indicating the mathematical model of an artificial neuron and 
the structure of a multi-layer neural network with L hidden layers. 

 
Figure 4: The Multi-layer Neural Network (MLNN) structure with L hidden layers. 

In Haykin [Haykin (1999)] the author states that the neuron process can be described 
mathematically by the following equations: 
𝑎𝑎𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑚𝑚

𝑗𝑗=1 𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖                                                                                                             (1) 
𝑦𝑦𝑖𝑖 = ƒ(𝑎𝑎𝑖𝑖) = ƒ(∑ 𝑤𝑤𝑖𝑖𝑖𝑖  𝑥𝑥𝑗𝑗𝑚𝑚

𝑗𝑗=1 + 𝑏𝑏𝑖𝑖)                                                                                            (2) 
where, x1, x2... xm are the m input elements.  
wi,1, wi,2,..., wi,m  are the corresponding weights of the connections. 
bi is the bias. 
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fi is called the activation function of the ith neuron. 
yi is the output of the ith neuron. 
In this study, DNN is used to build an anomaly detection model that is able to detect 
changes or anomalies in usage behavior and identify whether the customer has a normal 
or malicious consumption behavior. 
It is well known that electricity consumption patterns differ according to several factors 
such as the number of residents, seasonality, and different consumption habits of the 
users during weekdays (BD and WE). If these factors are not addressed in an appropriate 
way, they will increase significantly the FPR. In order to reduce false positives, and 
unlike most of the previous electricity theft detection systems which were based solely on 
consumption data, our proposed DNN structure incorporates specific input features: 
residents number, season and day type. The proposed DNN structure consists of three 
different types of layers. The first layer (or input layer) includes various features, 24 
measurements of electricity consumption per a day, residents number, season and day 
type (BD or WE). Consequently, 27 is the total number of neurons in the input layer. The 
second layer usually comprises a few hidden layers having a varied number of neurons. 
The ultimate layer is an output layer which represents the classification result of the DNN; 
it consists of two normal or abnormal (malicious) classes. The DNN classifier is trained 
with scaled conjugate gradient back propagation. The main structure of the proposed 
DNN is shown in Fig. 5, with parameters described in Tab. 1. 

Table 1: Parameters of DNN 

Parameter Value 

Input neurons number 27 

Hidden layers number 04 

Hidden neurons number 25 

Hidden layer activation fn. Sigmoid 

Output neurons number 02 

Output layer activation fn. Softmax 

Learning rate 0.01 

Epochs number 1000 

Learning goal/error 1.0×10-6 
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Figure 5: Deep neural network architecture 

3.3 Performance metrics 
In order to evaluate the performance of the DNN classifier, the detection rate (DR) the 
false positive rate (FPR) and the accuracy rate were used. These performance evaluation 
metrics can be calculated from the confusion matrix and defined as explained below. The 
confusion matrix severs the entire dataset into four (04) parts: true positive (TP), false 
positive (FP), false negative (FN) and true negative (TN). TP, FP, FN, and TN refer to 
the numbers of positives correctly predicted as positives, negatives falsely predicted as 
positives, positives falsely predicted as negatives, and negatives correctly predicted as 
negatives respectively.  
The detection rate (DR) is also referred to as recall, true positive rate, or hit rate in the 
literature. This evaluation metric indicates the ratio of samples classified as abnormal to 
the total number of abnormal samples in the dataset. DR is defined as:  
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𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇⁄ + 𝐹𝐹𝐹𝐹                                                                                                           (3) 
FPR is the ratio of the number of samples incorrectly classified as positives (false alarms) 
to the total number of negatives. FPR is one of the most significant metrics due to the fact 
that false positives lead to important operational costs to organizations working on 
electricity theft detection as a result of unnecessary smart meter inspections. FPR is 
defined as:  
𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝑃𝑃 𝐹𝐹𝐹𝐹⁄ + 𝑇𝑇𝑇𝑇                                                                                                         (4) 
The accuracy (ACC) of the classifier refers to the percentage of the correct predictions. 
𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇⁄ + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹                                                                           (5) 
A good classifier has to present high detection and accuracy rates, as well a low false 
positive rate. 

4 Evaluation results 
In this section, we present the evaluation results of our hybrid model for electricity theft 
detection in AMI system. We build and evaluate our proposed model based solely on the 
data of residential consumers. As a first step, we identify groups of customers with 
similar electricity consumption patterns to understand different types of normal behavior. 
With this aim, we execute k-means algorithm based on the features set described in 
section 3 and vary the number of clusters K from 3-10. The determination of the most 
appropriate number of clusters k is performed using clustering validity indices; i.e., 
silhouette, dunn and davies-bouldin. A number k of clusters is considered to be the 
optimal number if at least two indexes reach their optimal values with it. In the case of an 
optimal number of clusters, silhouette and dunn indexes must attain their highest values 
whereas davies-bouldin index must attain its minimum value. Tab. 2 describes the value 
of each clustering validity index obtained after using the k-means algorithm with a 
number of K clusters varying from 3 to 10. We can observe that the optimal value of the 
three validity indexes correspond to the  number of clusters K=10. Consequently, the 
optimal number of clusters is considered equal to 10 (k=10). 

Table 2: Values of different cluster validity indexes with varying numbers of clusters 

K Dunn Silhouette Davies-Bouldin 
3 0.0005 0.6672 0.5770 
4 0.0010 0.6805 0.5666 
5 0.0008 0.6758 0.5523 
6 0.0010 0.6713 0.5511 
7 0.0010 0.6730 0.5527 
8 0.0006 0.6786 0.5389 
9 0.0007 0.6814 0.5195 
10 0.0010 0.6825 0.5171 
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In order to lessen the contamination of the benign dataset by non-detected threats, we 
eliminate groups with few members. Clusters that group a large number of customers 
with similar consumption behaviors are used as benign sample to train and test the DNN 
classifier. As a second step, we evaluate the DDN anomaly detection model. For this 
purpose, we use a dataset representing the clusters that group a large number of 
customers with similar behaviors, obtained by K-means clustering. The dataset consists 
of only the benign samples which belong to customers with normal behavior. Based on 
dataset and the pre-trial survey described in Section 2, we generate samples in the 
appropriate format. For each customer, we create a file that includes 535 samples where 
each sample is a vector of 27 features representing the detailed 24-hour electricity 
consumption of the respective day, day type, season and residents number. Then, based 
on these benign samples, for each sample x = {x1, . . . , x27}, we take only features 
x1.......x24  representing the detailed 24-hour electricity consumption  to generate a set of 
six genres of malicious samples as defined in Jokar et al. [Jokar, Arianpoo and Leung 
(2016)] as explained below: 
For t = 1,........., 24: 
ℎ 1(𝑥𝑥𝑡𝑡) = ⍺𝑥𝑥𝑡𝑡 , α = random (0.1, 0.8); 
ℎ 2(𝑥𝑥𝑡𝑡) = 𝛽𝛽𝑥𝑥𝑡𝑡  

𝛽𝛽𝑡𝑡 = � 0      𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 
   1      𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                       

 

ℎ 3(𝑥𝑥𝑡𝑡) = 𝛾𝛾𝑡𝑡𝑥𝑥𝑡𝑡  , 𝛾𝛾𝑡𝑡= random (0.1, 0.8); 
ℎ 4(𝑥𝑥𝑡𝑡) = 𝛾𝛾𝑡𝑡  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥), 𝛾𝛾𝑡𝑡= random (0.1, 0.8); 
ℎ 5(𝑥𝑥𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥); 
ℎ 6(𝑥𝑥𝑡𝑡) = 𝑥𝑥24−𝑡𝑡 . 
In the remaining part of this section, we present the evaluation results of DNN anomaly 
detector. We perform the evaluation process in two experimental scenarios according to 
the type of attacks; the fixed type and combined ones. 

Figure 6: Ratios of benign and malicious samples in training and testing sets 
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The two experimental scenarios are performed on the basis of data related to 
approximately 3000 customers, in which each dataset has been divided into a training set 
(72%) and a testing set (28%) as shown in Fig. 6.  

4.1 Scenario1- fixed attack  
In scenario 1, the performance of DNN classifier in detecting each attack is evaluated and 
tested separately. For this reason we have generated different datasets for each customer 
based on the six types of attacks mentioned above. Dataset separation into training and 
testing sets is an essential part in the evaluation process. This procedure is performed in 
as follows: within 535 samples of the benign dataset, 383 are used for training and 152 
are utilized for testing. During each seven successive days two samples are selected in a 
random way for the testing set and the other five are selected for the training set. In the 
same way, for the selected attack type, 535 malicious samples are generated. 383 samples 
are utilized for training and the other 152 samples are used for the testing phase.  
Tab. 3 describes in detail the statistics of benign and malicious samples utilized in each 
experiment (i) where i vary from 1 to 6 according to the type of malicious samples used. 

Table 3: Statistics of benign and malicious samples used in scenario 1 

Tab. 4 and Tab. 5 present the evaluation results for a certain number of customers in 
terms of DR and FPR, respectively. 

Table 4: Performance results in terms of DR according to scenario 1 

ID DR% 
Type 1 

DR% 
Type 2 

DR% 
Type 3 

DR% 
Type 4 

DR% 
Type 5 

DR% 
Type 6 

01 98.84 98.70 100 100 100 100 
02 99.42 99.62 99.81 99.25 100 100 
03 97.08 98.12 100 99.81 100 100 
04 95.71 100 99.25 100 100 100 
05 96.84 99.24 98.87 99.63 99.81 99.81 
06 96.93 99.62 99.81 99.63 100 99.81 
07 96.84 100 99.43 100 100 100 
08 95.97 94.66 100 98.34 98.53 98.15 
09 97.98 96.91 97.93 100 99.81 99.81 
10 96.21 100 99.42 98.69 99.63 99.81 
11 96.39 99.42 98.31 98.70 99.81 99.44 
12 97.30 99.62 99.43 100 100 100 

 Dataset Benign samples Malicious (i) samples Total 
Experiment (i) 
 

Training 383 383 766 
Testing 152 152 304 
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Table 5: Performance results in terms of FPR according to scenario 1. 

ID FPR% 
Type 1 

FPR% 
Type 2 

FPR% 
Type 3 

FPR% 
Type 4 

FPR% 
Type 5 

FPR% 
Type 6 

01 2.36 0.55 0.19 0 0 0 

02 1.82 1.40 0.19 1.30 0 0 

03 3.94 1.41 0.19 0 0 0 

04 4.68 0.43 0.93 0 0 0 

05 4.65 1.08 1.49 0 0 0.19 

06 6.33 0.87 0.19 0.19 0 0.19 

07 4.65 1.50 1.66 0 0 0.19 

08 3.76 2.31 0.74 0.57 0 0.76 

09 5.22 3.53 2.60 0 0 0 

10 5.57 1.61 3.10 1.68 0 0 

11 5.66 2.45 2.41 0.56 0 0.56 

12 6.89 1.29 1.48 0 0 0 

The evaluation results displayed that the DNN classifier achieved a significantly 
satisfactory detection performance. Fig. 7, Fig. 8 and Fig. 9 illustrate the ROC curve 
according to scenario 1, showing the detection performance of three customers: the best, 
intermediate and worst.  
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Figure 7: ROC curves for a customer with the best detection performance according to 
scenario 1 

 
Figure 8: ROC curves for a customer with average detection performance according to 
scenario 1  
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Figure 9: ROC curves for a customer with the worst detection performance according to 
scenario 1 

4.2 Scenario 2-Combination of six types of attacks 
In this scenario, we test and evaluate the efficiency of the DNN classifier in detecting 
several types of attacks at the same time. The classifier is trained and tested using benign 
and malicious samples of six types. Tab. 6 describes in detail the statistics of benign and 
malicious samples used in scenario 2. 

Table 6: Statistics of benign and malicious samples used in scenario 2 

Dataset Benign samples Malicious samples Total 

Training 383*6 

Type 1 383 

4596 

Type 2 383 
Type 3 383 
Type 4 383 
Type 5 383 
Type 6 383 

Testing 152*6 

Type 1 152 

1824 

Type 2 152 
Type 3 152 
Type 4 152 
Type 5 152 
Type 6 152 
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In order to avoid biased results of the classifier towards class of attacks, we have 
duplicated members of the class comprising benign samples. 

Table 7: The Performance results in terms of DR, FPR and ACC according to scenario 2 
with elimination of specific features 

ID DR FPR ACC 
01 97.19 7.40 95.56 
02 91.49 21.69 85.96 
03 95.39 11.33 92.94 
04 89.19 16.47 87.00 
05 89.73 16.93 87.08 
06 89.45 14.49 87.93 
07 92.18 11.86 90.70 
08 90.17 14.45 88.39 
09 92.81 11.33 91.28 
10 90.36 16.27 87.75 
11 89.44 19.74 85.71 
12 88.66 16.65 86.54 

Table 8: The Performance results in terms of DR, FPR and ACC according to scenario 2 

ID DR FPR ACC 
01 99.06 2.32 98.59 
02 97.86 7.89 95.78 
03 97.80 5.64 96.59 
04 97.57 7.64 95.70 
05 97.31 7.92 95.43 
06 97.29 6.98 95.76 
07 97.06 8.17 95.18 
08 96.57 9.62 94.31 
09 96.05 8.04 94.58 
10 95.95 5.81 95.02 
11 95.87 7.77 94.56 
12 95.26 8.61 93.85 

For this experimental scenario, the average value of DR and FPR reached 95.38% and 
8.86%, respectively, which is very good detection performance. We have re-implemented 
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scenario 2 for a certain number of customers, with one difference that we removed the 
features related to type of day, season, and residents number. The input features of the 
classifier in this modified scenario consist solely of consumption data. The evaluation 
results for this experiment in addition to scenario 2 are classified in terms of DR, FPR 
and ACC as presented in Tab. 7 and Tab. 8 respectively. 
By comparing the results presented in Tab. 7 and Tab. 8, we notice that with the elimination 
of specific features, the DR values decrease and FPR values increase, which limits the 
detection performance. The results obtained prove the utility of using these features as input 
variables to enhance the detection performance of DDN anomaly detector.  
Fig. 10 illustrates the ROC curve for three customers with best, average and worst 
detection performances. 

 
Figure 10: ROC curves for three customers with the best, intermediate, and worst 
detection performance according to scenario 2 

5 Discussion and comparison 
Generally, the normal behavior of electricity consumption varies from one customer to 
another. (Normal electricity consumption behavior is not the same for every customer). 
Therefore, it is necessary to identify and extract different normal patterns of electricity 
consumption especially when dealing with a large and unlabeled electricity consumption 
dataset. For this reason, the K-means algorithm is used to identify groups of customers 
with similar electricity consumption patterns to understand different types of normal 
behavior before training the classifier on these clusters. The aim of the clustering step at 
this level is to improve the classification process and reduce false positives.  
Moreover, several factors can alter the normal consumption pattern of customers such as 
the number of residents, seasonality and different consumption habits of the customer 
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during weekdays knowing that such factors can cause more false positives. In order to 
reduce the impact of these factors, we utilized DNN, which is considered as the most 
successful ML algorithm for classification purposes and trained it with specific and 
suitable features so as to achieve high classification performance in terms of DR, FPR 
and ACC. 
In Tab. 9 and Tab. 10 we compare the proposed model with the most recent and best 
electricity theft detection systems mentioned in the available literature. 

Table 9: Comparison among electricity theft detection models 

Metric 
ARMA-GLR  
[Mashima and Cardenas (2012)] 
 

CPBETD  
[Jokar, Arianpoo and 
Leung (2016)] 

K-means-DNN 

DR(%) 67 94 95.38 

FPR(%) 28 11 8.86 

 

Table 10: Comparison of the proposed model with Density Clustering method in terms 
of ACC 

Metric Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

ACC 
scenario1 95.60 98.52 99.66 99.48 99.78 99.66 

ACC 
Density-Clust [Zheng, 
Wang, Chen et al. 
(2018)] 

/ 92.7 93.3 99.5 90.4 90.3 

6 Conclusions 
In this paper, we have proposed a novel hybrid approach for detecting electricity theft in 
AMI system known as the K-means-DNN. This approach consists in modeling the 
normal consumption behavior patterns of customers. Any significant deviation from this 
model is identified as malicious patterns. 
The numerical results according to the two experimental scenarios demonstrate the 
effectiveness of the proposed approach for detecting anomalies associated with electricity 
theft, cascading two machine learning algorithms K-means and DNN anomaly detector 
provide a high detection performance and make the detection model robust against 
contamination threats.  
Furthermore, the incorporation of specific features such as type of day, residents number, 
and season as inputs in addition to electricity consumption data reduces the generation of 
false alarms generated by non- malicious factors. 
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Moreover, this approach is considered as an initial step towards using deep learning for 
the sake of electricity theft detection; the results are quite encouraging and pave the way 
for the use of other deep learning techniques in the future. 
In this paper, the proposed model for electricity theft detection can be categorized as 
entirely data-oriented model because it relies heavily on customer-related data (for 
example electricity consumption, consumer type etc.). 
As a perspective work, we intend to integrate new features such as a weather conditions, 
number of available appliances and their usage pattern, etc. 
Moreover, this model can be hybridized with network oriented models by means of 
electricity grid data such as network topology or network measurements to achieve higher 
detection performances. 
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