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Abstract: Passenger comfort is an important indicator that is often used to measure the 
quality of public transport services. It may also be a crucial factor in the passenger’s 
choice of transport mode. The typical method of assessing passenger comfort is through a 
passenger interview survey which can be tedious. This study aims to investigate the 
relationship between bus ride comfort based on ride smoothness and the vehicle’s motion 
detected by the smartphone sensors. An experiment was carried out on a bus fixed route 
within the University campus where comfort levels were rated on a 3-point scale and 
recorded at 5-second intervals. The kinematic motion characteristics obtained includes 
tri-axial linear accelerations, tri-axial rotational velocities, tri-axial inclinations and the 
latitude and longitude position of the vehicle and the updated speed. The data acquired 
were statistically analyzed using the Classification & Regression Tree method to 
correlate ride comfort with the best set of kinematic data. The results indicated that these 
kinematic changes captured in the smartphone can reflect the passenger ride comfort with 
an accuracy of about 90%. The work demonstrates that it is possible to make use of larger 
and readily available kinematic data to assess passenger comfort. This understanding also 
suggests the possibility of measuring driver behavior and performance.  
 
Keywords: Ride comfort, smartphone sensor, classification & regression tree, kinematic 
motion, driver behavior analysis. 

1 Introduction 
Passenger comfort is an important index that can be used to measure the quality of public 
transport services and a crucial factor in the passenger’s choice of transport mode [Olio, 
Ibeas and Cecin (2011); Eboli and Mazzulla (2010)]. In Singapore, it has been reported 
that improvements in public transport ride comfort is one important consideration in 
attracting bus-choice riders as well as to retain bus-captive riders [PTC (2017)]. 
Despite well-paved and well-maintained roads, buses still make numerous sudden braking, 
acceleration or turns throughout the journey, during which passengers are susceptible to 
jerk and sway discomforts with occasional serious injuries [The Straits Times (2018)]. 
Conventionally, the quality of bus rides was evaluated through manual surveying a 
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randomly selected sample of passengers who reflected their experiences across a rating 
scale of intolerable to excellent ride [SAE (2000)]. This is a laborious and costly method 
and could only provide feedback periodically. This study attempts to assess ride comfort 
experienced by passengers with the use of motion sensors in modern Smartphones.  

2 Related works 
Over the last decade, mobile phones have transformed from simple cell devices to 
powerful sensing, communication and computing devices [Klausner (2013)]. Smart 
phone devices are now widely used, and they are changing our daily life [Cui, Zhang and 
Cai et al. (2018)]. Such smartphone devices have also been used to obtain transportation 
data of taxi, such as Uber Sun et al. [Sun and McIntosh (2018)].  
An average smartphone today is equipped with several sensors ranging from 
accelerometer, gyroscope, and Global Positioning System (GPS), among others that are 
capable of split-second high sampling rates of data acquisition. Its computing capabilities 
coupled with its proliferation-expected to reach 70% of earth’s population by 2020 
[Williams (2015)]-makes it a ubiquitous device that has high potential to facilitate the 
rapid and large-scale deployment in Intelligent Transport Systems [Engelbrecht, Booysen 
and Rooyen et al (2015)].   
Förstberg [Förstberg (2000)] have previously classified variables of a vehicle 
environment that influence the user’s comfort. They included dynamic variables (such as 
motions), ambient variables (such as temperature, pressure, air quality, ventilation and 
noise), spatial variables (such as workspace, legroom, seat shape) as well as human 
factors (like age and gender). Other studies have also shown that bus-operating factors 
such as in-vehicle time [Vovsha (2014)], passenger load [Kumar, Basu and Maitra 
(2004)], effects of road infrastructure [Bodini (2013)] have significant impacts on the 
levels of comfort experienced.  
Smartphones have been employed to measure dynamic factors that affect comfort in 
public transportation [Castellanos, Susin and Fruett (2011)]. The tri-axial accelerometers, 
GPS, and temperature sensors were used alongside a comfort index based on measuring 
the RMS value of the weighted acceleration, where sources of comfort’s disturbances 
were detected geographically through the Threshold detection algorithm. Lin et al. [Lin, 
Chen and Chen et al. (2010)] adopted an average-ride comfort methodology to assess 
comfort. Participatory phones were used to acquire data using GPS and tri-axial 
accelerometers, where a ride data is computed in a server and coordinated with the 
transportation database in order to identify ride comfort thus enabling a comparison of 
comfort values of different vehicles.  
The perceived value determined by service quality positively affects overall satisfaction, 
involvement, and behavioral intentions [Lin and Chen (2011)]. With comfort being one 
of the key factor in the provision of high bus service quality, and also a significant 
influencer of passenger satisfaction with bus transits [Eboli and Mazzulla (2007); Eboli 
and Mazzulla (2009)], passenger perception is a fundamental prerequisite for the 
improvement of bus comfort. The findings of such surveys were shown to help bus 
operators and authorities design better measures to improve bus comfort level. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722046/#CR10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722046/#CR6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722046/#CR7
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3 Proposed methodology 
3.1 Experimental route 
The experiment was carried out within National University of Singapore Kent Ridge 
Campus on the Internal Shuttle Bus service D1, for the journey segment between 
Information Technology (16189) to Central Library (16181) as shown in Fig. 1.  
 

 

List of bus stops for Internal 
Shuttle Bus D1 

Bus Stop 
Code Bus Stop Name 

NUS051 Ventus (Opp LT13) 

16189 Information 
Technology 

16179 Opp Yusof Ishak 
House 

16161 Museum 

NUSUTN University Town 

16171 Yusof Ishak House 

16181 Central Library 
 

Figure 1: Experimental route of NUS internal shuttle bus D1 service (as shown on 
google map ©2015 Google) 

3.2 Smartphone sensor data acquisition 
The smartphone was placed on a flat surface in the bus, secured on top of an anti-slip mat. 
Fig. 2 shows an illustration of tri-axial accelerometer and gyroscope sensor coordinates 
of a smartphone. The positive y-axis of the phone was set in the longitudinal axis of the 
vehicle. The smartphone was set to capture data when the bus reaches the first bus stop 
(16189), with the following sensors activated: Linear Accelerometer (ax, ay, az), 
Gyroscope (wx, wy, wz), Inclinometer (Pitch, Roll, Azimuth) and GPS location (latitude, 
longitude). The recording was terminated at the last bus stop (16181) when the bus has 
come to a complete stop. A total of 10 runs were made. 
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Figure 2: Illustration of tri-axial accelerometer and gyroscope sensor coordinates of a 
smartphone [The MathWorks (2013)]. 

3.3 Perception of ride comfort  
Throughout the journey, the level of comfort experienced by the experimenter was 
captured on an iPad programmed to receive the input at 5-second intervals. The level of 
discomfort experienced was noted on a 3-point scale as shown in Tab. 1. 

Table 1: Ride comfort scale 

Level of Discomfort Explanations of the Ride Discomfort level 

1 Changes in bus motion does not produce 
conscious discomfort. Ride is smooth. 
 

2 Changes in bus motion is noticeable but 
causes no annoyance or requiring physical 
adjustments 

3 Changes in bus motion causes annoyance 
and physical support is needed to maintain 
balance. 

4 Data cleaning and preprocessing  
Before the time-series data were analyzed, data cleaning and preprocessing was 
performed, and this includes: Error Compensation, Data Concatenating and Ordering, and 
Removal of Statistical Insignificant Variables. 

4.1 Error compensation 

Reducing drift in Inertia Navigation Systems (INS) 
The acceleration data from the accelerometer and gyroscope should be hovering near zero 
when the bus is identified to have stopped at a bus stop, over the extended durations in 
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which the longitude and latitude position remains unchanged. During this instant, the 
acceleration values of the preceding section from the bus stop were proportionately adjusted 
and the acceleration values were reset for the subsequent section to the next bus stop. 

Position correction in absolute positioning system 
To acquire the absolute position of the vehicle and the corresponding speed, the Kalman 
filter, commonly used to estimate true distance travelled obtained by the GPS sensor 
during sampling intervals, is applied. The moving average has also been shown to 
produce results close to those using the Kalman filter [Eliasson (2014)]. The central 
moving average was used in this experiment. Based on the average values of latitude and 
longitude obtained, the distance travelled and hence the corrected speed was computed 
and used in analysis. 

4.2 Data concatenating and ordering 
Data obtained from the various smartphone sensors were averaged in 5-second intervals 
to match the corresponding Ride Comfort score captured. Data from each 5-second 
intervals were concatenated into a single data set for analysis. Ride Comfort score was 
reformatted as an Ordered factor variable, to model the increasing level of discomfort. 

4.3 Removal of statistical insignificant variables 
Correlation amongst the variables present in the data was examined to account for 
multicollinearity problems. In prediction ride comfort, there was relatively high 
correlation of wz with other variables and hence removed from further analysis. As 
expected, geographical location (latitude and longitude) were not motion characteristics 
and prove not to influence ride comfort. 
After the data cleaning, there were 1208 observations with 9 independent variables as 
shown in Fig. 3, along with the summary statistics of the variables of the final model.  

 

Figure 3: Summary statistics of variables in final models 
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5 Model development and results of data analysis 
A regression tree was performed on the data set. The fully-grown tree had a total of 32 
splits, where it was then pruned based on the optimal complexity parameter in order to 
avoid overfitting. This resulted in a pruned tree with 26 splits as shown in Fig. 4. 
Terminal nodes are highlighted in red, yellow and green to illustrate cases where majority 
of the ride comfort levels 3, 2 and 1 respectively. 
Based on the model and the Gini importance index, the variables identified to be 
important in providing meaningful splits for the Classification and Regression Tree 
(CART) as shown in Tab. 2.  

Table 2: Variable importance table for CART analysis 

Variable Gini Index 

 253.76 
 235.26 

 168.59 
 135.79 

 103.98 
 71.88 

 61.20 
 47.67 
 47.25 

The model had an accuracy of 90.9% with the following confusion matrix as shown in Tab. 3. 

Table 3: Confusion matrix for CART analysis 

 
Observed 
Comfort  
Level 1 

Observed 
Comfort 
Level 2 

Observed 
Comfort 
Level 3 

Predicted Comfort 
Level 1 544 43 2 

Predicted Comfort 
Level 2 22 164 5 

Predicted Comfort 
Level 3 16 11 401 

6 Discussions 
The 26 splits can be identified from the tree where a “yes” to the condition is split to the 
left and a “no” to the condition is split to the right. Results suggest that for 16% of the 
observed data falls under the combination ,  ,  

and   where there is a 99% chance of comfort level 3 
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experienced. For 8% of the observed data where ,  ,  
  and   coincide, the chances of inducing an 

uncomfortable ride with comfort level 3 is 92%.  

 

Figure 4: Prune CART decision tree with 26 splits 
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All these mean that while speed influences the ride comfort significantly, cases with low 
speed accompanied with changes in lateral direction causes greater discomfort. Sharper 
turns that are accompanied by changes in elevation, possibly caused by humps also cause 
discomfort, while at the same time, smoother ride with more sudden turns increase would 
increase ride discomfort.  
For 26% of the observed data, there is a 95% chance passengers experiencing ride 
comfort level 1 when ,  ,    
and  . For 9% of the observed data, ride expectations are met with 91% 
chance of comfort level 3 experienced through the combination of ,  

,    and   .  

The results indicate that higher speed does not necessarily compromise on ride comfort. 
Riding over humps when the pitch is kept within a range of ±2° is also acceptable. The 
changes in lateral direction, even with a near right-angle turn but with low longitudinal 
acceleration may not increase ride discomfort.  

7 Conclusion 
This study shows that kinematic data captured from sensors in a smartphone can be used 
to reflect a passenger’s ride comfort with high degree of accuracy. Sharp turns that are 
accompanied by changes in elevation, or sudden albeit smoother turns are the two biggest 
causes of passenger discomfort in a ride.  
This provides possibilities of measuring driver behavior and performance, where drivers 
could be tested relatively easily whether they are providing comfortable rides for passengers. 
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