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Abstract: Binaural sound source localization (BSSL) in low signal-to-noise ratio (SNR) 
and high reverberation environment is still a challenging task. In this paper, a novel 
BSSL algorithm is proposed by introducing convolutional neural network (CNN). The 
proposed algorithm first extracts the spatial feature of each sub-band from binaural sound 
signal, and then combines the features of all sub-bands within one frame to assemble a 
two-dimensional feature matrix as a grey image. To fully exploit the advantage of the 
CNN in extracting high-level features from the grey image, the spatial feature matrix of 
each frame is used as input to train the CNN model. The CNN is then used to predict 
azimuth of sound source. The experiments show that the proposed algorithm significantly 
improves the localization performance of BSSL in various acoustic environments, 
especially to deal with low SNR and high reverberation conditions. 
 
Keywords: Binaural sound source localization, convolutional neural network, two-
dimensional spatial feature. 

1 Introduction 
Sound source localization (SSL) plays an important role in speech signal processing, and 
has a wide range of applications such as robot navigation, hearing aids, blind source 
separation and human-machine interface. Microphone-array based SSL methods need 
more microphones, which seriously increase computational complexity. However, 
“Cocktail Party Effect” indicates that human can track one sound from multiple sound 
sources in a noisy environment with limited ‘microphones’ that is two ears. Inspired by 
this phenomenon, researchers have proposed several methods to extract binaural spatial 
features from only two microphones for SSL. The BSSL methods do not require a 
microphone array with large size, which can greatly reduce the computational overhead. 
Binaural spatial feature is critical for BSSL. In the early days, Lord Rayleigh [Rayleigh 
(1907)] proposed the duplex theory based on the assumption of the spherical head. 
Duplex theory demonstrates that, to locate the source, the human auditory system mainly 
depends on inter-aural time difference (ITD) and inter-aural intensity difference (IID) of 
binaural signal. As a consequence, ITD and ILD have been viewed as a useful binaural 

                                                      
1 School of Information Science and Engineering, Southeast University, Nanjing, 210096, China. 
2 Department of Psychiatry, Columbia University and NYSPI, New York, 10032, USA. 
3 College of Internet of Things Engineering, Hohai University, Changzhou, 213022, China. 
* Corresponding Author: Lin Zhou. Email: Linzhou@seu.edu.cn. 



 
 
 
546                                                                              CMC, vol.60, no.2, pp.545-557, 2019 

feature and extended to more spatial features. Inter-aural envelope difference (IED) 
[Roman, Wang and Brown (2003)], as a version of spatial features, works well in high 
frequency. Inter-aural phase difference (IPD) [Nix and Hohmann (2006)] is more 
commonly used, though it may suffer from a phase ambiguity problem in some case. 
Nevertheless, in the real environment, BSSL should be effectively against the noise and 
reverberation. To deal with this issue, various robust BSSL methods have been presented. 
For example, Raspaud et al. [Raspaud, Viste and Evangelista (2010)] established a 
parametric model with ITD and ILD to estimate the sound source location. Pang et al. 
[Pang, Liu, Zhang et al. (2017)] presented a novel BSSL approach based on reverberation 
weighting and generalized parametric mapping. Machine learning is also encouraged in 
BSSL. Chen et al. [Chen and Ser (2009)] introduced a least squares support vector 
machines (LS-SVMs) approach to improve the localization accuracy. May Tobias et al. 
[May, Van de Par and Kohlrausch (2011)] divided the acoustic signal into multiple sub-
bands and proposed the Gaussian mixed model (GMM) to model the binaural cues. Xiao 
et al. [Xiao, Zhao; Zhong et al. (2015)] extracted generalized cross correlation (GCC) as 
the input feature to train a multi-layer perceptron neural network. Roden et al. [Roden, 
Moritz, Gerlach et al. (2015)] combined ITD, ILD, amplitude and phase spectra to train a 
deep neural network (DNN) models. Yu et al. [Yu, Wang and Han (2016)] further 
applied DNN to stereo sound localization. Moreover, DNN can also efficiently map 
binaural features in each frequency band to the corresponding source azimuth [Ma, 
Brown and May (2015)]. Later, Ma et al. [Ma, May and Brown (2017)] used DNN and 
head rotation to achieve multi-sound source localization under reverberation conditions. 
Ma et al. [Ma, Gonzalez, Brown et al. (2018)] also combined sound spectrum and DNN 
in the time-frequency (TF) unit to estimate the azimuth. Yiwere et al. [Yiwere and Rhee 
(2017)] used ILD and CCF as input features to train DNN models.  
Although the neural-network-based BSSL algorithms improve the localization accuracy, 
the performance under the low SNR and high reverberation is still a challenge problem. 
Previous research models ITD, IID and cross-correlation function (CCF) as one-
dimensional feature within one sub-band or one frame, which seldom consider the feature 
correlation of consecutive sub-bands. Therefore, we attempt to introduce CNN to the 
existing BSSL framework, where CNN [Cui, McIntosh and Sun (2018)] is well-known 
and successfully incorporated in image recognition and video analysis. In details, we 
utilize CNN as a classifier for the two-dimension spatial feature. First, our algorithm 
calculates the CCF of binaural sound signals in each sub-band. Then, CCF of all sub-
bands within one frame is assembled into a two-dimensional feature matrix as a grey map. 
Sequentially, CNN is trained to establish the relationship between feature matrices and 
the azimuth of the sound source. The established CNN model is then used to predict the 
location of binaural testing signals. Experimental results show that the BSSL algorithm 
based on CNN classification significantly improves localization performance under low 
SNR and high reverberation environment. 
The remainder of the paper is organized as follows. Section 2 presents an overview of our 
CNN-based BSSL system. Section 3 describes the structure of our CNN network. The 
simulation results and analysis are provided in Section 4. The conclusion is drawn in 
Section 5. 
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2 System overview 
The core idea of our algorithm is to exploit the correlation of features among 
consecutives sub-bands through CNN model. The flowchart of our BSSL system is given 
in Fig. 1 Binaural signals, including training and testing ones, are used as the system 
input. Left- and right-ear signals are decomposed into TF units independently by 33-
channel Gammatone filters. Then, CCF between left- and right-ear signals are extracted 
in each TF unit, and assembled to form a two-dimensional spatial feature matrix for each 
frame. Sequentially, these feature matrices are treated as CNN input. In the training phase, 
CNN is used to establish the relationship between the spatial feature matrix and the sound 
azimuth. Afterwards, the estimated azimuth is achieved through trained CNN model with 
the testing signals in the predict stage. 

 

Figure 1: Flowchart of the proposed BSSL system 

Here, the clean source is s(t), the left- and right-ear signals, xL(t) and xR(t), are defined as 
binaural signals, with: 
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where hL and hR represent the binaural room impulse response (BRIR) for left and right 
ears, ‘*’ denotes linear convolution, nL(t) and nR(t) are additive noise for each ear. 
We first decompose both left- and right-ear signals into cochleagrams. In detail, the 
central frequencies of Gammatone filters ranges from 50 Hz to 8000 Hz on the equivalent 
rectangular bandwidth (ERB): The output of each channel is divided into 20-ms frame 
length with 10-ms frame shift. Thus, the binaural signals are converted into TF units. In 
each unit, we extract normalized CCF between the left-ear and right-ear signals. The CCF 
of a TF unit pair is defined as 
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where xL(i,τ,d) and xR(i,τ,d) represent the binaural signals of TF unit at channel i and 
frame τ, m is the sample number in a TF unit, N is the frame length, d is the delay 
between binaural signals. For the 16 kHz sampling rate, we set the value L as 16, which 
means that the dimension of CCF is 33. 
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As we know, CCF in each TF unit is usually treated as the main spatial feature for BSSL. 
More location information can be provided from the corresponding CCFs of more 
channels within one frame. An example is given for the CCFs from different channels in 
Fig. 2, where the sound source is located at -10° azimuth with BRIR and TIMIT data. 
The upper sub-figure of Fig. 2 describes various CCF curves in each channel, while the 
bottom one is provides a CCF curve of all channels in one frame. Here, we note that the 
CCF has a similar peak in low frequency channel, which reflects the source azimuth. 
However, with the frequency increasing, CCF suffers from the peak fluctuation due to the 
phase wrapping. The CCFs of each channel can be regarded as the features map, which 
may provide a robust localization. 

 

Figure 2: CCF of each channel within a frame 

CCF by Eq. (2) is the spatial feature vector of one channel, and then CCF of each channel 
within a frame are combined into a matrix, which is defined as follows: 
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where R(τ) is the feature matrix of frame τ with the channel number K=33.  
Since R(τ) is a matrix of 33×33, it can be regarded as a grey map. Thus we visualize the 
CCF grey image of Fig. 2 in Fig. 3. The source corresponding to R(τ) is located at -90° 
azimuth, where the dark grid represents the corresponding element R(τ) with large value.  
The structure of grey image is efficiently related to the source azimuth. 
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Figure 3: Grey map of R(τ) 

3 The Architecture of CNN 
We use CNN to train a set of feature matrices R(τ)s in frame level with given azimuths. 
The azimuth ranges from -90° to 90° with a step of 5°, corresponding to 37 positions.  
Since CNN is a multi-layer perceptron neural network seriously depending on parameter 
setting, more details of our CNN are given follows: one input layer, 4 convolutional-
pooling layers and a fully connected layer. For input layer, the input is the 33×33 feature 
matrix R(τ), described in Section 2. All convolutional layers use a 2×2 convolution kernel 
with a step of 1. The output of the previous layer is zero-filled to ensure that the feature 
size does not shrink. The number of convolution kernels from layer 1 to layer 4 is 18, 36, 
72, and 144, respectively. The pooling layer adopts the maximum pooling of 2×2, with 
the step size of 2. The rectified linear unit (ReLU) activation function is used for the 
hidden layers.  
After four-layer convolution and pooling, the 33×33 R(τ) becomes a 3×3×144 3-
dimensional (3D) feature. The 3D feature is then expanded into 1296×1 one-dimensional 
and the dropout method is introduced to avoid overfitting. The dropout parameter is 0.5, 
that is, half of the 1296×1 feature is randomly discarded. After dropout, the fully connected 
layer converts the feature to probability by softmax function for final estimation of source 
azimuth. The CNN structure of the proposed algorithm is depicted in Fig. 4.  
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Figure 4: The structure of CNN 

4 Simulation and result analysis 
4.1 Simulation setting 
For both training and testing, the mono source signals taken from the CHAINS Speech 
Corpus [Cummins, Grimaldi, Leonard et al. (2006)] are convoluted with the BRIR to 
generate binaural reverberation signals. The CHAINS speech corpus contains 33 
sentences spoken by 36 speakers. 9 sentences are selected from the CSLU Speak 
Identification corpus and 24 sentences are from the TIMIT corpus. In particularly, 20 
sentences by 15 speakers are randomly selected and concatenated as training data, and the 
other sentences from the remaining speakers are regarded as testing data. The sound 
source is placed with azimuth between -90° and 90° with a step of 5°. 
We use two sets of BRIR database to generate the reverberation environment. The first 
one is obtained by ROOMSIM software [Campbell, Palomaki and Brown (2005)], which 
uses measured head related impulse responses (HRIR) from the MIT HRIR database in 
combination with the image method for simulating room acoustics. In the absence of 
reverberation, the BRIR is degenerated to the HRIR. The reverberation time (RT60) of 
BRIR is set to 0 s, 0.2 s and 0.6 s. RT60=0 s means the anechoic condition.  
The second BRIR dataset [Hummersone (2011)] is recorded using a dummy head and 
torso in different types of room, named as X, A, B, C, and D at the University of Surrey. 
Since room X is similar to anechoic environment, only BRIRs recorded in rooms A, B, C, 
and D is used. The RT60 and the direct-to-reverberant ratio (DRR) of each room are 
listed in Tab. 1. 

Table 1: Room acoustical properties of the Surrey BRIR 

Room A B C D 
RT60 (s) 0.32 0.47 0.68 0.89 

DRR (dB) 6.09 5.31 8.82 6.12 

Those two BRIR databases are utilized in different stage. During the CNN training process, 
only the first BRIR database is used. In testing, both BRIRs are used to generate the 
reverberation. The acoustic environment generated by the first BRIR is called simulation 
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environment. The environment generated by the second one is called real environment. 
Besides the reverberation, the Gaussian white noise is also added to the binaural signal as 
the background noise. The noise is uncorrelated with the binaural signals. In addition, 
binaural noise is uncorrelated with each other. The SNR for training and testing is set to 0, 
5 dB, 10 dB, 15 dB and 20 dB. 
We measure the reliability of the algorithm by localization accuracy and root-mean-
square error (RMSE) of correct localization. The localization accuracy is calculated as: 

/c allP n N=   (4) 

where nc represents the number of correct localization frames; Nall is the total number of 
frames. 
Here, the correct localization is defined that the estimation azimuth θ̃j lies within the ±5° 
of the true azimuth θ.  
RMSE only considers the localization error of correct localization frames, which is 
defined as follows: 

21 | |j
jc

RMSE
n

= −∑ θ θ   (5) 

where θ̃j is the estimation azimuth of jth correct localization frame, and θ is the true 
azimuth. 
We compare the performance of the proposed algorithm with several related methods 
for BSSL. BSSL based on zeros-crossing time difference (ZCTD) [Kim and Kil (2007)] 
and sub-band SNR estimation (SNRE) [Zhou, Zhao, Cheng et al. (2015)] are selected 
as the comparison. 

4.2 Evaluation in simulated environment 
Figs. 5, 6, 7 depict the performance comparison for ZCTD, SNRE and the proposed 
algorithm. Fig. 5a, Fig. 6(a) and Fig. 7(a) give the localization accuracy as a function of 
SNR, while Fig. 5(b), Fig. 6(b) and Fig. 7(b) show the RMSE for the different algorithm. 
The abscissa represents the SNR, and the ordinate is the performance measurement. 
For the localization accuracy, as expected, each of the methods performs well at high 
SNR. However, the performance of ZCTD and SNRE algorithms become bad as 
reverberation time increases and SNR declines. The proposed algorithm still performs 
well even with low SNR and high reverberation. The reason is that CNN regards the 
spatial feature matrix R(τ) as a whole grey image, and extracts the efficient spatial 
features from R(τ) in diverse environment.  
As for the RMSE, the proposed algorithm outperforms ZCTD and SNRE algorithm for 
each SNR and reverberation condition. RMSE of ZCTD and SNRE is close to 4, which 
means azimuth estimated by those algorithms is mostly located at the ±5° to the true 
azimuth. For the proposed algorithm, the value of RMSE is about 2, which indicates the 
proposed algorithm estimates the azimuth mostly the same as the true azimuth. 
In addition, as shown in Figs. 5, Fig. 6 and Fig. 7, the performance of the proposed 
algorithm changes slowly, reflecting the robustness of the algorithm to the environment. 
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(a)  Localization Accuracy                   (b) RMSE of correct localization 

Figure 5: Performance Comparison for ZCTD, SNRE and proposed algorithms with 
RT60=0 s and variable SNR 
 

 
(a)  Localization Accuracy              (b) RMSE of correct localization 

Figure 6: Performance comparison for ZCTD, SNRE and proposed algorithms with 
RT60=0.2 s and variable SNR 
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(a)  Localization Accuracy                (b) RMSE of correct localization 

Figure 7: Performance comparison for ZCTD, SNRE and proposed algorithms with 
RT60=0.6 s and variable SNR 

4.3 Evaluation in real environment 
Beside the result in the simulated environment, we also evaluate the performance in real 
environment. The localization accuracy and RMSE of different algorithm in room A, B, 
C, and D are depicted from Fig. 8 to Fig. 11. 

 
(a)  Localization Accuracy                (b) RMSE of correct localization 

Figure 8: Performance comparison of different algorithm for Room A 
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Figure 9: Performance comparison of different algorithm for Room B 

 

Figure 10: Performance Comparison of different algorithm for Room C 
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Figure 11: Performance Comparison of different algorithm for Room D 

For BRIR database from University of Surrey, the localization performance of the 
proposed algorithm is significantly better than other algorithms, even for room D with 
RT60=0.89 s and room C with DRR=8.82 dB.  
Since the dispatch of BRIR data in training and testing, the localization results of the 
proposed algorithm in real environment are not as good as those in simulated 
environment. But compared with other algorithms, the proposed algorithm still have the 
better localization performance, which indicates that CNN based algorithm is 
generalization to untrained conditions. 

5 Conclusion 
In this work, we have presented a CNN-based binaural sound source localization 
algorithm. Differing from the previous algorithms, the proposed algorithm extracts the 
CCF of each Gammatone filter and combines the CCFs of all channels to assemble a two-
dimensional feature matrix within one frame. Due to the advantage of CNN on tackling 
grey image, we treat the two-dimensional feature matrix as a gray image and utilize CNN 
to establish the relationship between feature matrix and sound azimuth. Experiments 
show that the CNN-based BSSL algorithm proposed in this paper significantly improves 
localization performance especially in low SNR and high reverberation conditions. 
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