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Abstract: Detecting collaborative fraudsters who manipulate opinions in social media is 
becoming extremely important in order to provide reliable information, in which, 
however, the diversity in different groups of collaborative fraudsters presents a 
significant challenge to existing collaborative fraudsters detection methods. These 
methods often detect collaborative fraudsters as the largest group of users who have the 
strongest relation with each other in the social media, consequently overlooking the other 
groups of fraudsters that are with strong user relation yet small group size. This paper 
introduces a novel network embedding-based framework NEST and its instance BEST to 
address this issue. NEST detects multiple groups of collaborative fraudsters by two steps. 
In the first step, to disclose user collaboration, it represents users according to their social 
relations. Then, in the second step, to identify the collaborative fraudsters, it detects the 
user groups with anomalous large group density in its representation space. BEST 
instantiates NEST by using a bipartite network embedding method to represent users and 
adopting a fast density group detection method based on the k-dimensional tree. Our 
experiments show BEST (i) performs significantly better in detecting fraudsters on four 
real-word social media data sets, and (ii) effectively detects multiple groups of 
collaborative fraudsters, compared to three state-of-the-art competitors. 
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1 Introduction 
The reliability of social media content is becoming increasingly significant because social 
media heavily affects people every day. Unfortunately, a large proportion of social media 
content is proposed by fraudsters who collaborate to manipulate social opinions driven by 
huge profit and incentives of reputation [Mukherjee, Venkataraman, Liu et al. (2013); Xiang, 
Li, Hao et al. (2018)]. As a result, effectively detecting such collaborative fraudsters is 
critical and with great bossiness values [Akoglu, Chandy and Faloutsos (2013)]. 
Recent year has seen significant progress made in fraudsters detection. Current efforts 
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mainly focused on extracting fraudster indicators and/or features from users’ behavior 
[Mukherjee, Liu and Glance (2012); Ye and Akoglu (2015); Hooi, Shin, Song et al. 
(2017)] or users’ proposed content [Mukherjee, Venkataraman, Liu et al. (2013); Wang, 
Liu and Zhao (2017); You, Qian and Liu (2018)]. Because of the great distinguishing 
ability of anomalous behavior and content, these indicators and/or features have shown 
remarkable performance in detecting individual fraudsters [Rayana and Akoglu (2016)]. 
However, identifying fraudsters with collaborative manipulation is a challenging task. 
Specifically, the collaborative manipulation poses the two major challenges below: (i) 
The content of collaborative fraudsters may not be anomalous because the collaborative 
manipulation may dominate social opinions. (ii) The professional fraudsters will imitate 
the behavior of honest users to evade inspection [Hooi, Song, Beutel et al. (2016)]. These 
two challenges cause the failure of current behavior and content-based fraudsters 
detection methods in detecting collaborative fraudsters. 
To detect collaborative fraudsters, the dense subgraph mining methods [Hooi, Song, 
Beutel et al. (2016); Hooi, Shin, Song et al. (2017); Wu, Hu, Morstatter et al. (2017); Liu, 
Hooi and Faloutsos (2017); Xiang, Shen, Qin et al. (2018); Xiang, Zhao, Li et al. (2018)] 
are the major solutions, which detect collaborative fraudsters according to the significant 
collaboration footprint. Specifically, the dense subgraph mining methods always detect 
collaborative fraudsters as the largest group of users who have the strongest relation with 
each other in the social media. However, in this way, they may overlook the other groups 
of fraudsters that are with strong user relation yet small group size. In reality, social 
media may contain multiple groups of collaborative fraudsters instead of only the largest 
group of collaborative fraudsters. 
In this paper, we introduce a novel Network Embedding-based denSiTy subgraph mining 
(NEST for short) framework for multi-group collaborative fraudsters detection in social 
media. Specifically, NEST first represents users according to their social relations to dis- 
close user collaboration. In this process, users who have similar activities will be embed- 
ded near to each other in the representation space. NEST then detects the user groups 
with anomalous large group density in its representation space to identify the 
collaborative fraudsters. Accordingly, any group of collaborative fraudsters with large 
joint activities can be effectively detected. 
Essentially, this detection procedure simultaneously tackles three challenges brought by 
collaborative fraudsters: content domination, behavior camouflage, and multiple 
fraudsters groups, resulting in a robust and comprehensive collaborative fraudsters 
detecting result. In the first step, NEST solves the content domination and behavior 
camouflage problems by distilling user social relations which are reflected in users’ joint 
activities. The rationale is that the cooperation of collaborative fraudsters to manipulate 
opinions cannot be avoided. In the second step, NEST discovers fraudsters groups by 
analyzing the outlier of group density in its representation space. The intuition is that the 
joint activities of collaborative fraudsters must be more frequent than honest users, but 
the number of fraudsters is much less than honest users. 
We further implement NEST by proposing a Bipartitie networking Embedding-based fast 
denSiTy subgraph mining method based on the k-dimensional tree structure, termed 
BEST. Specifically, BEST first models the users and their activities as a bipartite network 
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as demonstrated in Fig. 1. In the bipartite network, the nodes on each side are users and 
activities, and a link refers to a user participates in an activity. Then, to comprehensively 
capture user collaborations, BEST represents users by embedding both the explicit and 
implicit relations in the bipartite network. Lastly, to fast detect the collaborative 
fraudsters, BEST builds a k-dimensional tree for the representation space and searches 
the anomalous density group based on the k-dimensional tree. 
Accordingly, this paper makes two major contributions: 
 We introduce a novel network embedding-based framework NEST for identifying 

collaborative fraudsters in social media. NEST represents users according to their 
social relations and detects fraudsters by analyzing the outlier of group density in the 
representation space. It results in a more reliable and comprehensive collaborative 
fraudsters detection, compared to existing dense subgraph mining-based solutions. 

 We instantiate NEST to an effective and efficient multi-group collaborative 
fraudsters detection method, BEST, by introducing bipartite network embedding and 
k- dimensional tree-based anomalous density group searching. The bipartite network 
embedding captures both explicit and implicit user relations, and the k-dimensional 
tree-based method guarantees the efficiency of density groups searching. 

Extensive empirical results show that (i) BEST performs significantly better in detecting 
fraudsters on four large real-world social media data sets; and (ii) BEST effectively 
detects multiple groups of collaborative fraudsters, compared to three state-of-the-art 
competitors. 

2 Related work 
2.1 Fraudster detection 
Current efforts on fraudster detection can be roughly classified into two categories: 
individual characteristics-based methods and relational characteristics-based methods. 
The individual characteristics-based methods use the user proposed content and/or user’s 
behavior to identify whether a user is a fraudster. The information used by these methods 
mainly include the statics and linguistic characteristics of a content [Li, Huang, Yang et 
al. (2011); Mukherjee, Kumar, Liu et al. (2013); Wang, Liu and Zhao (2017); You, Qian 
and Liu (2018)], and the historical actions of a user [Fei, Mukherjee, Liu et al. (2013); 
Mukherjee, Venkataraman, Liu et al. (2013)]. These individual characteristics are 
designed as features for fraudster detection [Jindal and Liu (2008); Lim, Nguyen, Jindal 
et al. (2010); Zhao, Resnick and Mei (2015); Li, Fei, Wang et al. (2017)]. However, as 
evidenced by Hooi et al. [Hooi, Song, Beutel et al. (2016)], the individual characteristics 
are not robust for collaborative fraudsters who jointly manipulate social opinions and 
fraudsters may imitate the behavior of honest users. 
The relational characteristics-based methods capture user-activity, user-user, and 
activity-activity relations, typically via a graph [Pandit, Chau, Wang et al. (2007); 
Stringhini, Kruegel and Vigna (2010); Akoglu, Chandy and Faloutsos (2013); Junqué de 
Fortuny, Stankova, Moeyersoms et al. (2014); Akoglu, Tong and Koutra (2015); 
Shehnepoor, Salehi, Farahbakhsh et al. (2017)]. They hold an assumption that fake 
reviews are manipulated by groups of fraudsters. With this assumption, they assume a 
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group of fraudsters will have dense links to a group of manipulated activities (user-
activity relation) [Akoglu, Chandy and Faloutsos (2013); Wang, Xie, Liu et al. (2011)], a 
group of fraudsters will co-occur in many activities (user-user relation) [Wu, Hu, 
Morstatter et al. (2017); Sun, Qu, Chakrabarti et al. (2005); Xu, Zhang, Chang et al. 
(2013)], and different manipulated activities will have overlapped linked fraudsters 
(activity-activity relation) [Hovy (2016)]. 
Although current methods show their strengths to disclose fraudsters, most of them fail to 
discover multiple groups of collaborative fraudsters in social network. In this paper, we 
propose a networking-embedding based framework NEST to fill the gaps of multi- group 
collaborative fraudsters detection. The proposed NEST achieves a more reliable and 
comprehensive detection by revealing users within density groups in its representation 
space, which delicately embeds the user’s social relationships. 

2.2. Network embedding 
Our proposed method is based on network embedding, which can be categorized into two 
types: matrix factorization (MF)-based and neural network-based methods. 
MF-based methods involve linear [Cox and Cox (2000)] and nonlinear [Nedich and 
Ozdaglar (2008)] procedures in the embedding process. While the linear procedures 
adopt linear transformations, such as singular value decomposition (SVD) and multiple 
dimensional scaling (MDS), to generate low-dimensional embedding [Cox and Cox 
(2000)], the non- linear methods utilize nonlinear transformations, e.g. kernel PCA and 
manifold learning, to capture complicated data structures. However, both have high 
computational cost because of their eigen-decomposition operation on data matrix. 
Accordingly, these methods do not suit for large social network embedding. 
Recently, neural network-based methods have shown the state-of-the-art performance. 
Followed by DeepWalk [Perozzi, Al-Rfou and Skiena (2014)] and Node2Vec [Grover and 
Leskovec (2016)], most of neural network-based methods reformulate a network embedding 
task as a word embedding task via performing truncated random walks in a network to 
convert the network to sentences. More recently, advanced work embeds both explicit and 
implicit relations in a network and shows its significance [Tang, Qu, Wang et al. (2015); 
Wang, Cui and Zhu (2016); Cao, Lu and Xu (2015); Xu, Wei, Cao et al. (2017)]. However, 
the above methods are not designed for social network embedding. They treat the nodes in a 
network homogeneously, and thus, cannot capture the difference between user and activity 
in social media. In addition, the truncated random walks used in these methods do not 
consider the user-activity joint distribution in social network. 
In this paper, we instantiate NEST as an effective and efficient method, BEST, via a bipartite 
network embedding method. This Bipartitie network embedding method is tailored for 
social media. Accordingly, it captures user-activity relations better in its user representation 
space, which provides a solid foundation for collaborative fraudsters detection. 

3 NEST for collaborative fraudster detection 
NEST framework adopts a two-steps procedure to detect collaborative fraudsters in social 
media. The workflow of NEST framework is shown in Fig. 1. For a social media S  with 
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a set of users 1 2{ , , , }nU u u u= ⋅⋅ ⋅  and a set of activities 1 2{ , , , }mA a a a= ⋅⋅ ⋅ , in the first step, 
NEST extracts a bipartite network G  from S  as ( , , )G U A E= , where U  and A  are the 
nodes on the two sides of G , respectively, and E U V⊆ ×  defines the inter-set edges. 
Here, each edge in E  carries a non-negative weight ijw , reflecting the strength between a 
user iu  and an activity ja , and the ijw  will be zero if the user iu  does not join the 
activity ja . Accordingly, the weights in the bipartite network can be represented by a 
n m×  matrix [ ]ijW w= . Then, NEST learns an embedding function ( ) : dRf U⋅ → , which 
maps a user iu  to a d dimensional vector representation iu . The embedding function ( )f ⋅  
should capture and embed the social relations of users in the bipartite network into their 
representation space. In the second step, NEST finds the anomalous density groups in the 
user representation space and treats the users in the anomalous density groups as 
collaborative fraudsters. 
Formally, NEST detects a set of collaborative fraudster groups 1{ ' , , ' }kF G G= ⋅⋅ ⋅  
according to 

( , )i jdist η<u u  and ' , , ' , 1, , ,l i j lG u u G l kε≥ ∀ ∈ ∀ = ⋅⋅ ⋅                                                       (1) 

where ' lG  is a subgraph of G , ( , ) : d ddist R R R⋅ ⋅ × →  is a distance measure building on the 
user representation space, | |⋅  refers a density measurement, and η  and ε  are two 
parameters which control the density range and the density anomalous degree, respectively. 
Essentially, NEST embeds the collaboration footprints of users into a vector space where 
users joined similar activities will be located together. Therefore, the density of a group of 
users in the vector space reflects the degree of collaboration between this group of users. The 
larger density a group of users has, the more collaboration between them. Because 
collaborative fraudsters may have much more cooperation [Hooi, Song, Beutel et al. (2016)], 
NEST can effectively detect collaborative fraudsters by searching the groups with 
anomalous density in the user representation space. Different from typical graph subgraph 
mining methods, which only disclose a single group of collaborative fraudsters, i.e., the 
users in the largest dense subgraph, NEST provides a more comprehensive detection result 
that contains multiple groups of collaborative fraudsters. 
NEST has a good generalizability since it can be instantiated by specifying any network 
embedding method and any anomalous density groups searching method. We introduce an 
instance of NEST in next section and then verify its performance by empirical analyses. 

4 A NEST instance: BEST 
BEST instantiates NEST by a bipartite network embedding method catering for social 
net- work, and a k-dimensional tree-based anomalous density group searching method for 
efficient fraudsters detection. 
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Figure 1: NEST Framework. In the first step, NEST extracts a bipartite network from 
social media data, and represents user into a vector space by embedding their social 
relation in the bipartite network. In the second step, NEST searches the anomalous 
density group of users in the representation space for collaborative fraudsters detection. 
The detected collaborative fraudsters are illustrated with a grey background, and their 
corresponding groups are highlighted by a dotted circle 

4.1 Bipartite network embedding 
The network embedding reveals and embeds social relations of a user into the user’s 
vector representation, which reflects the cooperation of users in social media. We 
introduce a bipartite network embedding method to jointly capture the explicit and 
implicate relations of users in social media. 

4.1.1 Explicit relations embedding 
The explicit relations refer to the direct links between users and activities, which reflect 
the activities a user jointed. If two users always joint similar activities, their similarity 
should be large in the representation space. 
To preserve the explicit relations, we keep the preference of users in their representation 
space. Specifically, we measure the preference of a user in both social media and 
representation space, and make the preference of a user in representation space similar to 
that in social media. For the preference measurement in social media, we consider the 
probability of a user join in an activity. Given the bipartite network, this probability can 
be calculated as follows: 

( , ) ij
i j

ij
ij

w
P u a

we E
=

∈∑
                                                                                                        (2) 

where ijw  is the weight of edge ije . The measurement reflects the preference distribution 
of users. We follow the setting of word2vec to use the sigmoid function to measure the 
interaction of a user and an activity in their representation space in a probability space: 

1ˆ( , ) ,
1 exp( )i j

i j

P u a Τ=
+ −u a

                                                                                             (3) 

where d
i R∈u  and d

j R∈a  are the embedding vectors of iu  and ja , respectively. Then, 

we adopt KL-divergence to measure the difference between P  and P̂ , and optimize the 
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user and activity representation to minimize the KL-divergence as follows: 

,
,

( , )
min ( , ) log( ).ˆ( , )

i j
i j

i ji j

P u a
P u a

P u ae E∈
∑u a

                                                                                        (4) 

Considering ( , )P i j  is a constant, minimizing the Eq. (4) equals to follows: 

,,
,

ˆmin  log ( , ).i j i j

i j

w P u a
e E

−
∈
∑u a                                                                                               (5) 

4.1.2 Implicit relations embedding 
The implicit relations refer to the relations between users and activities that are not 
directly connected. For two users, if there exist a path between them in the bipartite 
network, they may have an implicit relation, and the weight of the path reflects the 
strength of this implicit relation. However, counting the paths between two nodes in a 
bipartite network has a great high complexity, which is impracticable in social media. 
Inspired by DeepWalk [Perozzi, Al-Rfou and Skiena (2014)], we also perform a 
truncated random walks on the network to generate nodes corpus as random walk paths, 
which contain higher order implicit relations between nodes. We move a step further to 
reconstruct the bipartite network G as two networks where each network only contains 
users ( )uG  or activities ( )aG , and conduct random walks on these two transformed 
networks. It results in a stationary distribution of random walks on social media data 
[Gao, Chen, He et al. (2018)]. In ( )uG , iu  and ju  will have an edge ,i ju ue  if exists a kt  that 

,i ku ae E∈  and ,j ku ae E∈  where E is the edge set of G . In ( )aG , ia and ja will have an edge 
,i ja ae  if exists a ku that ,k iu ae E∈  and ,k ju ae E∈  where E is the edge set of G . 

The random walk paths generation procedure is illustrated in Algorithm 1, which generates a 
set of random walk paths ( )uD  ofU , a set of random walk paths ( )aD  of A . 
The implicit relations embedding aims to maximize the conditional probability of the 
context of a node. For user corpus ( )uD , it maximizes the conditional probability as follows: 

( ) ( )
1

exp( )max ,
exp( )u

c S ii

i c
nCS S D

i kk

Τ

Τ∈∈ ∧ ∈
=

∏ ∏
∑u u uu

u u
u u

                                                                               (6) 

where S  refers to the sequence in the context, ( )S iC u  refers the context nodes of node iu  
in sequence s . Similarly, for activities corpus ( )aD  the implicit embedding maximizes 
the conditional probability as: 

( ) ( )
1

exp( )
max ,

exp( )a
c S jj

j c
mCS S D

i kk

Τ

Τ∈∈ ∧ ∈
=

∏ ∏
∑a a aa

a a

a a
                                                                               (7) 
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 Algorithm 1: Random walks paths generation for bipartite network 
 Input: Bipartite graph ( , , )G U A E= , Weight matrix W  of G , maximum walk per 

vertex maxl , minimum walk per vertex minl , walk stopping probability p . 
 Output: A set of random walk paths ( )uD  of U , and the ( )aD  of A . 
 foreach iu  in U  do 
1 foreach ju  in U  do 
2 if ,,

i ku aa e E∃ ∈  and ,i ku ae E∈ then 
3 ( )

,i j

a
a aE e← ; 

4 , , ,
, ,

;
,

k i k ji j

k i k j

a a u a u a
u a u a

w w w
e e E

= ⋅∑
∈

 

5 end 
6 end; 
7 rightv ←  BUILDKDTREE( (2)u , depth+1) ; 
8 foreach ia  in A  do 
9 foreach ja  in A  do 
10 if ,,

k iu aa e E∃ ∈  and ,k ju ae E∈ then 
11 ,( ) i ja aE a e← ; 
12 , , ,

, ,
;

,
k i k ji j

k i k j

a a u a u a
u a u a

w w w
e e E

= ⋅∑
∈

 

13 end 
14 end 
15 ( ) {}uD = , ( ) {}aD = ; 
16 foreach iu  in U  do 
17 

( )

( )

,
,

max min
,

,

max( , )
u i j

i j

u k l
k l

u u
u u E

u u
u u E

wel l l
we

∈

∈

= ⋅
∑
∑

,  { }iP u= ; 

18 for m =1 to l  do 
19 

Draw 
( )

,
, ~

,
,

i j

i j
u i k

i k

u u
u u

u u
u u E

w
e

we ∈∑
 

20 ,i i ju u uΡ← = ; 
21 Draw s  ~ uniform(0, 1) ; 
22 if s p≤  then break; 
23 end 
24 ( )uD P← ; 
25 end 
26 foreach iu  in U  do 
27 

( )

( )

,
,

max min
,

,

max( , )
a i j

i j

a k l
k l

a a
a a E

a a
a a E

wel l l
we

∈

∈

= ⋅
∑
∑

, { }iP a= ; 
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28 for m =1 to l  do 
29 

Draw 
( )

,
, ~

,
,

i j

i j
a i k

i k

a a
a a

a a
a a E

w
e

we ∈∑
 

30 ,i i ja a aΡ← = ; 
31 Draw s  ~ uniform(0, 1) ; 
32 if s p≤  then break; 
33 end 
34 ( )aD P← ; 
35 end  
36 return ( )uD , ( )aD . 
 
BEST jointly considers the explicit and implicit relations embedding, forming a joint 
embedding objective function: 

( )

( )

^

, ( )
1

( )
1

exp( )min log ( , )
exp( )

exp( )

exp( )

u
c S ii

a
c S jj

i c
ij i j n

u Cu S S D i kkij

j c
mCS S D

j kk

w P u a
e E

α β

γ

Τ

Τ

Τ

Τ

∈∈ ∧ ∈ =

∈∈ ∧ ∈
=

− −
∈

− ∏ ∏

∑ ∏ ∏
∑

∑

u a u

a aa

u u
u u

a a

a a

                                     (8) 

where α , β  and γ are the hyper-parameters to trade-off the effects of the three 
components. This objective function can be effectively solved by stochastic optimization 
methods. By solving the objective function (8), BEST represents users into a vector space 
where user’s social relations have been embedded. 

4.2 K-dimensional tree-based anomalous density group searching 
To fast search the anomalous density group, BEST first builds a k-dimensional tree (kd-
tree for short) for the user representation space, and then estimates the density around 
each user in that space. Finally, it adopts the criteria Eq. (1) in NEST to identify the 
anomalous density groups. 
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Figure 2: Example of kd-tree. The illustrated kd-tree is built on the user representation 
space shown in Fig. 1. Each level splits one dimension of the space into two parts  

4.2.1 Building kd-tree 
For user representation set 1 2{ , , }n= ⋅⋅⋅u u u u , BEST builds a kd-tree, v , by Algorithm 2. 
As illustrated in Fig. 2, the kd-tree v is a binary tree storing the user representation with 
their structure information, which enables the fast searching of anomalous density groups. 

 Algorithm 2: Building kd-tree 
 Procedure name: BUILDKDTREE( u ,depth) 
 Input: A set of point u, and the current depth. 
 Output: The root of the kd-tree, v , storing u  
1 if u  contains only one point then 
2 return a leaf storing this point. 
3 else 
4 l ← depth%d+1; 
5 Split u  into two subsets according to the median value q  in the l th-dimension 

of the points in u . Let (1)u  be the set of points which l th-dimension value is 
smaller or equal to the q , and let (2)u  be the set of other points ; 

6 leftv ←  BUILDKDTREE( (1)u , depth+1) ; 
7 rightv ←  BUILDKDTREE( (2)u , depth+1) ; 
8 Create a node v  storing the q  in the l th-dimension, make leftv leftv  the left 

child of v , and make rightv  the right child of v  ; 
9 return v. 
10 end 

4.2.2 Density estimation 
BEST estimates the density around each user in its representation space based on the kd- 
tree v  according to the Algorithm 3, where the function SEARCHKDTREE( iu , v , ρ ) 
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returns a set of users that around the user iu  within the range η  based on the kd-tree v . 
Essentially, BEST estimates the density around a user by the number of users close to the 
user within a certain distance in the representation space. If a user has a large density, the 
user should have a lot of collaborations with others. Accordingly, BEST uses the density 
as an important evidence to identify collaborative fraudsters. 

 Algorithm 3: Density estimation based on kd-tree 
 Input : A set of point u , the kd-tree v  and η . 
 Output: A set of densities around each user ρ , a set of user sets S . 
1 {}ρ ←  
2 foreach iu  in u  do 
3 iS ← SEARCHKDTREE( iu , v , η ) ; 
4 i iSρ ← ; 
5 { }iρ ρ ρ← ∪ ; 
6 { }iS S S← ∪ ; 
7 end 
8 return ρ , S . 

4.2.3 Collaborative fraudsters detection 
BEST detects collaborative fraudsters after estimating density around users in the user 
representation space. Specifically, it treats the density larger than a thresholdε , e.g. five 
times of the averaged density, as anomalous, and assigns the users in the density areas as 
fraudsters. The procedure is summarized in the Algorithm 4. 

 Algorithm 4: Collaborative fraudsters detection 
 Input : A set of densities around each user ρ , a set of user sets S , a threshold ε  
 Output: A set of fraudster users F .. 
1 {}ρ ←  
2 foreach iS  in S do 
3 if iρ ε>  then; 
4 iF F S← ∪  
5 end 
6 return F  

5 Experiments 
5.1 Data sets 
The experiments are carried on two large scale real word social media data sets, including 
Yelp restaurant and Yelp hotel data sets used in Mukherjee et al. [Mukherjee, 
Venkataraman, Liu et al. (2013)]. All the activities in these data sets have been assigned 
authenticity labels given by commercial filters. 
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5.2 Evaluation metrics 
We evaluate their performance by three metrics - precision, recall, and F-score. While 
precision evaluates the fraction of true fraudsters among detected fraudsters, recall 
reflects the fraction of true fraudsters that have been detected over the total amount of 
true fraudsters. The precision and recall should be jointly considered since fraudsters 
detection is an imbalance problem [Luca and Zervas (2016)], i.e., fraudsters are much 
less than honest users. Thus, we use F-score, which balances the precision and recall, as 
an averaged indicator. Higher F-score indicates a better performance of a fraudsters 
detection method. We report these three metrics per ground-truth honest user and 
fraudster classes to illustrate the performance for different categories. We further average 
them to show overall performance. 
We follow the literature [Wang, Liu and Zhao (2017)] to use the results of the Yelp 
commercial fraud filter to evaluate the performance. Because the Yelp commercial fraud 
filter only give the authenticity labels of activities, we transform the authenticity labels to 
the honest labels of users as the ground-truth. Considering the fraud activities distribution 
per each user assigned by the commercial filters, we assign the fraudster label to a user if 
more than 80% of the activities of the user have been labeled as fraud. The rationale is 
that we need to filter the false positive made by the commercial filters [Li, Chen, Liu et al. 
(2014)]. In other words, we assume that a user with a higher proportion of the assigned 
fraud activities will be more likely a real fraudster. 

5.3 Parameters settings 
In the experiments, we set the parameters of BEST as follows. To balance the explicit and 
implicit social relations, we set the hyper-parameters α , β , and γ  is the network 
embedding objective function Eq. (8) as 0.5, 0.25, and 0.25, respectively. We train the 
network embedding by Adam [Kingma and Ba (2014)] with embedding dimension 128 and 
batch size 32. For the density estimation, we set the distance range η  as 1. For the 
anomalous density detection, we set the threshold s as the five times of the averaged density. 
For the parameters in the compared methods, we take their recommended settings. 

5.4 Evaluation of BEST effectiveness on fraudster detection 
5.4.1 Experimental settings 
BEST is compared with two state-of-the-art competitors: Frauder [Hooi, Song, Beutel et 
al. (2016)] and HoloScope [Liu, Hooi and Faloutsos (2017)] in detecting collaborative 
fraudsters. These two competitors are both based on dense subgraph mining, but with 
different setting on the graph construction. 
 Fixed weighting dense subgraph mining-based method - FRAUDER [Hooi, Song, Beutel 

et al. (2016)]. FRAUDER is a fraudsters detection method by dense subgraph mining. 
To detect camouflage and hijacked accounts, it adopts a fixed weighting strategy. 

 Dynamic weighting dense subgraph mining-based method-HoloScope [Liu, Hooi and 
Faloutsos (2017)]. HoloScope uses information from graph topology and temporal 
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spikes to detect groups of fraudsters, and employs a dynamic weighting approach to 
allow a more accurately fraud detection. 

5.4.2 Findings-BEST significantly improving fraudsters detection performance, 
especially recall 
The precision, recall and F-score of BEST, Frauder, and HoloScope are reported in Tab. 
1. Overall, BEST significantly outperforms the competitors. It improves 21.8% and 
10.03% compared with the best-performing method in terms of F-score on two data sets. 

Table 1: Collaborative fraudsters detection performance of different methods 

Data Info. BEST HoloScope FRUADER 

Data Category #Review Precis
ion 

Rec
all 

F-
Score 

Precisi
on Recall F-

Score 
Preci
sion Recall F-Score 

 
Hotel 

Honest 
User 420,785 0.68 0.96 0.80 0.64 0.6 0.62 0.64 0.98 0.77 

Fraudster 267,544 0.85 0.32 0.46 0.42 0.46 0.44 0.82 0.11 0.31 

Overall 888,329 0.75 0.71 0.67 0.55 0.55 0.55 0.71 0.65 0.55 

 
Restau
rant 

Honest 
User 461,490 0.66 0.87 0.75 0.51 0.95 0.66 0.63 0.95 0.76 

Fraudster 326,981 0.74 0.35 0.48 0.74 0.12 0.21 0.74 0.21 0.33 

Overall 788,741 0.69 0.65 0.64 0.63 0.52 0.43 0.68 0.64 0.58 

5.5 Evaluation of BEST-generated user representation quality 
5.5.1 Experimental settings 
We visualize the user representation in a two-dimensional space trough TSNE [Maaten and 
Hinton (2008)]. To evaluate the user representation quality, we plot the ground-truth labels 
of each user at their positions in the representation space. A high-quality user representation 
will enable a dense distribution for the collaborative fraudsters. The behavior representation 
generated by BEST is compared with that generated by JETB [Wang, Liu and Zhao (2017)], 
which is the state-of-the-art user representation method for fraudsters detection. 

5.5.2 Findings-BEST generated user representation embeds fraudsters into groups with 
anomalous high density 
The user representations generated by BEST and JETB are visualized in Fig. 3. In the 
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JETB generated representation space, the users with large density are not consistent to the 
ground-truth fraudster label. In contrast, the density of BEST generated representation is 
consistent with the ground-truth fraudsters distribution. This qualitative illustrates that 
BEST effectively captures the social relation of users in social media, which is essential 
for the collaborative fraudsters detection. 

 
Figure 3: User representation with density of different methods on Yelp-hotel and Yelp- 
restaurant. The sub-figures (a), (b), (c), (d) contain the user representation information 
with the ground-truth labels, and the sub-figures (e), (f), (g), (h) show the density in the 
representation space 

6 Conclusion 
This paper introduces a network-embedding collaborative fraudsters detection framework 
NEST and its instance BEST. They perform an anomalous density searching procedure 
on a network embedding space which enables the detecting multiple groups of 
collaborative fraudsters. Two large real-world data sets demonstrate the performance of 
BEST is substantially better than the state-of-the-art competitors. 
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