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Abstract: Based on the three-dimensional classic Chua circuit, a nonlinear circuit 
containing two flux-control memristors is designed. Due to the difference in the design of 
the characteristic equation of the two magnetron memristors, their position form a 
symmetrical structure with respect to the capacitor. The existence of chaotic properties is 
proved by analyzing the stability of the system, including Lyapunov exponent, 
equilibrium point, eigenvalue, Poincare map, power spectrum, bifurcation diagram et al. 
Theoretical analysis and numerical calculation show that this heterogeneous memristive 
model is a hyperchaotic five-dimensional nonlinear dynamical system and has a strong 
chaotic behavior. Then, the memristive system is applied to digital image and speech 
signal processing. The analysis of the key space, sensitivity of key parameters, and 
statistical character of encrypted scheme imply that this model can applied widely in 
multimedia information security. 
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1 Introduction 
There are four basic variables in circuit theory: current i , voltage v , charge q , and 
magnetic flux φ , so there are 2

4 6C =  possible combinations of relation between any two 
variables. Five relationships have been discovered before which are v i− , v q− , v φ− , 
i q− , i φ− , but what is the relationship between flux φ  and charge q ? Professor Leon 
O. Chua at the University of California, Berkeley, predicted their existence in 1971 based 
on the completeness and symmetry of the circuit statistics [Chua (1971)]. The fourth 
basic circuit component named memristor (short for memory and resistor), forms a 
complete circuit system with the original capacitors C , resistor R  and inductor L  (see 
Fig. 1). In 2008, Strukov and his colleagues of Hewlett-Packard (HP) Labs fabricated a 
nanometer-sized TiO2 memristor, the features of the circuit are consistent with the 
characteristics of the resistive device predicted by Leon O. Chua [Strukov, Snider, 
Stewart et al. (2008)]. In 2010, HP Labs once again announced that the memristor 
apparatus has Boolean logic operation function, this discovery shocked the computer 
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field [Vaidyanathan, Pham and Volos (2017); Duan, Zhang and Hu et al. (2014); Qu, Zhu 
and Wang et al. (2018)]. 
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Figure 1: Correlation of the memristor with four basic circuit variables 

Hence, the research of memristor has been widely developed and applied in various fields 
[Peishin and Di Ventra (2011); Yakopcic, Hasan and Taha (2017); Wang, Wang and 
Zhou (2016)]. Researchers in Germany have produced learning-capable nanomemristor 
devices, each of them is only 600 times the diameter of a human hair [Thomas (2013)]. 
As a key part of designing an artificial brain, the memristor mimics human neural 
function. Biolek established a SPICE macro model of TiO2 memristor to study the 
physical and circuit characteristics of memristor under the condition of nonlinear drift 
[Biolek, Biolek and Biolkova (2009)]. IBM Zurich research center announced the 
creation of the world’s first 500 artificial nanoscale random phase-change neuron arrays 
[Tuma, Pantazi, Le et al. (2016)] to simulate the way the human brain works. Bao et al. 
[Bao, Liu and Xu (2010)] researched the characters of smooth flux-controlled memristor 
and set up a new chaotic circuit. Zeng et al constructed and simulated synchronization of 
memristor-based on Chua’s circuits [Wen, Zeng, Huang et al. (2013)]. Professor Hu and 
Duan et al proposed several design operations of Cellular Neural Networks (CNN) image 
processing based on the memristor [Hu, Duan, Chen et al. (2017); Hu, Feng, Liu et al. 
(2015)], which demonstrated the nonlinear behavior through simulation and comparison, 
and designed the reverse tandem memristor synaptic circuit. 
Nonvolatile random memory is expected to be realized by the appearance of nanometer 
memristor. The integration, power consumption and reading and writing speed of the 
random memory based on memristor are superior to the traditional random memory 
[Bilotta, Chiaravalloti and Pantano (2014); Sah, Kim and Chua (2014); Wang, Ma, Xu et 
al. (2017)]. In addition, memristor is the best way for hardware to realize synapse of 
artificial neural network. Since memristor is also composed of nonlinear models, it is 
easy to associate with chaotic systems [Wu, Wang, Jin et al. (2017); Sheridan, Cai, Du et 
al. (2017); Uçar and Yavşan (2016)]. In fact, many existing memristic models are 
generated by nonlinear equations or circuits [Pham, Jafari, Vaidyanathan et al. (2016)]. 
The chaotic system is vulnerable and sensitive to external environment, so it can be 
applied in the information encryption and secret communication. At the same time, due to 



 
 
 
Heterogeneous Memristive Models Design and Its Application                               467 

the diversity of model parameters, large key space can be generated to increase the 
difficulty of cracking.  
In this paper, a 5-dimentional flux-controlled memristors based on classical Chua’s 
circuit are put forward. Numerical simulation shows that system variables have obvious 
chaos trajectories and complex nonlinear dynamical behaviors, also including memristic 
characters. This model can be successfully applied to the scrambling and encryption of 
image and speech information, so the memristive model will provides a reference for the 
further study of the memory chaotic system and information processing. 

2 Heterogeneous memristor system construction 
The memristor can remember the number of charges flowing through it, and at any given 
moment the resistance is a function of time, and it changes with the current passing through. 

2.1 Memristor properties 
Memristor is a kind of nonlinear resistor with memory function. The resistance value can 
be changed by controlling the change of current. If the high resistance value is defined as 
“1” and the low resistance value is defined as “0”, the resistance can realize the function 
of data storage. It is actually a non-linear resistor with memory. 
Memristor has three essential characteristics summarized as [Adhikari, Sah, Kim et al 
(2013)]: 
(1) When a periodic excitation voltage ( )v t  (or current ( )i t ) signal is connected to the 
outside, the ( ) ( )v t i t−  characteristic curve of the memristor is a zero crossing point. The 
shape of pinched hysteresis loop is presented as italic digital “8”, and the whole curve has 
odd symmetry and periodicity; 
(2) When the frequency ω  of the applied excitation signal increases to a larger value, the 

( ) ( )v t i t−  plane area of the pinched hysteresis loop will decrease with the increase of the 
frequency of the input excitation signal; 
(3) When the frequency ω  of the applied electric signal tends to infinity, the pinched 
hysteresis loop will shrink into a straight line, and the nonlinearity of the memristor will 
disappear, and the resistance will be a constant value. 
These are the typical features of the ideal memristor and the criterion of its judgment. 

2.2 Dual flux-control memristor model 
From Fig. 1, memristor is a new two-terminal circuit element in which there is a 
functional relationship between charge q  and magnetic flux φ . Assuming v  and i  stand 
for voltage and current respectively, according to the basic principles of the circuit, the 
memristance ( )M q  and memductance ( )W φ  can be expressed as following: 

( )
( )

v M q i

i W vφ

 =

=

 (1) 
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and ( )M q (Ohm) and ( )W φ  (Siemens) have physical definitions as 

( ) ( )

( ) ( )

d q
M q

dq
dq

W
d

φ

φ
φ

φ


=



 =

 (2) 

In this paper, we construct 2 different memductances ( )1 1W φ  and ( )1 1W φ , whose 
expressions are given by 

( )
( )

2
1 1 1 1

2
2 2 2

W a b c

W d e

φ φ φ

φ φ

 = + +


= +
 (3) 

where , , , ,a b c d e  are real constants. 
To reveal that the models 1W  and 2W  in Eq. (3) possess three essential characteristics of 
memristor described in Section 2.1, selecting a periodic excitation sinusoidal voltages 

( ) ( )sin sin 2m mv V t V ftω π= = , where mV  is voltage amplitude, ω  and f  are angular and 
frequency, respectively.  
Assuming 1.923a = , 1.923b = , 1.9230.9c = − , 1.9615d = , 0.09615e =  in Eq. (3), by 
replacing Eq. (3) with Eq. (1), Fig. 2 shows the v i−  curves of 1W  and 2W  memristors 
with (1,0.5,0.35)ω = Hz angular frequency, we can show they have shapes like italic 
digital ‘8’, they possess obvious pinched hysteresis loop features. 
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(a) Memristor 1W                                (b) Memristor 2W . 

Figure 2: The v i−  curves of two different memristors with 1W  and 2W  

2.3 Dual memristors structure based on classic Chua’s circuit 
The classic Chua’s chaotic circuit is consisted by two capacitors 1C  and 2C , an inductor 
L  and a Chua’s nonlinear resistance diode [Muthuswamy and Chua (2010)]. 
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Fig. 3 draw a novel dual memristor-based Chua’s circuit, which is synthesized by 1 
inductor L , 2 linear resistors R  and r , 2 capacitors 1C  and 2C , 2 different memristors 

1W  and 2W . 
According to Kirchhoff Current Laws (KCL) and Kirchhoff Voltage Laws (KVL), we 
can obtain the following equations from Fig. 3. 

1
1 1 1

2
2 3 2 2

3
2 3( )

C R

C R

iL

dvi i i C
dt

dvi i i i C
dt

div v ri L
dt

 = − =

 = − − =

 = − + =

 (4) 

 

 

Figure 3: Heterogeneous dual flux-control memristive circuit 
Combining two different structure magnetic-controlled memristors 1M  and 2M , Eq. (4) 
is changed as: 
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Substitute formula (3) into formula (4), and we can obtain 
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 (6) 

3 Chaos nonlinear performs of the dual heterogeneous memristors 
In this section, we will use numerical simulation to display the state trajectory of the system 
(6) and analyze the nonlinear characteristics of the two novels designed memristors.  

3.1 Dual memristors numerical simulation 
Let the coefficients of Eq. (6) are 1 20.18, 1.923, 0.52, 0.05, 0.0125C C R L r= = = = = , 
and parameters 1.923a = , 1.923b = , 1.9230.9c = − , 1.9615d = , 0.09615e = , the 
trajectory diagrams of system (6) are drawn in Fig. 4. 
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(g) 1 1Mv i−  variables                          (h) 2 2Mv i−  variables                  (i) 1 2 1v v φ− −  variables 

Figure 4: Variable phase portraits and trajectories of Eq. (6) 
Figs. 4(a)-4(f) show there are obvious dual-scroll chaotic attractors, and Fig. 4(i) displays 
3-D complex trajectory, Figs. 4(g) and 4(h) show ( ) ( )v t i t−  trajectories of 1W  and 2W  
flux-controlled memristors , they present a pinched hysteresis loop and similar to Fig. 2. 

3.2 Main chaotic features with dual memristors 
In order to fully verify the chaotic characteristics of system (6) with dual memristors, we 
verify it from the following aspects: 
A) Lyapunov exponent 
The Lyapunov exponent can characterize the motion of the system, it is the magnitude of 
positive and negative values along a certain direction and represents the average 
divergence or convergence of adjacent orbits in the attractor in a long time. For chaotic 
systems, Lyapunov exponent can describe quantitatively the degree of separation of 
orbits of dynamic systems in phase space. The Jacobian matrix of system (6) is  

2

1 1 1
2

2 2 2 2

1 ( ) 1 (2 )0 0

1 1 ( ) 1 20

10 0 0

1 0 0 0 0
0 1 0 0 0

R a c b a b x
C R C R C

R d e d y
C R C R C CJ

r
L L

ω ω ω

µ µ

 − − × + + − + ×
 × × 
 − − × + − ×
 

× × =
 

− − 
 
 
 
 

 (7) 

Adopting Jacobian matrix method, Lyapunov exponents of system (6) are calculated: 
LE1=0.7896, LE2=0.4131, LE3=-0.3092, LE4=-0.5225, LE5=-4.5787. There are two 
positive Lyapunov exponents and the sum of the Lyapunov exponents is negative, 
indicating hyperchaotic behaviour. 
The Lyapunov dimension is: 
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1 2
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1 2
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L i
ij

LE LED j L
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+
= + = +

+ +

+
= =
− − −

∑
 (8) 

LD  is a fractal dimension.  
Fig. 5(a) displays the Lyapunov exponents change of the system (6) within parameter 

[0,3]b∈ , Fig. 5(b) displays the Lyapunov exponents of the system (6) with time t  varies, 
and when 10t ms> , 1 0LE >  and 2 0LE > , which show the double memristor system is 
also a hyperchaotic system. 
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(a) Lyapunov exponents varies with parameter b     (b) Lyapunov exponents varies with time t 

Figure 5: Lyapunov exponents of the system (6) 

B) Equilibrium point and eigenvalue 
For system (6), let each of these terms is equal to 0, namely 

2
2 1 1 1 1

1
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v ri
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v
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φ φ

φ

 − − + +

 − + − + =

− + =

 =

=

（ ）= 0

 (9) 

There is only one equilibrium * (0,0,0,0,0)S = , the Jacobia matrix with *S  is  
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1 1
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 
  

 (10) 

Eigenvalues are calculated 1,2 0λ = , 3,4   1.1832 1.0496 0λ =− ± < , 5 1.0659 0λ = > , this 
indicates that the equilibrium point *S  is an unstable saddle point. 
C) Poincare map 
Poincare cross section is used to analyse the motion of multi-variable autonomous system. 
If the transient transition process of the initial stage is not considered, the steady-state 
image of the Poincare section is only considered. When there is only one fixed point and 
a few discrete points on the Poincare section, the motion can be determined as periodic. 
When the Poincare section is a closed curve, it can be determined that the motion is 
quasi-periodic, and when the Poincare section is a dense point with a hierarchical 
structure, it can be determined that the motion is in a chaotic state.  
Fig. 6 shows 2 3v i−  profile (where 1 0.5v = ) and 1 2v v−  profile (where 3 3i = ) 
respectively, listing signs of complex folding. 
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(a) 2 3v i−  profile (where 1 0.5v = )                       (b) 1 2v v−  profile (where 3 3i = ) 

Figure 6: Poincare map of the system (6) 
D) Power spectrum 
Power spectrum analysis is an important means to study vibration and chaos. According 
to Fourier series expansion, the frequency of chaotic aperiodic dynamics is continuous 
spectrum. Fig. 7 shows the system (5) is a continuous spectrum. 
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Figure 7: The continuous power spectrum with variable 1v  

E) Bifurcation diagram 
When the system parameter changes, the projection of Poincare mapping on a coordinate 
axis can constitute the bifurcation diagram. The countless points drawn in a chaotic graph 
indicate that there are numberless periodic signal points that never fall into the same 
position when chaos occurs. In the bifurcation diagram (Fig. 8), the characteristics of 
system performance change with system parameters can be clearly described.  
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Figure 8: The bifurcation diagram of 1v  with variable b ( 3 3i = ) 

4 Data signal security with heterogeneous memristors 
Chaos is a random behavior generated by deterministic equation, which is extremely 
sensitive to initial conditions and parameters, as well as long-term unpredictability. It can 
be used for confusion and synchronization control in secure communication field. In this 
section, we apply the constructed dual memristors to the encryption of digital image and 
voice signal. 

4.1 Digital image secure scheme 
Now let us describe the secure image communication scheme, for the case the image to 
be sent is a 24-bit RGB image. For other format images, the scheme is still effective after 
slightly adjustment. First, we define the key set of the scheme as follows: 
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1 2 15{ , , , }sK k k k= 

 (11) 

where 
 1 5~k k  are the initial conditions of 1 2 3 1 1(0), (0), (0), (0), (0)v v i φ φ  with Eq. (6); 

 6 10~k k  are the parameters 1 2, , , ,C C L R r of heterogeneous memristors of Eq. (5); 

 11 15~k k  are the parameters of two memristors ( , , , , )a b c d e  which are selected with 
Eq. (3); 

In order to achieve the encryption of the original image information, the chaotic sequence 
in system (6) is used to mix up the RGB color image sufficiently, as far as possible to 
achieve a Gaussian white noise effect. 
A M×N pixels color image is selected in the experiment, the encryption result is show as 
Fig. 9. Fig. 9(a) is the secret color image, it has 256×213 pixels. Fig. 9(b) is encryption 
image, it has completely obscured the original image and is impossible to guess. Fig. 9(c) 
is correct decryption image without any key error. 

4.2 Security analysis 
In the following subsections, key space and sensitivity analysis are given. The results 
show that our scheme has satisfactory security. 
 Key space. The keys used in the scheme are double precision numbers. There are 15 

keys altogether defined as Eq. (11). The sensitivity of the keys is 1610− . For the 
reason that guarantees to generate chaotic orbits, and the effective bits of sK , 
consequently the size of the key space is (16 15)10 ×  24010= 7972> . If we adopt brutally 
attack in search of the exact key value, time complexity is tremendous! 

 Key sensitivity. Tab. 1 shows that encrypted images are very sensitive to 
perturbations of the keys 2 9 12 2( , , ) ( (0), , )k k k v R b= . That is to say, when we first 
encrypt the original image with ik , the cipertext is called iC , then re-encrypt the 
plaintext with ∆+ik , commonly 161,151,141 −−−=∆ eee , the new cipertext is 
called jC , other 12 keys are unchanged. The percent of pixel error between iC  and 

jC  is over 99%, the results are shown in Figs. 9(d)~9(f). In fact, our computer 
simulation shows that encrypted images are also very sensitive to perturbations of 
the other 12 keys.  

In other words, if we encrypt with ik  key, but decrypt with ∆+ik  key, we will get the 
similar non-decryption effects. 
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Table 1: Sensitivity analysis of cipher image between iC  and 
jC  

%  sK  
2sK + ∆  9∆+sK  12sK + ∆  

sK  0% 99.45% 99.17% 99.63% 

2sK + ∆  99.45% 0% 99.39% 99.25% 

9∆+sK  99.17% 99.39% 0% 99.44% 

12sK + ∆  99.63% 99.25% 99.44% 0% 

(a) Origin image (b) Encryption image (c) Decryption image

 
(d) Initial condition deviation (e) Resistance R deviation (f) Parameter b deviation

 

Figure 9: Data image encryption result and the key sensitivity analysis 

 Statistical analysis. Let us compare the histograms between the plaintext (original 
image P ) and the encrypted image Q . Select the original image P  shown in Fig. 
9(a), the histograms of the intensity level of RGB color planes are shown in the first 
row in Fig. 10. The graphs given in the second row in Fig. 10 are the histograms of 
the intensity level of the encrypted image Q , that is shown in Fig. 9(b). It can be 
seen that the histograms of the cipher images are more flat and are significantly 
different from those of the plaintext image. This illustrates the encryption image has 
quite chaotic. 

 Speech signal security. We can also encrypt and protect the speech signal by using 
a scheme similar to that of image encryption. Fig. 11 shows the all processes of 
encryption and decryption.  

 Actually, origin speech signal in Fig. 11(a) is single track, that is to say we can use a 
part of system (6) serial, the attacker doesn't know the number of equations we 
choose, and this adds more obstacles to decryption. 

 Fractional order test. The fractional order equation is also used to process the 
system (5), the test results show that this design scheme is also suitable for fractional 
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memristor systems. Different fractional value selection will increase the space of the 
key and the complexity of the algorithm. 

 Others. In order to verify the chaotic behavior of the dual memristors, we can 
consider designing analog or digital circuits, that's the path to real physics, they are 
the extensive work in the future. 
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Figure 10: Histogram comparison with origin image and cipher image 
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Figure 11: Speech signal secure communication with similar image scheme 
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5 Conclusion 
In this paper, a novel memristive circuit is proposed with two flux-controlled smooth 
memristors. Furthermore, analyzing the Lyapunov exponent spectrum, equilibrium point 
and phase portraits, and indicate this system has also the hyperchaotic nonlinear 
characteristics. The scheme has 15 keys and the key space is larger than 7972 , which should 
be large enough for the requirements of secure communications. The sensitivity of the keys 
and the uniformity of the histograms of encrypted images imply that the new secure 
communication scheme is a promising candidate for images transmission. This scheme may 
be suitable for many format image encryptions and is feasible to color image secure 
communication and can be applied to speech and other multimedia signal encryption. 

References 
Adhikari, S. P.; Sah, M. P.; Kim, H.; Chua, L. O. (2013): Three fingerprints of 
memristor. IEEE Transactions on Circuits and Systems I, vol. 60, no. 11, pp. 3008-3021. 
Bao, B. C.; Liu, Z.; Xu, J. P. (2010): Steady periodic memristor oscillator with transient 
chaotic behaviors. Electronics Letters, vol. 46, no. 3, pp. 228. 
Bilotta, E.; Chiaravalloti, F.; Pantano, P. (2014): Spontaneous synchronization in two 
mutually coupled memristor-based Chua’s circuits: numerical investigations. 
Mathematical Problems in Engineering, vol. 25, no. 2, pp. 1-15. 
Biolek, Z.; Biolek, D.; Biolkova, V. (2009): SPICE model of memristor with nonlinear 
dopant drift. Radio Engineering, vol. 18, no. 2, pp. 210-214. 
Chua, L. O. (1971): Memristor-the missing circuit element. IEEE Transactions Circuit 
Theory, vol. 18, no. 5, pp. 507-519. 
Duan, S. K.; Zhang, Y.; Hu, X. F.; Wang, L. D.; Li, C. D. (2014): Memristor-based 
chaotic neural networks for associative memory. Neural Computer & Application, vol. 25, 
no. 6, pp. 1437-1445. 
Hu, X. F.; Duan, S. K.; Chen, G. R.; Chen, L. (2017): Modeling affections with 
memristor-based associative memory neural networks. Neurocomputing, vol. 223, no. 2, 
pp. 129-137. 
Hu, X. F.; Feng, G.; Liu, L.; Duan, S. K. (2015): Composite characteristics of 
memristor series and parallel circuits. International Journal of Bifurcation and Chaos, 
vol. 25, no. 8, 1530019. 
Muthuswamy, B.; Chua, L. O. (2010): Simplest chaotic circuit. International Journal of 
Bifurcation and Chaos, vol. 20, no. 5, pp. 1567-1580. 
Peishin, Y. V.; Di, V. M. (2011): Memory effects in complex materials and nanoscale 
systems. Advances in Physics, vol. 60, no. 2, pp. 145-227. 
Pham, V. T.; Jafari, S.; Vaidyanathan, S.; Wang, X. (2016): A novel memristive 
neural network with hidden attractors and its circuitry implementation. Science China: 
Technological Sciences, vol. 59, no. 3, pp. 358-363. 
Qu, Z. G.; Zhu, T. C.; Wang, J. W.; Wang, X. J. (2018): A novel quantum 
stegonagraphy based on brown states. Computers, Materials & Continua, vol. 56, no. 1, 
pp. 47-59. 



 
 
 
Heterogeneous Memristive Models Design and Its Application                               479 

Sah, M. P.; Kim, H.; Chua, L. O. (2014): Brains are made of memristors. IEEE Circuits 
& Systems Magazine, vol. 14, no. 1, pp. 12-36. 
Sheridan, P. M.; Cai, F.; Du, C.; Ma, W.; Zhang, Z. et al. (2017): Sparse coding with 
memristor networks. Nature Nanotechnology, vol. 12, no. 8, pp. 784-789. 
Strukov, D. B.; Snider, G. S.; Stewart, G. R.; Williams, R. S. (2008): The missing 
memristor found. Nature, vol. 453, no. 7191, pp. 80-83. 
Thomas, A. (2013): Memristor-based neural networks. Journal of Physics D: Applied 
Physics, vol. 46, no. 9, 093001. 
Tuma, T.; Pantazi, A.; Le, G. M.; Sebastian, A.; Eleftheriou, E. (2016): Stochastic 
phase-change neurons. Nature Nanotechnology, vol. 11, no. 8, pp. 693-699. 
Uçar, A.; Yavşan, E. (2016): Behavior learning of a memristor-based chaotic circuit by 
extreme learning machines. Turkish Journal of Electrical Engineering & Computer 
Sciences, vol. 24, no. 1, pp. 121-140. 
Vaidyanathan, S.; Pham, V. T.; Volos, C. (2017): Adaptive control, synchronization 
and circuit simulation of a memristor-based hyperchaotic system with hidden attractors. 
Advances in Memristors, Memristive Devices and Systems, vol. 701, pp. 101-130. 
Wang, S. B.; Wang, X. Y.; Zhou, Y. F. (2016): A memristor-based hyperchaotic 
complex Lü system and its adaptive complex generalized synchronization. Entropy, vol. 
18, no. 2, pp. 1-15. 
Wang, Y.; Ma, J.; Xu, Y.; Wu, F. Q.; Zhou, P. (2017): The electrical activity of 
neurons subject to electromagnetic induction and Gaussian white noise. International 
Journal of Bifurcation and Chaos, vol. 27, no. 2, 1750030. 
Wen, S. P.; Zeng, Z. G.; Huang, T. W.; Chen, Y. R. (2013): Fuzzy modeling and 
synchronization of different memristor-based chaotic circuits. Physics Letters A, vol. 377, 
no. 34-36, pp. 2016-2021. 
Wu, F. Q.; Wang, C. N.; Jin, W. Y.; Ma, J. (2017): Dynamical responses in a new 
neuron model subjected to electromagnetic induction and phase noise. Physica A 
Statistical Mechanics & Its Applications, vol. 469, pp. 81-88. 
Yakopcic, C.; Hasan, R.; Taha, T. M. (2017): Flexible memristor based neuromorphic 
system for implementing multi-layer neural network algorithms. International Journal of 
Parallel Emergent & Distributed Systems, vol. 33, no. 4, pp. 408-429. 


	Heterogeneous Memristive Models Design and Its Application in Information Security
	Shaojiang Zhong0F , *

	5 Conclusion
	References

