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Abstract: A Functional Electrical stimulation (FES) therapy is a common rehabilitation 
intervention after stroke, and finite state machine (FSM) has proven to be an effective and 
intuitive FES control method. The FSM uses the data information generated by the 
accelerometer to robustly trigger state transitions. In the medical field, it is necessary to 
obtain highly safe and accurate acceleration data. In order to ensure the accuracy of the 
acceleration sensor data without affecting the accuracy of the motion analysis, we need to 
perform acceleration big data calibration. In this context, we propose a method for robustly 
calculating the auto-calibration gain using redundant acceleration vectors, and then 
calibrating the data generated by the accelerometer based on the calculated gain. The 
selection of the acceleration vector involved in the gain calculation is demonstrated by 
different experiments. The results show that the auto-calibration gain calculated after 
calibration is very close to 1, and the error is significantly less than before calibration, 
which indicates that the accelerometer unit is well calibrated. 
 
Keywords: Data calibration, accelerometer data analysis, functional electrical stimulation, 
stroke therapy. 

1 Introduction 
With the development of medical technology and the continuous improvement of people’s 
living standards, the number of elderly people is rising, and there are a large number of 
stroke patients in the aging population. Stroke is a disease with a high mortality rate. 
Survivors are accompanied by varying degrees of functional impairment and limited 
mobility. They may lose their ability to control their arms. They cannot perform normal 
daily life, and some may even have permanent disabilities [Jiang, Xiong, Sun et al. (2011)]. 
Their quality of life has had a serious impact. Without systematic training, it is difficult for 
patients to recover. Therefore, it is necessary to carry out rehabilitation training for stroke 
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patients. Functional Electrical stimulation (FES) therapy is a common post-stroke 
rehabilitation intervention designed to help patients recover their upper limb motor control 
function. However, it is very challenging to achieve satisfactory control of muscle 
responses to stimuli [Ferrarin, Palazzo, Riener et al. (2001)]. Based on the effectiveness 
and timeliness of smart medical care, the clinicians can positively impact the quality and 
cost of medical care [Fang, Cai, Sun et al. (2018)]. FSM (finite state machine) has been 
proved to be an effective and intuitive FES control method [Tresadern, Thies, Kenney et 
al. (2008)]. FSM controllers use sensors on the body to switch between states to achieve 
control of electrical stimulation. Modern accelerometers have many advantages, such as 
low cost, small size, easy to wear and so on [Nez, Fradet, Laguillaumie et al. (2016)]. FSM 
can use the data information generated by the accelerometers to trigger the state transition 
robustly. In the medical field, it is necessary to obtain highly accurate acceleration data 
[Godfrey, Conway, Meagher et al. (2008)]. The correlation of human motion analysis 
results directly depends on the accuracy of the collected data. 
However, the use of accelerometer may bring some problems, such as the sensitivity of 
accelerometer in use may decline, or the accumulation of errors, resulting in data drift, in 
order to ensure that the sensor work in line with technical specifications, does not affect 
the accuracy of motion analysis, we need to calibrate the accelerometer. At present, there 
are two main methods for accelerometer calibration: the first one relies on high-precision 
external equipment, such as turntable, for accurate calibration, the main calibration 
installation error, proportional coefficient and zero offset, mostly used for laboratory 
calibration. This method is called the "6-position method". It requires a high-precision 
device, and must ensure that the coordinate system of the device coincides with the 
coordinate system of the accelerometer [Titterton and Weston (2004); Cai, Song, Yang et 
al. (2013)]. Then it is tested vertically and downward along the sensitive axis of the 
accelerometer, as shown in Fig. 1 [Nez, Fradet, Laguillaumie et al. (2016)]. Then, the least 
squares method is used to estimate the calibration parameters for minimum error estimation 
of the 6-position data. 6 position method is simple and practical, but the implementation 
has great limitations. It is necessary to align the acceleration axis with the vertical axis as 
far as possible, otherwise the calibration accuracy will be affected. In addition, most 
laboratories do not have professional equipment, so the calibration is difficult [Syed, 
Aggarwal, Goodall et al. (2007)]. The second method is called fitting calibration. This 
method does not need other equipment, and is more suitable for various fields. This method 
collects a series of off-line acceleration data. According to the theorem, the measured 
acceleration modulus is always the local gravity acceleration in the case of static placement. 
Calibration parameters can be easily calculated using computers. 
In this paper, we adopt the fitting calibration method, and then optimize it. We use the 
redundant acceleration vector to calculate the gain robustly (i.e., the compensation 
parameter). In the process of calculating the gain, we eliminate the bad acceleration vector 
which affects the calibration accuracy, and select the acceleration number under four 
different conditions. According to the experiment, the influence of these conditions on the 
gain calculation is compared, and the acceleration error before and after calibration is 
analyzed. The experiment proves that the output of the calibrated accelerometer data is 
closer to the gravity acceleration, and the error between the calibrated accelerometer data 
and the gravity acceleration is smaller. 
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Figure 1: 6-position method (Nez A et al. [Nez, Fradet, Laguillaumie et al. (2016)]) 

2 Related work 
The root cause of stroke disability is that the patient’s central nervous system is damaged, 
so that the limb movement cannot be effectively controlled, resulting in partial loss of limb 
behavior. The function of the bones and muscles of the patient's limbs has not been lost. In 
order to prevent hemiplegia, there are many rehabilitation methods, including 
electromyography biofeedback, constraint-induced movement therapy (CIMT), robotic-
assisted therapy, functional electrical stimulation, mental practice with motor imagery, etc. 
[He and Wang (2014)].  
Electromyography biofeedback. Electromyography biofeedback is an application of an 
electromyography biofeedback device to amplify the physiological activity of muscle 
tissue that people are not aware of, and convert it into visual and auditory signals that can 
be perceived by people, and pass these signals through eyes, ears, etc. The organs are 
returned to the brain so that the human body can independently train according to these 
signals to control the bioelectric activity of the muscle tissue for training purposes. Some 
studies have shown that it is an effective adjuvant therapy, and it is also one of the hotspots 
of research at home and abroad [He, Hua, Luo et al. (2017)]. However, different studies 
use different treatment prescriptions and evaluate the efficacy in different ways, and each 
treatment lacks the evidence of basic research, and there is not enough data to show that 
EMG biofeedback therapy has significant benefits in improving upper limb function. There 
is also a limited effect of electromyography biofeedback therapy on improving the range 
of motion of the wrist. 
Constraint-induced movement therapy. CIMT is one of the most influential 
rehabilitation technologies in the past 20 years, and has been greatly developed at home 
and abroad and has received extensive attention. It improves the motor function of the 
limbs by restricting the movement of the limbs and forcing the limbs to perform a large 
number of intensive training, thereby improving the motor function and activities of daily 
living of patients with hemiplegia due to cerebral infarction. Professor Taub proposed 
CIMT. The multi-center clinical study in the United States confirmed that CIMT is the 
most effective rehabilitation technique for improving upper extremity motor function, 
especially for patients with hemiplegia and upper extremity motor dysfunction in 
convalescence stroke [Taub, Uswatte, King et al. (2006); Taub, Crago and Uswatte (1998)]. 
However, the applicability of CIMT is limited. For example, it is not suitable for 
widespread use in the acute phase of stroke. In addition, CMIT is expensive because it 
requires the time of the therapist and the resources of the rehabilitation department. 
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Robotic-assisted therapy. With the development of artificial intelligence technology, 
rehabilitation robot technology has also made great progress in recent years. Robotic 
assisted therapy is the use of mechanical devices to provide or support high-intensity and 
controllable repetitive upper limb exercises. Stanford University has developed the MIME 
(mirror image motion enabler) system based on PUMA500 and 560 industrial robots (Fig. 
2) [Lum, Burgar and Shor (2003); Burgar, Lum, Shor et al. (2003)]. In addition, compared 
with traditional exercise therapy, robotic adjuvant therapy seems to be easier to be Patient 
approval [Kwakkel, Kollen and Krebs (2008)]. Liang et al.'s research shows that there are 
still some shortcomings in upper limb rehabilitation robots, such as the inability to perform 
flexion and extension training of wrist joints, the system's own joint range estimation 
system and the actual measured value error of the protractor are large [He and Wang 
(2014)]. Although the upper limbs Rehabilitation robot technology has made great progress 
in research at home and abroad, but the current research is still in its infancy, one robot is 
expensive and has no universality; the other is the lack of large-sample clinical application 
and research. 
Mental practice with motor imagery. Mental practice with motor imagery, also known 
as mental imaging, refers to consciously simulating and training an action through the brain 
without accompanying obvious physical or physical activity. Through long-term simulated 
imaginary exercise training, non-conditioned reflexes are transformed into conditioned 
reflexes. Neurological function and innervation of muscle function, thereby improving the 
damaged "sports network" and achieving the goal of exercise imaging training [Fu, Chen, 
Yu et al. (2010)]. However, the largest research to date, Letswaart, Johnston et al [Ietswaart, 
Johnston, Dijkerman et al. (2011)]. A total of 121 stroke patients with residual upper 
extremity weakness (mean <3 months after stroke) were examined and no improvement in 
outcome measurements was found. Therefore, there is no clear evidence that the 
psychological practice of motor imaging technology can improve motor function and 
facilitate the recovery of stroke in isolation. 
Functional electrical stimulation. FES is an effective method for treating hemiplegia in 
stroke patients. A large number of clinical studies have shown that electrical stimulation 
therapy can significantly improve the limb function of patients with stroke and improve the 
limb control ability of patients. Popovic et al. used FES to treat acute stroke patients with 
hemiplegia. After 3 weeks of treatment, the affected arm function was effectively improved 
[Popovic, Popovic, Sinkjaer et al. (2004)]. Chen et al. used FES to stimulate the forearm wrist 
extensor muscle group to produce wrist extension, after treatment. Wrist flexion and 
extension function and hand coordination activities have improved significantly, indicating 
that FES treatment can improve the motor function of the hand, and FES has a more positive 
effect on the improvement of arm function [Lin and Chen (2010)]. 
In summary, we can get the comparison results, see Tab. 1, FES has fewer shortcomings 
and is more suitable for helping patients to recover upper limb motor control after stroke. 
Therefore, we use FES to perform rehabilitation training on upper limb control function of 
stroke patients. 
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Figure 2: Use assisted robots to help patients with rehabilitation training 

However, achieving a satisfactory level of FES control is very challenging. In order to better 
control the FES to make full use of it, the designers developed the FES control system using 
the sensor. The FES can be used as a feedback source to control the stimulus. The common 
sensors used in the FES system include the force sensor, the position sensor and the 
acceleration sensor. The sensor is typically used to provide a feedback signal in the FES 
system, and the controller can use the data information generated by the acceleration sensor 
to robustly trigger state transitions. In the medical field, highly accurate acceleration data is 
required to ensure the safety of the system. Calibration is a very effective way to improve the 
accuracy of the data collected from the three-axis accelerometer, so we need to calibrate the 
accelerometer. At present, accelerometer calibration methods mainly include: 
1. 6-position accelerometer calibration method: Zhang et al. [Zhang and Ye (2009)] adopted 

a 6-position accelerometer calibration method, which is easy to implement, simple and 
easy to implement, and does not require external equipment assistance in actual use, but 
the method has low precision and is not suitable for medical treatment. field. 

2. External device calibration method: relying on high-precision external equipment, 
such as turntables, for accurate calibration, main calibration installation error, scale 
factor and zero offset, mostly used for calibration in the laboratory, there are 
equipment restrictions. 

3. Kalman Filtering: Jafari et al. [Jafari, Sahebjameyan, Moshiri et al. (2015)] used dual 
Kalman filtering, which is an excellent tool for data fusion from noise signals, 
calibrating MEMS gyros and accelerometers, respectively, and using modeling 
methods to minimize prediction errors for Kalman the zero-bias stability and random 
walk noise in the filter are modeled, but the algorithm is computationally complex and 
different filter parameters need to be set for different sensors [Liu, Li, Di et al. (2018)]. 

4. Dynamic and static inertial measurement: Liu et al. [Liu and Fang (2008)] adopts an 
improved dynamic and static inertial measurement system (INS) high-precision 
calibration method. Although the accuracy is improved, the method needs to be 
assisted by external precision equipment (calibration turntable). In this case, this 
method cannot be used for accurate calibration. 
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Table 1: Comparison of FES with other treatment options 
Scheme Advantages Disadvantage 

Electromyogra
phy 
biofeedback 

A large number of studies have 
shown that it helps the 
rehabilitation of limb function in 
patients with hemiplegia, 
especially in terms of muscle 
strength recovery. 

Treatment lacks evidence of basic 
research, and there is insufficient 
data to show that it has significant 
benefits in improving upper limb 
function. 

CIMT 

It has been proven by clinical 
research to be the most effective 
rehabilitation technique for 
improving upper limb motor 
function, especially for patients 
with convalescent stroke and upper 
limb motor dysfunction. 

CIMT has limited applicability and 
it is not suitable for widespread use 
in the acute phase of stroke. In 
addition, CMIT is expensive. 

Robotic 
assisted 
therapy 

Provides or supports high-intensity 
and controllable repetitive upper 
limb exercises that are more easily 
recognized by patients than 
traditional exercise therapies. 

It is impossible to perform the 
flexion and extension training of 
the wrist joint. The system's own 
joint range estimation system and 
the protractor have a large error in 
the actual measured value, which 
is expensive and not popular. 

Mental practice 
with motor 
imagery 

Can improve nerve function and 
innervation muscle function 

The largest study to date has not 
improved the results, so there is no 
clear evidence that it can perform 
stroke rehabilitation 
independently. 

FES 

A large number of clinical studies 
have proved that electrical 
stimulation therapy can 
significantly improve the limb 
function of patients with stroke, 
improve the limb control ability of 
patients, and the wrist flexion and 
extension function and hand 
coordination activities of patients 
after FES treatment are 
significantly improved. 

It is very challenging to achieve a 
satisfactory control of muscle 
response to stimuli. 

In order to make the calibration of FES controller accelerometer more convenient and 
accurate, this paper adopts the method of fitting calibration, and optimizes it based on this, 
and proposes a method to calculate the automatic calibration gain robustly by using 
redundant acceleration vector. Then, the data generated by the acceleration sensor is 
calibrated according to the calculated gain. 

3 Methodology 
Because the 6-position calibration method requires a well-designed instrument, this 
method is only suitable for in-lab calibration. In order to break through the limitations of 
the instrument, Lötters et al. [Lötters, Schipper, Veltink et al. (1998)]. proposed an initial 
method that does not require any alignment equipment and is suitable for any type of 
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accelerometer calibration. The method is based on the following theorem. In the case of 
static placement, the measured acceleration modulus is always Local gravity acceleration: 
𝐺𝐺2 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2                (1) 
The method proposed in this paper is also based on the theorem. 

3.1 Model 
Ideally, the accelerometer will have exactly the same sensitivity anywhere within the 
specified amplitude range. It is generally accepted that models can be considered to be linear. 
Establish a numerical model, assuming the measured values are [𝑎𝑎𝑥𝑥𝑥𝑥 𝑎𝑎𝑦𝑦𝑥𝑥 𝑎𝑎𝑧𝑧𝑥𝑥]𝑇𝑇, the 
calibrated values are [𝑎𝑎𝑥𝑥𝑥𝑥 𝑎𝑎𝑦𝑦𝑥𝑥 𝑎𝑎𝑧𝑧𝑥𝑥]𝑇𝑇,the translation parameters are [𝑓𝑓𝑥𝑥 𝑓𝑓𝑦𝑦 𝑓𝑓𝑧𝑧]𝑇𝑇, the 
scaling parameters are [𝑘𝑘𝑥𝑥 𝑘𝑘𝑦𝑦 𝑘𝑘𝑧𝑧]𝑇𝑇, then the model is: 
𝑎𝑎𝑥𝑥𝑥𝑥 = 𝑘𝑘𝑥𝑥 ∙ (𝑎𝑎𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑥𝑥)
𝑎𝑎𝑦𝑦𝑥𝑥 = 𝑘𝑘𝑦𝑦 ∙ (𝑎𝑎𝑦𝑦𝑥𝑥 + 𝑓𝑓𝑦𝑦)
𝑎𝑎𝑧𝑧𝑥𝑥 = 𝑘𝑘𝑧𝑧 ∙ (𝑎𝑎𝑧𝑧𝑥𝑥 + 𝑓𝑓𝑧𝑧)

                 (2) 

The calibrated acceleration is linked to the original acceleration reading by six calibration 
parameters (three scale factors and three offsets). The model is based on a restrictive 
assumption: the three axes of the accelerometer are perfectly orthogonal. 
Due to the inaccurate structure of the three-axis accelerometer, the three axes cannot be 
completely orthogonal, we use T to represent the transformation matrix of the axis 
deviation: 

𝑇𝑇 = �
1 −𝛽𝛽𝑦𝑦𝑧𝑧 𝛽𝛽𝑧𝑧𝑦𝑦
𝛽𝛽𝑥𝑥𝑧𝑧 1 −𝛽𝛽𝑧𝑧𝑥𝑥
𝛽𝛽𝑥𝑥𝑦𝑦 𝛽𝛽𝑦𝑦𝑥𝑥 1

�                (3) 

To further simplify the transformation matrix T, we assume that the x-axis of the reference 
coordinate system coincides with the x-axis of the accelerometer's actual rotating 
coordinate system, and the y-axis of the reference frame is in the plane of the x-axis and 
the y-axis of the actual rotation coordinate system of the accelerometer. So, the 
transformation matrix can be further written as follows: 

𝑇𝑇𝑎𝑎 = �
1 −𝛼𝛼𝑦𝑦𝑧𝑧 𝛼𝛼𝑧𝑧𝑦𝑦
0 1 −𝛼𝛼𝑧𝑧𝑥𝑥
0 0 1

�                (4) 

such that the model becomes: 
𝑎𝑎𝑥𝑥 = 𝑇𝑇𝑎𝑎 ∙ 𝑆𝑆 ∙ (𝑎𝑎𝑥𝑥 − 𝑏𝑏)                 (5) 
where ac is the calibrated acceleration, Ta is the transformation matrix of the axis deviation, 
S is the scale factor, am is the acceleration reading, b is the offset. The factor can be replaced 
by a new matrix k whose factor depends on the non-orthogonal, acceleration sensitivity of 
the axis. 

3.2 Calculates auto-calibration gains 
The auto-calibration gain of each sensitive axis can be calculated using Eqs. (6) -(8) below. 
We need at least 3 acceleration vectors to solve the following equation: (g selects the local 
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gravity acceleration of Nanjing 9.79 m/s2 [Baidu Document (2018)]) 
𝑘𝑘𝑥𝑥

2𝑎𝑎𝑥𝑥12 + 𝑘𝑘𝑦𝑦
2𝑎𝑎𝑦𝑦12 + 𝑘𝑘𝑧𝑧

2𝑎𝑎𝑧𝑧12 = 𝑔𝑔2             (6) 

𝑘𝑘𝑥𝑥
2𝑎𝑎𝑥𝑥22 + 𝑘𝑘𝑦𝑦

2𝑎𝑎𝑦𝑦22 + 𝑘𝑘𝑧𝑧
2𝑎𝑎𝑧𝑧22 = 𝑔𝑔2             (7) 

𝑘𝑘𝑥𝑥
2𝑎𝑎𝑥𝑥32 + 𝑘𝑘𝑦𝑦

2𝑎𝑎𝑦𝑦32 + 𝑘𝑘𝑧𝑧
2𝑎𝑎𝑧𝑧32 = 𝑔𝑔2             (8) 

Where kx, ky and kz are the automatic calibration gains for each sensitive axis respectively, 
ax, ay and az are the accelerometer readings before calibration. 
In order to be able to calculate the calibration gain robustly, we use a redundant acceleration 
vector to calculate. When we use more acceleration vectors instead of 3, for example when 
using 9 vectors, (which will explain how to select the acceleration vector in the third part) 
we will get the following equation: 

�
𝑘𝑘𝑥𝑥

2

𝑘𝑘𝑦𝑦
2

𝑘𝑘𝑧𝑧
2
�

3 × 1

= �
𝑎𝑎𝑥𝑥1 𝑎𝑎𝑦𝑦1 𝑎𝑎𝑧𝑧1
⋮ ⋮ ⋮
𝑎𝑎𝑥𝑥9 𝑎𝑎𝑦𝑦9 𝑎𝑎𝑧𝑧9

�

9 × 3

−1

�
9.792
⋮

9.792
�

9 × 1

             (9) 

Next, we use the pseudo-inverse method to solve the above equation to get Eq. (10): 

�
𝑘𝑘𝑥𝑥

2

𝑘𝑘𝑦𝑦
2

𝑘𝑘𝑧𝑧
2
� = ��

𝑎𝑎𝑥𝑥1 𝑎𝑎𝑦𝑦1 𝑎𝑎𝑧𝑧1
⋮ ⋮ ⋮
𝑎𝑎𝑥𝑥9 𝑎𝑎𝑦𝑦9 𝑎𝑎𝑧𝑧9

�

𝑇𝑇

�
𝑎𝑎𝑥𝑥1 𝑎𝑎𝑦𝑦1 𝑎𝑎𝑧𝑧1
⋮ ⋮ ⋮
𝑎𝑎𝑥𝑥9 𝑎𝑎𝑦𝑦9 𝑎𝑎𝑧𝑧9

��

−1

�
𝑎𝑎𝑥𝑥1 𝑎𝑎𝑦𝑦1 𝑎𝑎𝑧𝑧1
⋮ ⋮ ⋮
𝑎𝑎𝑥𝑥9 𝑎𝑎𝑦𝑦9 𝑎𝑎𝑧𝑧9

�

𝑇𝑇

�
9.792
⋮

9.792
�        (10) 

Finally, calculate the calibration gain (𝑘𝑘𝑥𝑥
2, 𝑘𝑘𝑦𝑦

2 and 𝑘𝑘𝑧𝑧
2) according to Eq. (10). 

3.3 Calculates auto-calibration errors 
We use the least squares error model to calculate the error of the auto-calibration gain for 
each accelerometer’s sensitive axis, calculated by Eqs. (11)-(12) below: 

�
𝜀𝜀1
⋮
𝜀𝜀9
�

9 × 1

= �
𝑎𝑎𝑥𝑥1 𝑎𝑎𝑦𝑦1 𝑎𝑎𝑧𝑧1
⋮ ⋮ ⋮
𝑎𝑎𝑥𝑥9 𝑎𝑎𝑦𝑦9 𝑎𝑎𝑧𝑧9

�

9 × 3

�
𝑘𝑘𝑥𝑥

2

𝑘𝑘𝑦𝑦
2

𝑘𝑘𝑧𝑧
2
�

3 × 1

− �
9.792
⋮

9.792
�

9 × 1

            (11)  

 
 
 
where 𝜀𝜀1 − 𝜀𝜀9 are the calculated errors for when applies a set of calculated auto-calibration 
gains for each linear equations. 
𝜀𝜀𝑠𝑠𝑠𝑠𝑥𝑥 = ∑ 𝜀𝜀𝑖𝑖9

𝑖𝑖=1                (12) 
Where, 𝜀𝜀𝑠𝑠𝑠𝑠𝑥𝑥 is the sum of errors (𝜀𝜀1 − 𝜀𝜀9). 

 

Calculated g using 
auto-calibration 

i  
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4 Experiments 
In this section, we will use the above methods to select different acceleration data sets for 
experiments. Before the calibration, the acceleration sensor readings should be close to the 
gravitational acceleration when static. Therefore, the calculated gain should be 
approximately equal to one. We use the following steps to experiment with different 
acceleration vectors for different data sets: 
1. Move the sensor along 3 axes to collect 5 seconds of acceleration data; 
2. Select 9 acceleration vectors in different ways, select eight fixed points, the ninth point 

is the moving point, and calculate data for each group of nine; 
3. Calculate the gain and error of each group; 
4. Calculate the automatic calibration gain after removing the bad acceleration vector; 
5. Compare the gain calculated before and after the bad acceleration vector is removed. 
Acceleration data when moving the acceleration sensing unit along the x, y, and z axes is 
collected (see Fig. 3). The dashed vertical line represents the eight acceleration vectors that 
calculate the auto-calibration gain. The ninth acceleration vector is moved from the first 
acceleration reading in the above figure to the last acceleration reading. These 9 
acceleration vectors are combined to calculate the gain. 

 

Figure 3: Acceleration data when moving the acceleration sensing unit along the x, y, and 
z axes is collected 

Calculated auto-calibration gains when different ninth acceleration vectors obtained (see 
Fig. 4). 

 

Figure 4: Calculate the auto-calibration gain for each group 

Then calculate the sum of the errors of the different ninth acceleration vectors. 
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Figure 5: Sum of the errors of the different ninth acceleration vectors 

As can be seen from Fig. 5, there is a large error in some points, which we can think is due 
to the existence of a bad acceleration vector. The bad acceleration vector is generated by 
signal noise or when the acceleration sensor is moved with a large acceleration. Next, we 
remove the bad acceleration vector and compare the gain changes between the two. We 
have developed a rejecting rule: set a threshold, which is the best guess from the average 
of the initial partial error readings. When the error is greater than the threshold, we consider 
this a bad acceleration vector. Fig. 6 shows the auto-calibration gain after rejecting the bad 
acceleration vector (bad calculation is when sum of errors greater than 51.15, this is the 
average from first 80 readings). 

 

Figure 6: The auto-calibration gain after rejecting the bad acceleration vector 

Table 2: Gain and standard deviation comparison 

 Before removal of bad calculations After removal of bad calculations 

 Gain of X Gain of X Gain of Z Gain of X Gain of Y Gain of 
Z 

Average 1.024 1.011 0.981 1.025 1.012 0.980 
Standard 
deviation 0.0046 0.0151 0.0064 0.0020 0.0111 0.0037 

Tab. 2 shows the gain and standard deviation of each axis of the acceleration sensor before 
and after the bad vector is removed. 
We can see that after eliminating the bad acceleration vector, the standard deviation is 
significantly smaller than the unremoved, so that we can get the auto-calibration gain more 
accurately. 
In the following experiment, we used the same data set as the previous experiment. When 
we selected eight acceleration vectors, we let them have no significant separation, as shown 
in the vertical dotted line in Fig. 7. The same as above dashed vertical line represents the 
eight acceleration vectors that calculate the auto-calibration gain. The ninth acceleration 
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vector is moved from the first acceleration reading in the above figure to the last 
acceleration reading. 

 
Figure 7: Select the eight acceleration vectors without significant separation 

Calculated auto-calibration gains when different ninth acceleration vectors obtained (see 
Fig. 8). 

 
Figure 8: Calculate the auto-calibration gain for each group 

Calculate the sum of the errors of the different ninth acceleration vectors (see Fig. 9). 

 
Figure 9: Sum of errors (𝜀𝜀𝑠𝑠𝑠𝑠𝑥𝑥) when different ninth acceleration vectors 

From Fig. 9, we can see that this may cause a portion of the error when the selected 
acceleration vector is not significantly separated. This is because if many selected 
acceleration vectors (each acceleration vector is a linear equation, e.g., 𝑘𝑘𝑥𝑥

2𝑎𝑎𝑥𝑥12 +
𝑘𝑘𝑦𝑦

2𝑎𝑎𝑦𝑦12 + 𝑘𝑘𝑧𝑧
2𝑎𝑎𝑧𝑧12 = (9.79m/s2)2) are closed to each other (see dash vertical lines in 

Fig. 9). The errors 𝜀𝜀𝑛𝑛 (𝑛𝑛 = 1 − 9) for a set of calculated auto-calibration gains applied to 
those closed linear equations might be all small. This will lead to an overall small sum of 
error. In addition, those acceleration vectors (linear equations) will be more likely to be 
linear dependent to each other. 
When there is another g vector, which is separated from those closed g vectors, obtained 
for the calculation (see Fig. 7 when ninth acceleration vector moves from 2.5 seconds), this 
may lead to a big increase to the sum of errors (see Fig. 9 from 2.5 seconds). A possible 
explanation to this is, the errors 𝜀𝜀𝑛𝑛 (𝑛𝑛 = 1 − 9) for a set of calculated auto-calibration 
gains applied to those closed linear equations increasing at a same time. Therefore, we 
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propose that in this automatic calibration method, when the acceleration sensing unit 
rotates, all acquired acceleration vectors should be separated from each other in space. 
When there is a calibration phase, we move the acceleration sensing unit around the X, Y, 
and Z axes and pause for >1 second when the x-axis is in different quadrants of space, and 
get the first 8 acceleration vectors when the acceleration sensing unit is at different pauses. 
Fig. 10 shows the acceleration data for the calibration phase. The acceleration sensing unit 
rotates around the X, Y, and Z axes, and pauses for >1 second when the x-axis sensing unit 
is in different quadrants of space. When the sensing unit is paused at a certain position, the 
first 8 acceleration vectors are obtained. The acceleration vector from the calibration phase 
is considered to have good quality because there is a large gap between them under spatial 
and static conditions (minimizing the effect of the acceleration motion of the sensing unit). 
The ninth acceleration vector moves from the first acceleration reading in the above figure 
to the last acceleration reading. Combine all 9 acceleration vectors to calculate the gain. 

 
Figure 10: The acceleration data for the calibration phase 

 
Figure 11: Sum of errors (𝜀𝜀𝑠𝑠𝑠𝑠𝑥𝑥) when different ninth acceleration vectors 

 

Figure 12: Calculate the auto-calibration gain for each group 

Fig. 13 shows When the different ninth acceleration vector is selected, the automatic 
calibration gain is calculated after the bad acceleration vector is removed. (bad acceleration 
vector is when sum of errors greater than 9.08, this is a calculated sum of error when all 
nine g vectors are obtained when Acceleration sensing unit pause at different position) 
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Figure 13: Sum of errors (𝜀𝜀𝑠𝑠𝑠𝑠𝑥𝑥) when different ninth acceleration vectors 

It can be seen from Fig. 13 that the calculated auto-calibration gains are very close to 1, 
indicating that the accelerometer unit is well calibrated. As can be seen from the 
comparison Tab. 3, the error after calibration is significantly less than before calibration. 

Table 3: Gain and standard deviation comparison 
 Before removal of bad calculations After removal of bad calculations 
 Gain of X Gain of Y Gain of Z Gain of X Gain of Y Gain of Z 
Average 1.006 1.002 0.996 1.006 1.002 0.996 
Standard 
deviation 0.0063 0.0077 0.0050 0.0009 0.0009 0.0011 

Next, we collect another data set that rotates the sensing unit around the X, Y, and Z axes, 
and pauses for >1 second when the x-axis sensing unit is in different quadrants 
(approximately the first 20 seconds) in the space of the calibration phase. When the sensing 
unit is paused at a certain position, the first 8 acceleration vectors are obtained. The ninth 
acceleration moves from the acceleration reading at approximately 21 seconds in Fig. 14 
to the last acceleration reading. 

 

Figure 14: The acceleration data for the calibration phase 

 

Figure 15: Sum of errors (𝜀𝜀𝑠𝑠𝑠𝑠𝑥𝑥) when different ninth acceleration vectors 
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Figure 16: Calculate the auto-calibration gain for each group 

Finally, we subtract the bad acceleration vector with different error (15 and 9.08) thresholds 
and then calculate the auto-calibration gain, see Figs. 17 and 18. 

 

Figure 17: The auto-calibration gain calculated after removal of the bad acceleration 
vector (when sum of errors greater than 15) when different ninth acceleration vectors 
obtained 

 

Figure 18: The auto-calibration gain calculated after removal of the bad acceleration vector 
(when sum of errors greater than 9.08) when different ninth acceleration vectors obtained 

Table 4: Gain and standard deviation comparison 
 Before removal of bad 

calculations 
After removal of bad 
calculations (𝜀𝜀𝑠𝑠𝑠𝑠𝑥𝑥 > 15) 

After removal of bad calculations 
(𝜀𝜀𝑠𝑠𝑠𝑠𝑥𝑥 > 9.08) 

 Gain of 
X 

Gain of 
Y 

Gain of 
Z 

Gain of 
X 

Gain of 
Y 

Gain of 
Z 

Gain of 
X 

Gain of 
Y 

Gain of  
Z 

Average 1.002 0.999 1.005 1.002 0.999 0.996 1.006 0.999 1.002 
Standard 
deviation 0.0053 0.0087 0.0086 0.0032 0.0040 0.0040 0.0020 0.0021 0.0023 
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5 Conclusion 
Stroke survivors may lose control of upper limbs. FES therapy is a post-stroke 
rehabilitation intervention, and FSM has proven to be an effective and intuitive FES control 
method. The FSM uses the data information generated by the accelerometer to robustly 
trigger state transitions. In the medical field, highly accurate acceleration data is required, 
and the correlation of human motion analysis results directly depends on the accuracy of 
the collected data. Therefore, we need to calibrate the accelerometer. This paper proposes 
a method to calculate the auto-calibration gain robustly using redundant acceleration 
vectors. The least squares error model is used to calculate the error of the auto-calibration 
gain of each accelerometer’s sensitive axis. This method removes the limitations of 
calibration equipment and is superior to traditional laboratory calibration methods. In the 
experiment, we found that the error of partial calculation increases due to the existence of 
poor acceleration vector. For this reason, we have established a rule to eliminate the bad 
acceleration vector and calculate the automatic calibration gain. It has been experimentally 
shown that this may cause some error when the selected acceleration vector is not 
significantly separated. Therefore, we propose that in the automatic calibration method, 
when the acceleration sensing unit rotates, all acquired acceleration vectors should be 
separated from each other in space. Next, after the calibration phase, we move the 
acceleration sensing unit around the X, Y and Z axes and pause for >1 second when the x 
axis is in different quadrants of space, and obtain the first 8 acceleration vectors, which 
minimizes the acceleration of the sensing unit. The impact, then calculate the gain and 
compare. Experiments show that the calculated auto-calibration gain is very close to 1, 
which indicates that the accelerometer unit is well calibrated. It can be seen from the 
experimental comparison table that the error after calibration is significantly less than 
before calibration. 
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