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Abstract: Drug side-effects impose massive costs on society, leading to almost one-third 
drug failure in the drug discovery process. Therefore, early identification of potential 
side-effects becomes vital to avoid risks and reduce costs. Existing computational 
methods employ few drug features and predict drug side-effects from either drug side or 
side-effect side separately. In this work, we explore to predict drug side-effects by 
combining heterogeneous drug features and employing the bipartite local models (BLMs) 
which fuse predictions from both the drug side and side-effect side. Specifically, we 
integrate drug chemical structures, drug interacted proteins and drug associated genes 
into a unified framework to measure the comprehensive similarity between drugs first. 
Then, high-quality and balanced training samples are selected for individual drugs and 
individual side-effects using the designed balanced sample selection framework, based on 
drug comprehensive similarities and side-effect cosine similarities respectively. Trained 
with corresponding training samples, BLMs first predict drugs associated with a given 
side-effect, then predict side-effects for a given drug. This produces two independent 
predictions for each putative drug-side-effect association which are further combined to 
give a definitive prediction. The performance of the proposed method was evaluated on 
side-effect prediction for 901 drugs from DrugBank. Particularly, we performed 5-fold 
cross-validation experiments on the 742 characterized drugs and independent testing 
experiment on the 159 uncharacterized drugs. The simulative predictions show that the 
side-effect prediction performance is significantly improved owing to the integration of 
information from drug chemical, biological and genomic spaces, the proposed sample 
selection framework, and the implemented BLMs. 
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1 Introduction 
Drug side-effects impose massive costs on society, resulting in significant morbidity and 
mortality. They are estimated to be the fourth leading cause of death in the United States, 
responsible for around 100,000 deaths each year [Giacomini, Krauss, Roden et al. (2007); 
Zheng, Peng, Zhang et al. (2018); Zheng, Peng, Ghosh et al. (2019)]. Side-effects also 
account for around one-third of drug failures in the drug discovery process [Kennedy 
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(1997)]. The early identification of potential side-effects, before reaching the clinical 
stages, is of critical importance. 
Wet experiments (e.g., preclinical in vitro safety profiling) are capable to identify potential 
side-effects, but such experimental identification remains challenging in terms of the cost 
and efficiency. Recently, several in silico prediction methods have been proposed to 
improve this expensive and time-consuming process. These methods employed different 
drug features and prediction models, aiming to achieve efficient and accurate predictions. 
Drug chemical structures are widely used as features to make side-effect predictions. In 
2007, Bender et al. first attempted to predict side-effects across hundreds of categories 
from drug chemical structures alone, and demonstrated the feasibility of using drug 
chemical structures for side-effect prediction [Bender, Scheiber, Glick et al. (2007)]. 
Pauwels et al. performed sparse canonical correlation analysis on correlated sets of drug 
chemical substructures and side-effects to predict side-effects [Pauwels, Stoven and 
Yamanishi (2011)]. They showed the usefulness of their method via predicting 1385 side-
effects in SIDER. Target proteins and pathways are also employed as features to predict 
potential side-effects. Iwata et al. systematically analyzed the correlation between side-
effects and protein domains based on drug-target interaction network [Iwata, Mizutani, 
Tabei et al. (2013)]. They showed that the inferred side-effect-domain association 
network was useful for estimating common drug side effects. Drug target data and 
clinical observation data were combined to develop a computational framework for 
accurate side-effect prediction of trial drugs [Huang, Wu and Chen (2011)]. The authors 
figured out that gene annotation information of target proteins could increase the 
prediction accuracy. Fukuzaki et al. leveraged cooperative pathways and gene expression 
profiles to predict side-effects [Fukuzaki, Seki, Kashima et al. (2009)]. However, their 
method depends heavily on the availability of gene expression data. Instead of using a 
single drug feature (e.g., drug chemical structure), researchers tried to predict drug side-
effects by integration of different types of drug features [Yamanishi, Pauwels and Kotera 
(2012); Zhang, Chen, Tu et al. (2016)]. Yamanishi et al. [Yamanishi, Pauwels and Kotera 
(2012)] integrated drug chemical structures and drug target proteins in a unified 
framework for side-effect prediction. Extensive experiments demonstrated that the 
prediction performance was significantly improved owing to the integration. Analogously, 
impacts of different combination of drug features were investigated in Zhang et al. 
[Zhang, Chen, Tu et al. (2016)]. Compared with methods based on a single drug feature, 
all feature integration methods produced better performances. 
Recently, supervised learning with bipartite local models has been demonstrated to give 
superior performance to precursor algorithms in predicting drug potential targets [Mei, 
Kwoh, Yang et al. (2012); Bleakley and Yamanishi (2009); Xiang, Li, Hao et al. (2018)]. 
It combines predicted targets of a given drug and predicted drugs which target a given 
target to achieve precise predictions. 
Taking advantages of feature integration and BLMs, we propose to predict potential drug 
side-effects based on integration of drug chemical structures, drug interacted proteins and 
drug associated genes using BLMs. First, we integrate the chemical space of drug 
chemical structures, biological space of drug interacted proteins and genomic space of 
drug associated genes into a unified framework to measure similarities between drugs. 
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Then, similarities between side-effects are calculated by the cosine similarity measurement. 
Next, a high-quality and balanced training sample set is selected for each drug and each side-
effect according to corresponding drug comprehensive similarities and side-effect cosine 
similarities respectively. Finally, BLMs predicts each potential drug-side-effect association 
by combining prediction results from the drug side and the side-effect side. We 
demonstrated the usefulness of the proposed method on simulative prediction of associations 
between 901 drugs and 635 side-effects. Specifically, 742 characterized drugs whose side-
effect profiles are available in SIDER were used for 5-fold cross validation experiments. The 
remaining 159 uncharacterized drugs whose side-effects are not stored in SIDER, were used 
for independent testing experiment. Both the cross-validation experiments and the 
independent testing experiment show that the prediction performance improves steadily 
owing to the integrated drug features, selected high-quality samples and the BLMs. 

2 Methods 
2.1 Data resources 
2.1.1 Data set of drug source 
In this work, we focus on 901 drugs which are classified as “small molecules” in Law et al. 
[Law, Knox, Djoumbou et al. (2014)], a comprehensive drug database. Drug information 
including drug names, drug SMILES strings, drug interacted proteins, and ChEMBL ids 
was extracted from DrugBank. The protein-Gene Ontology (GO) association information 
was downloaded from the EMBL-EBI website [Harris, Clark, Ireland et al. (2004)]. The 
drug-disease (or drug-indication) associations were obtained via searching the ChEMBL 
online database using corresponding ChEMBL ids [Bender (2010)]. And the disease-gene 
association data were downloaded from CTD [Davis, Grondin, Johnson et al. (2017)]. 

2.1.2 Data set of drug-side-effect associations 
The drug-side-effect association information was obtained from SIDER [Kuhn, Letunic, 
Jensen et al. (2015)]. Some rare side-effects are associated with very few drugs. Little 
information can be provided from them. Therefore, we removed side-effects which were 
associated with less than 30 drugs. Finally, we obtained a data set of 901 drugs, 635 side-
effects, and 73,295 associations. The side-effect list and drug list can be found in Tab. S1 
and S2 in Additional file 2. The 901 drugs are consisted of 742 characterized drugs 
whose side-effect profiles are available in SIDER, and 159 uncharacterized drugs whose 
associated side-effects are not available in SIDER. 

Table 1: Summary of the data resources 
Data Source Number 
drug DrugBank 901 

side-effect SIDER 742 
drug-target interaction DrugBank 5,093 
protein-GO association EMBL-EBI 21,693 
drug-disease association ChEMBL 5,023 
disease-gene association CTD 13,132 

drug-side-effect association SIDER 73,295 
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2.2 Prediction with BSSF and BLMs 
The framework of the proposed method is illustrated in Fig. 1. It includes steps for the 
calculation of drug similarity and side-effect similarity, sample selection, data 
representation, and prediction models. 

 
Figure 1: The framework for drug side-effect prediction. The framework consists of four 
parts, namely similarity calculation, sample selection, data representation and bipartite 
local models. DrugBank: drug data; EMBL-EBI: gene ontology data; ChEMBL: drug-
disease association data; CTD: disease-gene association data; SIDER: side-effect 
resource; ASCs: accumulative similarity scores 

2.2.1 Drug similarity calculation 
A. Similarity of chemical structures 
The drug chemical structure was converted into a fingerprint by the Chemistry 
Development Kit (CDK) [Steinbeck, Hoppe, Kuhn et al. (2006)] from its SMILES string. 
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The fingerprint is an 881-dimensional binary vector, where each element encodes the 
presence or absence of the PubChem substructure by 1 or 0 [Chen, Wild and Guha 
(2009)]. Then, the chemical structure similarity between two drugs was calculated as the 
Tanimoto 2D score between their fingerprints. For drug 𝑑𝑑𝑗𝑗 and drug 𝑑𝑑𝑘𝑘, their chemical 
structure similarity score is given by: 

S𝑐𝑐ℎ𝑒𝑒𝑒𝑒(d𝑗𝑗, d𝑘𝑘) =
∑ �𝑓𝑓𝑙𝑙

𝑗𝑗∧𝑓𝑓𝑙𝑙
𝑘𝑘�881

𝑙𝑙=1

∑ �𝑓𝑓𝑙𝑙
𝑗𝑗∨𝑓𝑓𝑙𝑙

𝑘𝑘�881
𝑙𝑙=1

                                                                                                 (1) 

where ∧ and ∨ are bitwise “and” and “or” operators respectively; 𝑓𝑓𝑙𝑙
𝑗𝑗 and 𝑓𝑓𝑙𝑙𝑘𝑘 are the 𝑙𝑙𝑡𝑡ℎ 

bit of fingerprints of drug 𝑑𝑑𝑗𝑗 and drug 𝑑𝑑𝑘𝑘 respectively. 
B. Similarity of interacted proteins 
The similarity between two proteins was calculated as the overlapping rate of their 
associated GO terms. Let GO𝑒𝑒  and GO𝑛𝑛  be the GO term set for protein p𝑒𝑒  and p𝑛𝑛 
respectively, the similarity score between them is defined as: 

S𝑔𝑔𝑔𝑔(p𝑒𝑒, p𝑛𝑛) = GO𝑚𝑚∩GO𝑛𝑛

GO𝑚𝑚∪GO𝑛𝑛
                                                                                                        (2) 

where ∩  and ∪  are “intersection” and “union” operators respectively. Zhang et al. 
demonstrated the integration of drug interacted proteins including drug targets, drug 
enzymes, and drug transporters could improve the prediction performance [Zhang, Chen, 
Tu et al. (2016)]. Therefore, we combined them with drug carriers together to compute 
the drug interacted protein similarity. The interacted protein similarity score between 
drug 𝑑𝑑𝑗𝑗 and drug 𝑑𝑑𝑘𝑘 is computed by: 

S𝑝𝑝𝑝𝑝𝑔𝑔(d𝑗𝑗, d𝑘𝑘) =
∑ ∑ 𝑆𝑆𝑔𝑔𝑔𝑔(p𝑚𝑚,p𝑛𝑛)𝑁𝑁𝑘𝑘

𝑛𝑛=1
𝑁𝑁𝑗𝑗
𝑚𝑚=1

𝑁𝑁𝑗𝑗∗𝑁𝑁𝑘𝑘
                                                                                           (3) 

where 𝑁𝑁𝑗𝑗 and 𝑁𝑁𝑘𝑘 are the total number of proteins in the interacted protein sets of drug 𝑑𝑑𝑗𝑗 
and drug 𝑑𝑑𝑘𝑘 respectively. 
C. Similarity of associated genes 
The drug associated gene similarity is measured by genes associated with drug 
indications (i.e., diseases). We leverage the method proposed in Cheng et al. [Cheng, Li, 
Ju et al. (2014)] to measure the similarity between two diseases. First, the information 
content (IC) of a disease 𝑑𝑑𝑑𝑑𝑑𝑑 from Disease Ontology (DO) [Schriml, Arze, Nadendla et al. 
(2011)] is calculated as follows: 
𝐼𝐼𝐼𝐼 = −𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑))                                                                                                                     (4) 

where 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑) equals the number of genes associated with disease 𝑑𝑑𝑑𝑑𝑑𝑑 divided by the total 
number of genes related to DO. Then the similarity between two diseases is defined as 
the IC of their most informative common ancestor (MICA). MICA is the common 
ancestor which has the maximum IC. We constructed DO based on the tree view of 
diseases in the MeSH Browser [Lipscomb (2000)]. The DO contains 4,578 disease terms 
and 11,480 “is_a” relationships among terms. To keep consistent with chemical structure 
similarity and interacted protein similarity, the similarity between two diseases is 
normalized to the range [0,1] as follows: 
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𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒,𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛) =  𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛)− 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑
𝑚𝑚𝑑𝑑𝑛𝑛

𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑
𝑚𝑚𝑚𝑚𝑚𝑚− 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑

𝑚𝑚𝑑𝑑𝑛𝑛                                                                    (5) 

where 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒,𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛)  and 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒,𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛) are the original disease similarity and 
normalized disease similarity between disease 𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒and disease 𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛respectively; 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑚𝑚𝑚𝑚 
and 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑𝑛𝑛 are the maximum and minimum similarity among all disease pairs respectively. 
Then the associated gene similarity is defined as: 

𝑁𝑁𝑔𝑔𝑒𝑒𝑛𝑛𝑒𝑒�𝑑𝑑𝑗𝑗,𝑑𝑑𝑘𝑘� =
∑ ∑ 𝑁𝑁𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛)𝑁𝑁𝑘𝑘

𝑛𝑛=1
𝑁𝑁𝑗𝑗
𝑚𝑚=1

𝑁𝑁𝑗𝑗∗𝑁𝑁𝑘𝑘
                                                                     (6) 

where 𝑁𝑁𝑗𝑗 and 𝑁𝑁𝑘𝑘 are the total number of indications of drug 𝑑𝑑𝑗𝑗 and drug 𝑑𝑑𝑘𝑘 respectively. 
D. Integration of drug similarity 
“Mean” is used as the consensus similarity inference method to integrate the above three 
measurements of drug similarities into a single comprehensive similarity. 

𝑁𝑁𝑐𝑐𝑔𝑔𝑒𝑒�𝑑𝑑𝑗𝑗,𝑑𝑑𝑘𝑘� = 𝑆𝑆𝑐𝑐ℎ𝑒𝑒𝑚𝑚�𝑑𝑑𝑗𝑗,𝑑𝑑𝑘𝑘�+ 𝑆𝑆𝑝𝑝𝑝𝑝𝑔𝑔�𝑑𝑑𝑗𝑗,𝑑𝑑𝑘𝑘�+𝑆𝑆𝑔𝑔𝑒𝑒𝑛𝑛𝑒𝑒�𝑑𝑑𝑗𝑗,𝑑𝑑𝑘𝑘�
3

                                     (7) 

2.2.2 Side-effect similarity calculation 
Side-effects are represented as 742-dimensional vectors using their associations with the 
742 characterized drugs. Each element of the vector encodes the presence or absence of 
the corresponding side-effect-drug association by 1 or 0. The similarity between two 
side-effects is defined as the cosine angle between their vectors. 

𝑁𝑁𝑐𝑐𝑔𝑔𝑑𝑑𝑑𝑑𝑛𝑛𝑒𝑒�𝑑𝑑𝑗𝑗, 𝑑𝑑𝑘𝑘� = 𝑐𝑐𝑙𝑙𝑑𝑑�𝑑𝑑𝚥𝚥��⃗ , 𝑑𝑑𝑘𝑘���⃗  � =  𝑑𝑑𝚥𝚥���⃗ .𝑑𝑑𝑘𝑘����⃗
�𝑑𝑑𝚥𝚥���⃗ �2.‖𝑑𝑑𝑘𝑘����⃗ ‖2

                                                                          (8) 

where 𝑑𝑑𝚥𝚥��⃗  and 𝑑𝑑𝑘𝑘���⃗  are vectors of the side-effect 𝑑𝑑𝑗𝑗  and side-effect 𝑑𝑑𝑘𝑘  respectively; “.” 
denotes the dot-product of the two vectors. 

2.2.3 Sample selection framework 
In the side-effect prediction task, the number of positive samples and the number of 
negative samples are usually imbalanced. Besides, the prediction performance is severely 
impeded by the lack of reliable negative samples and high-quality positive samples. In 
this work, we developed a framework to select balanced high-quality training samples. 
We took the selection of training drug samples for a side-effect s𝑗𝑗  as an example to 
illustrate the selection process: 
A. Obtaining the smaller number 𝑛𝑛𝑑𝑑 , between the labeled drug number (𝑁𝑁𝑙𝑙) and the 
unlabeled drug number (𝑁𝑁𝑁𝑁). Labeled and unlabeled drugs are drugs which are known to 
associate with s𝑗𝑗 in SIDER or not respectively. 
B. If 𝑁𝑁𝑙𝑙 ≥  𝑁𝑁𝑁𝑁, then compute the accumulative similarity score (ASC) between each 
labeled drug and all unlabeled drugs. For the labeled drug 𝑑𝑑𝑑𝑑, its ASC is calculated as 
follows: 
𝑁𝑁𝑐𝑐𝑙𝑙𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑 =  ∑ 𝑁𝑁𝑐𝑐𝑔𝑔𝑒𝑒�𝑑𝑑𝑑𝑑,𝑑𝑑𝑗𝑗�𝑁𝑁𝑁𝑁

𝑗𝑗=1                                                                                                       (9) 
Otherwise compute the ASC between each unlabeled drug and all labeled drugs 
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analogously. 
C. If 𝑁𝑁𝑙𝑙 ≥  𝑁𝑁𝑁𝑁, then sort labeled drugs in ascending order according to their ASCs. The 
top 𝑁𝑁𝑁𝑁 labeled drugs and all the unlabeled drugs are selected as training drug samples for 
s𝑗𝑗. Otherwise, sort unlabeled drugs in ascending order. The top 𝑁𝑁𝑙𝑙 unlabeled drugs and 
all labeled drugs are selected as training drug samples for s𝑗𝑗. 

2.2.4 Data representation 
Each drug is represented as a 742-dimensional vector. The elements encode for the 
comprehensive similarity between the drug and the 742 characterized drugs. In a similar 
way, each side-effect is represented as a 635-dimensional vector whose elements denote 
the cosine similarity between the side-effect and all side-effects. 

2.2.5 Bipartite graph inference with local models 
The drug-side-effect associations can be viewed as a bipartite network, in which vertexes 
are drugs and side-effects, edges are their associations. Thus, the problem of predicting 
new drug-side-effect associations is to infer new edges from the bipartite network. We 
adopt the idea proposed in Bleakley et al. [Bleakley and Yamanishi (2009)] to train 
several local models to predict new edges from both the drug side and side-effect side. 
Specifically, the presence or absence of edge 𝑆𝑆𝑑𝑑𝑗𝑗  between drug 𝑑𝑑𝑑𝑑  and side-effect s𝑗𝑗  is 
predicted as follows: 
A. Drug side 
(1) Excluding drug 𝑑𝑑𝑑𝑑 , we obtain the selected training drug samples for side-effect s𝑗𝑗. 
Among the training drug samples, drugs known to have s𝑗𝑗 are labeled as +1 and the rest 
are labeled as -1. 
(2) Vectors of all training drug samples and their labels are fed into an auto-classifier for 
training. 
(3) The trained classifier is employed to predict the label of drug 𝑑𝑑𝑑𝑑. 
B. Side-effect side 
(1) Excluding side-effect s𝑗𝑗, we obtain the selected training side-effect samples for drug 
𝑑𝑑𝑑𝑑 . Among the training side-effect samples, side-effects which are known to be 
associated with drug 𝑑𝑑𝑑𝑑 are labeled as +1, otherwise -1. 
(2) An auto-classifier is trained using vectors of all training side-effect samples and 
their labels. 
(3) The trained classifier is leveraged to predict the label of side-effect s𝑗𝑗. 
C. Prediction result integration 
Prediction from the drug side and side-effect side using different datasets provides two 
independent predictions of the same edge (i.e., association). The two predictions are 
combined to give a definitive prediction using their average value 𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑙𝑙𝑆𝑆{𝑥𝑥,𝑦𝑦}, where 
𝑥𝑥 and 𝑦𝑦 are the predicted scores from drug side and side-effect side respectively. 
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3 Results 
3.1 Performance evaluation and comparison 
We employed the k-nearest neighbor (KNN) as the local auto-classifier for prediction. K 
was set as one-third of the number of training samples (rounded down). We tested nine 
approaches: (1) BSSF_BLM (2) Random_BLM (3) Original_BLM, (4) BSSF_SS, (5) 
Random_SS, (6) Original_SS, (7) BBSF_DS, (8) Random_DS, and (9) Original_DS on 
their abilities to predict known drug-side-effect associations using the 742 characterized 
drugs. BSSF indicates the approaches are based on the proposed balanced sample 
selection framework; Random denotes the samples are selected randomly; Original 
means the approaches are performed without any sample selections; BLM implies the 
approaches employ the bipartite local models; DS and SS suggest the prediction are made 
using information from the drug side and the side-effect side respectively. The 
comprehensive drug similarity and cosine side-effect similarity were applied to measure 
the similarity between drugs and similarity between side-effects respectively in all the 
nine approaches. The performance is evaluated by the 5-fold cross validation: (1) 
Samples in the gold standard are split into 5 roughly equal-sized subsets; (2) Each subset 
is taken in turn as the test set, the remaining four subsets are used as training set; (3) All 
results over the 5-fold validation are used for evaluation. The receiver operating 
characteristic (ROC) curve, precision-recall (PR) curve, the area under ROC curve (AUC) 
and the area under the precision-recall curve (AUPR) are used as the evaluation metrics. 
To obtain robust results, approaches based on randomly selected samples were repeated 5 
times and the average results were used for evaluation. 
Fig. 2 shows the global ROC curves for the above nine approaches based on 5-fold cross 
validation experiments, where all the predicted scores for each drug-side-effect 
association were merged and a global curve was drawn for each approach. The resulting 
AUC scores for the nine approaches are 0.9879, 0.9688, 0.8998, 0.9763, 0.8500, 0.9075, 
0.8973, 0.8175, and 0.6434 respectively. It seems that approaches based on the proposed 
BSSF performed better than those based on randomly selected training samples and raw 
training samples. For example, BSSF_DS outperformed Random_DS and Original_DS at 
0.0798 and 0.2538 respectively. This result demonstrates the feasibility of the proposed 
sample selection framework. Approaches employ the bipartite local models seem to work 
better than approaches solely based on prediction from the drug side or side-effect. For 
instance, compared with BSSF_DS and BBSF_SS, BSSF_BLM achieved 0.0906 and 
0.0116 higher AUC score respectively. It suggests the integration of predictions from 
both the drug side and side-effect side is meaningful. Among the nine approaches, 
BSSF_BLM which employs both the proposed balanced sample selection framework and 
bipartite local models achieved the best performance. The same results can be observed 
from the global PR curves (see Fig. S1 in Additional file 1). 



 
 
 
Drug Side-Effect Prediction Using Heterogeneous Features                                   489 

 
Figure 2: ROC curves based on the 5-fold cross validation. Comparison of the 
performance among 9 approaches. BSSF indicates the approaches are based on the 
proposed balanced sample selection framework; Random denotes the samples are 
selected randomly; Original means the approaches are performed without any sample 
selections; BLM implies the approaches employ the bipartite local models; DS and SS 
suggest the prediction are made using information from the drug side and the side-effect 
side respectively 

To demonstrate the significance of integrating gene information (i.e., drug associated 
gene similarity), we investigated the prediction accuracy for each drug and each side-
effect with a high level of confidence. We compared these results with one state-of-the-
art work which integrates chemical structures and target proteins into a unified 
framework (hereinafter refer to as ChemBio) [Yamanishi, Pauwels and Kotera (2012)]. 
Fig. 3 illustrates the boxplots which represent the distribution of area under the PR curve 
(AUPR) for individual drugs and side-effects respectively. Compared to ChemBio, the 
proposed approaches integrated more drug interacted proteins (i.e., enzymes, transporters 
and carrier) and drug associated genes. Predicting side-effects for small molecule drugs 
in DrugBank, the proposed approaches significantly outperformed ChemBio, which 
demonstrates the high-performance prediction power of the proposed methods. In 
addition, it indicates that the integration of gene information and more drug interacted 
proteins makes sense. 
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Figure 3: Boxplots of the AUPR (area under the precision-recall curve) scores for each 
drug and each side-effect. Comparison of performances among the proposed approaches 
and the state-of-the-art work “ChemBio” [Yamanishi, Pauwels and Kotera (2012)]. The 
upper five boxplots show the AUPR scores for individual drugs, and the five boxplots 
below illustrate the AUPR scores for individual side-effects 

To directly show how well the proposed approaches work, we also investigated the number 
and ratio of drugs whose top ranked predicted side-effects are confirmed in SIDER. Related 
results are listed in Tab. 2. Consistent with previous results, BSSF_BLM achieved the best 
performance. For example, the proposed approach BSSF_BLM ranked known side-effects 
in all top 10 predicted results for 653 drugs (82.08%) of the 742 characterized drugs and 
ranked known side-effects in all top 50 predicted results for 302 drugs (40.7%). These 
results further demonstrate the prediction power of the proposed method. 

       Table 2: Performance statistics of the top predicted drug-side-effect associations 

 BSSF_BLM Random_BLM Original_BLM 
Top1 730 711.4 608 
Top5 705 576.4 355 
Top10 653 418.2 212 
Top15 609 301.4 139 
Top20 562 216.8 81 
Top50 302 34.8 6 

Top 𝑥𝑥  indicates the number of drugs, whose top 𝑥𝑥  ranked predicted side-effects all are 
known in SIDER. The best result in each row is highlighted in bold. Approaches based on 
randomly selected samples were repeated 5 times and the average results were presented. 
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3.2 Side-effect prediction for uncharacterized drugs 
In DrugBank, there are still 159 uncharacterized drugs whose chemical structure 
information, interacted protein information and associated gene information are available, 
but their side-effect profiles are not stored in SIDER. We conducted the independent 
testing experiment using BLM_DS on them. All the 742 characterized drugs were used as 
training set. The whole prediction results are reported in Tab. S3 in Additional file 2. It is 
not practical to analyze all predictions, so we focused on predicted side-effects of 
uncharacterized drugs related to brain-diseases or withdrawn from the market. We tried 
to confirm some predicted drug-side-effect associations using other sources, such as 
DrugsCom and PubMed. 
Acetylsalicylic acid (DB00945) is the only uncharacterized drug prescribed for brain 
diseases. It is used to treat Transient Cerebral Ischemia (TCI) which is a subclass of Brain 
Ischemia [Law, Knox, Djoumbou et al. (2018)]. TCI attacks around 30% to 40% patients 
who have stroke, a major cause of disability and death in North America [Cusimano and 
Ameli (1989)]. Consequently, the treatment of TCI is beneficial in preventing stroke. The 
side-effect information of “Acetylsalicylic acid” is not available in SIDER, however, the 
information can be found in DrugsCom [Drugs.com (2018)]. So it is reasonable to 
evaluate the prediction performance by analyzing how its side-effects in DrugsCom were 
predicted. The side-effect names are not always consistent between side-effects from 
DrugBank and DrugsCom when referring the same side-effects. So we mapped side-
effects of DrugsCom into side-effects of DrugBank. The mapping results as well as the 
prediction scores can be found in Tab. S4 in Additional file 2. 58 side-effects are reported 
in DrugsCom. Among them, 45 side-effects are successfully mapped into side-effects of 
DrugBank and 24 side-effects are of high credibility. Fig. 4 illustrates the 24 high-
credibility side-effects and their prediction scores. It can be seen that 16 out of 24 high-
credibility side-effects obtained prediction scores larger than 0.5 (common threshold). 34 
out of the 45 mapped side-effects (75.56%) were successfully predicted. 
There are 10 withdrawn drugs whose side-effect profiles are not available in SIDER. We 
investigated how much our approach could explain why they were withdrawn from the 
market based on literature evidences. Part of the serious side-effects and their 
corresponding predicted scores are listed in Tab. 3. The entire results and detailed 
evidences are listed in Tab. S5 in Additional file 2. From Tab. S5, it can be seen that most 
side-effects were successfully captured. For instance, cisapride (DB00604), a 
gastroprokinetic agent increases motility in the upper gastrointestinal tract was withdrawn 
from the U.S. market in 2000 due to serious cardiac arrythmias [Wikipedia (2018); 
Hennessy, Leonard, Newcomb et al. (2008); Wysowski and Bacsanyi (1996)]. It is 
consistent with our prediction result that cisapride has a high probability (prediction 
score=1.00) to cause ventricular arrhythmia. The above result further validated that our 
approach is not only capable to predict side-effects for a drug accurately and but also 
capable to find out reasons why a drug is withdrawn. 
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Table 3: Validation examples of side-effects predicted for 10 uncharacterized drugs 
withdrawn from the market 

DrugBank 
ID Drug Name Side-effect Prediction 

Score Evidence 

DB00150 L-Tryptophan muscle twitching 1.00 DrugsCom 
DB00150 L-Tryptophan dyspnoea 0.58 DrugsCom 

DB00269 Chlorotrianisene abdominal pain 0.52  [Lounkine, Keiser, Whitebread 
et al. (2012)] 

DB00342 Terfenadine ventricular 
arrhythmia 1.00 DrugsCom 

DB00342 Terfenadine cardiac arrest 1.00 DrugsCom 
DB00378 Dydrogesterone congenital anomaly 0.46  [Queisser-Luft (2009)] 
DB00414 Acetohexamide hypoglycaemia 1.00 DrugsCom 
DB00414 Acetohexamide throat sore 0.92 DrugsCom 
DB00414 Acetohexamide urine abnormality 0.78 DrugsCom 
DB00463 Metharbital dyspnoea 0.62          [Druglib (2018)] 
DB00604 Cisapride pancytopenia 1.00 DrugsCom 

DB00604 Cisapride Ventricular 
arrhythmia 1.00  [Hennessy, Leonard, 

Newcomb et al. (2008)] 
DB00604 Cisapride abdominal cramps 0.98 DrugsCom 
DB00604 Cisapride tachycardia 0.54 DrugsCom 

DB00637 Astemizole ventricular 
arrhythmia 1.00 DrugsCom 

DB00637 Astemizole cardiac arrest 0.96 DrugsCom 
DB00637 Astemizole arrhythmia 0.84 DrugsCom 
DB00677 Isoflurophate stomach ache 0.26 DrugBank 
DB00677 Isoflurophate arrhythmia 0.22 DrugBank 
DB00680 Moricizine coma 0.98 DrugsCom 
DB00680 Moricizine ileus 0.92 DrugsCom 

DB00680 Moricizine cardiac failure 
congestive 0.84 DrugsCom 

DB00680 Moricizine syncope 0.54 DrugsCom 

DB00680 Moricizine myocardial 
infarction 0.52 DrugsCom 
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Figure 4: Prediction scores of 24 side-effects which were mapped from DrugsCom into 
DrugBank with high credibility. The x-axis and y-axis represent the prediction scores and 
the side-effect names respectively 

4 Conclusions 
In this work, we proposed a novel method to predict potential drug side-effects based on 
drug chemical structures, drug interacted proteins and associated genes with sample 
selection and bipartite local models. The originality of the proposed method lies in the 
integration of three different drug features into a unified framework to measure 
similarities between drugs, in the development of balanced sample selection framework, 
in the implementation of bipartite local models. As far as we know, no existing work 
gathers all the above features in the field of drug side-effect prediction. In the 
performance evaluation, the proposed method showed the best performance on all 
evaluation metrics. The independent test on uncharacterized drugs demonstrate that the 
proposed method is practically useful in predicting both existing and new drug-side-
effect associations. 
The proposed method is of value to various stages of drug development. At the early stage 
of drug candidate selection, the method could help to judge whether a compound should be 
chosen for further study or dropped due to unwanted side-effects. When the drugs are 
marketed, the method could help to find new indications for old drugs. This process is 
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called drug repositioning, which could save a large amount of financial costs and time [Lee, 
Choi, Park et al. (2017)]. Besides, warnings about potential serious side-effects can be 
given to the public before causing serious damages. The idea of balanced sample selection 
and bipartite local models also provides a new solution for unbalanced classification. 

Additional files 
The additional files for this work can be downloaded from:  
https://drive.google.com/open?id=0B9QA_8VX0i99S0NaZXpLOXUyYmc. 
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