
 
 
 
Computers, Materials & Continua                            CMC, vol.60, no.2, pp.615-632, 2019 

CMC. doi:10.32604/cmc.2019.04464                                                                        www.techscience.com/cmc 

 
 

An Improved Integration for Trimmed Geometries in 
Isogeometric Analysis 

 
Jinlan Xu1, Ningning Sun1, Laixin Shu1, Timon Rabczuk2 and Gang Xu1, * 

 
 
Abstract: Trimming techniques are efficient ways to generate complex geometries in 
Computer-Aided Design (CAD). In this paper, an improved integration for trimmed 
geometries in isogeometric analysis (IGA) is proposed. The proposed method can 
improve the accuracy of the approximation and the condition number of the stiffness 
matrix. In addition, comparing to the traditional approaches, the trimming techniques can 
reduce the number of the integration elements with much fewer integration points, which 
improves the computational efficiency significantly. Several examples are illustrated to 
show the effectiveness of the proposed approach. 
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1 Introduction 
IGA is an numerical method, combining the computer aided design (CAD) and finite 
element analysis (FEA) with the same NURBS basis functions. Geometries in CAD are 
usually represented by splines (B-splines, NURBS, T-splines, PHT-splines for instance), 
with the geometries in FEA are commonly based on Lagrange polynomials. These two 
different geometry descriptions introduce inconsistencies in CAD and CAE designs 
which require reapproximating the CAD geometries in CAE. This does not only 
introduce errors in the geometry but increase the entire design-to-analysis time. It was 
demonstrated in Cohen et al. [Cohen, Martin, Kirby et al. (2015); Xu, Mourrain, 
Duvigneau et al. (2013); Xu, Mourrain, Duvigneau et al. (2011)] that the mesh quality 
has a big impact on the analysis results, and meshing operation occupies a large 
percentage in the entire analysis procedure. IGA unifies the geometry representation of 
design and analysis, by using the same CAD spline functions in CAE simplifying the 
design-analyze process, and ensuring the exact geometry during the analysis. If a high 
precision numerical solution is requested, mesh refinement is inevitable. In FEA, 
posterior error is often used to guide the refinement, and the refinement based on the 
mesh is sometimes not appropriate, so re-meshing will be needed which have to be 
interact with original model. In practical engineering analysis, this is a severe bottleneck. 
IGA applies the same spline basis functions for the geometry generation and the 
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numerical analysis without remeshing procedure. The geometry is represented exactly at 
the coarse level, which avoid introducing the geometrical errors. Refinement at any level 
can take place completely within the analysis framework, which eliminates the necessity 
to communicate with the geometry. 
Most of CAD models cannot be represented by a single tensor-product spline surface but 
several patches of spline surfaces are needed [Xu, Chen and Deng (2015)]. However, it is 
not easy to construct a complex geometry with multiple patches of spline surfaces, 
especially a certain continuity is required. In such cases, trimming techniques are usually 
employed. But trimming technology brings gaps and overlaps between surfaces because 
of inaccuracies along the intersection. Other techniques to approximate the geometry 
without gaps and overlaps are proposed, including T-splines [Sederberg, Zheng, Bakenov 
et al. (2003); Brovka, López, Escobar et al. (2014)], PHT-splines [Deng, Chen, Li et al. 
(2008); Chan, Anitescu and Rabczuk (2017)], THB-splines [Falini, Speh and Jüttler 
(2015)], and LR B-splines [Johannessen, Kvamsdal and Dokken (2014)] etc. If trimming 
techniques are used, normal elements and trimmed elements will be considered separately 
during isogeometric analysis. Kim et al. [Kim, Seo and Youn (2009)] proposed a method 
to solve this problem. Schmidt et al. [Schmidt, Wüchner and Bletzinger (2012)] proposed 
a reconstruction method using geometric bases to evaluate the finite element constituents 
of trimmed elements. This method covers both bases of a single patch and multi-patches. 
Shen et al. [Shen, Kosinka, Sabin et al. (2014)] introduced a method to convert trimmed 
NURBS surfaces to subdivision surfaces, and their method can produce gap-free models 
which are mandatory for numerical analysis. Moreover, the resulting models are 1G  
continuous between two adjacent surfaces.  Zhu et al. [Zhu, Hu and Ma (2016)] proposed 
a spline called B++ spline, to express the trimmed NURBS patch in an analytic form. 
They solved the problem of implementing essential boundary conditions in isogeometric 
analysis. The basis functions of B++ spline satisfy the Kronecker delta property which 
allows imposing essential boundary condition strongly, and this is similar with FEM. 
Other interesting approaches on isogeometric analysis for trimmed surfaces, can be found 
in Kang et al. [Kang and Youn (2016); Breitenberger, Bletzinger and Roland (2013); 
Beer, Marussig, Zechner et al. (2014); Ruess, Schillinger, Özcan et al. (2014); Wang, 
Benson and Nagy (2015); Zhu, Ma and Hu (2017); Marussig, Zechner, Beer et al. (2016)] 
and references therein. In this paper, we improve the method proposed by Kim et al. 
[Kim, Seo and Youn (2010)]. 
The original method in Kim et al. [Kim, Seo and Youn (2010)] is based on NURBS-
enhanced integration. Both surface and trimming curve are represented using NURBS. For 
the trimming curve, there are two kinds of curve information in IGES files, which are 
defined in physical and parametric domain respectively. They classified the trimmed 
elements in parametric domain into three types, which correspond to the following three 
types in parametric domain: a pentagon with one curved side; a quadrilateral with one 
curved side; a triangle with one curved side. For the integration of trimmed element, Gauss 
quadrature points are chosen as integration points. In their method, curved triangles are 
parameterized by rectangles which make the integration simple. Pentagons are decomposed 
into three triangles where two of the triangles are normal, the other one is with one curved 
side. Quadrilaterals are decomposed into two triangles where one is normal triangle and the 
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other one is triangle with one curved side. To summarize, the final integration elements are: 
(a) triangles with one NURBS curved side, (b) normal triangles. Triangular Gauss 
integration points are used for normal triangles. But for triangles with one NURBS curved 
side, they are transformed to a rectangular domain through several mappings, hence Gauss 
quadratures in quadrilateral are used during integration. 
In the method proposed in this paper, the procedure of isogeometric analysis on trimmed 
geometries is similar, but the integration elements are a little different from the original 
method. Based on the three types of trimmed elements in parametric domain, the 
integration elements are classified into (a) triangles with one NURBS curved side, (b) 
quadrilaterals. The pentagon will be decomposed to two quadrilaterals and the 
quadrilaterals will not be decomposed into two triangles in our method, therefore the 
integration elements are less than original methods and integration points will be reduced 
at the same time which can improve the computational efficiency. 
The paper is organized as follows. In Section 2, we summarize the basics of the IGA 
formulation on trimmed geometries presented in Kim et al. [Kim, Seo and Youn (2010)]. 
In Section 3, we describe our method to deal with trimmed element in details. Section 4 
gives several examples of our proposed method, and comparison to the method in Kim et 
al. [Kim, Seo and Youn (2010)] are also presented. We end this paper with conclusions in 
Section 5. 

2 Preliminaries 
NURBS bases are the most common basis functions for representing free-form objects. 
However, tensor product form of NURBS surfaces makes the representation of complex 
objects non-trivial. Trimming techniques eliminate this limitation of NURBS. There are 
many research works of isogeometric analysis for trimmed geometries [Zhu, Ma and Hu 
(2017); Guo, Ruess and Schillinger (2017); Ruess, Schillinger, Bazilevs et al. (2013); 
Breitenberger (2016); Marussig, Zechner, Beer et al. (2017)]. But the earliest work is 
proposed by Kim et al. [Kim, Seo and Youn (2009)], which is simple and direct. As our 
method is based on this work, we will give a brief introduction about the flowchart of this 
work in this section. 

2.1 Flowchart of trimmed isogeometric analysis 
Trimming techniques employ NURBS curves to trim unwanted parts of geometries from 
NURBS surfaces as shown in Fig. 1. And trimming technique not only simplifies the 
construction of complex models, but also keeps the smoothness of the untrimmed parts. If 
both trimming curves and untrimmed surfaces are NURBS, the resulting trimmed surface 
is called trimmed NURBS surface. For a trimmed surface, the CAD files contain the 
surface information in the parametric space and physical space. Fig. 1 shows two surfaces 
in physical space trimmed by shapes of butterfly and sheep. 
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(a)                                                (b) 

Figure 1: Two examples of trimmed NURBS surfaces 

Suppose a trimmed surface is represented by a NURBS surface and a NURBS curve: 
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ij i pR s t R u  are NURBS basis of surface and curve representation, p  is degree 

of curve ( )C u . There is no mathematical relation between trimming curve ( )C u  and 
untrimmed surface ( , )S s t . Trimmed elements are those passed by trimming curves. In 
Kim et al. [Kim, Seo and Youn (2009)], discrimination of trimmed elements in 
parametric domain paΩ  is a pre-step of integration on trimmed surface phΩ . The authors 
simplified the trimmed elements into three types according to the number of vertex points 
in void region. All elements of spline surface in parametric space are rectangular. For 
trimmed element of type A, only one corner point is trimmed out, and two corner points 
are trimmed out for trimmed element of type B. In trimmed element of type C, three 
corners are trimmed out, see Fig. 2. 
If the physical equation defined on trimmed surface is a Poisson equation with Dirichlet 
boundary condition, 
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where Ω  is the trimmed geometry represented by a NURBS surface and several 
trimming NURBS curves. 
The coefficient matrix of the weak form is given by 
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where Ŝ  represent the parametric domain. The integration is computed element by 
element. And for numerical integration, the trimmed elements are decomposed into 
triangular cells, including normal triangular cells and curved triangular cells, as shown in 
Fig. 3. We denote these triangles as { }pa pa

eT T= and { }pa pa
eT T=   respectively. Integration 

of normal triangular cells pa
eT  is based on triangle Gauss integration points, and 

integration is based on NURBS-enhanced (NE) integration scheme for curved triangular 
cells pa

eT , where a series of transformation is performed on pa
eT  in order to map pa

eT  to a 
rectangle. The Gauss integration points are mapped to curved triangular cell through 
transformation ( , )RoQoP ζ η . Fig. 4 shows the procedure of transformation. 

     
(a)                                                    (b)                                              (c) 

Figure 2: Three types of elements:(a) type A with one corner trimmed out; (b) type B 
with two corners trimmed out; (c) type C with three corners trimmed out 

      
(a) type A                                          (b) type B 

Figure 3: Segmentation of elements with type A and type B 
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Figure 4: Transformation of curved triangular cell 

2.2 Imposition of essential boundary condition 
In isogeometric analysis, essential boundary conditions cannot be imposed as in FEM, 
because NURBS basis functions do not satisfy the Kronecker delta property. For 
homogeneous essential boundary conditions, the coefficients of basis functions 
corresponding to boundary are set to zero. The imposition of non-homogeneous essential 
boundary conditions requires special techniques such as modification of the weak form or 
the solution of an interpolation problem at the boundary, see e.g., [Ruess, Schillinger, 
Özcan et al. (2014)]. 
In trimmed isogeometric analysis, additional challenges occur for imposing essential 
boundary condition. The boundary conditions need to be imposed on the trimming curves 
but the degree of freedom (DOF) is defined on the NURBS surface. Furthermore, there is 
no mathematical relationship between these two representations. In Kim et al. [Kim, Seo 
and Youn (2010)], they use Lagrange multiplier method to impose essential boundary 
conditions on trimming curves. And we use the same method in our algorithm. 
The Lagrange multipliers ( )uλ  are supposed to be expressed as 

1
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l
c
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i
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where ( )c
iR u  is the NURBS basis function of trimming curve. The weak form with 

Lagrange multipliers for Poisson equation is discretized as equations 
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The ( )c
iR u  also denotes the NURBS basis function of trimming curve, ( , )s

iR s t denotes 
the NURBS basis function of spline surface. With these equations, Dirichlet boundary 
conditions can be imposed on trimming curves. 
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3 Improved integration on trimmed geometry 
The main contribution of our method is to modify the integration rules for the trimmed 
elements. For type C in Kim et al. [Kim, Seo and Youn (2010)], a similar method is 
applied to generate integral points on the curved triangle, but for type B [Kim, Seo and 
Youn (2010)], a mapping from a rectangle to the curved quadrilateral element is used 
which avoids the triangular decomposition of the curved quadrilateral element. For type 
A, decomposition is adopted but it is different from the method in Kim et al. [Kim, Seo 
and Youn (2010)]. The curved pentagon is segmented to two quadrilaterals, one with a 
curved edge and the other is rectangular. 
Fig. 5 shows the decomposition of type A in our method. The segmentation of trimmed 
elements of type A can be chosen on the basis of the intersection points. Suppose aP  and 

bP are two intersection points, where bP  is closer to the corner point which is trimmed out, 
then the trimmed element is segmented at point aP . 

 

Figure 5: The trimmed element of type A is decomposed to two quadrilaterals 

     
(a)                                                           (b) 
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(c)                                                          (d) 

Figure 6: Trimmed element of type B. There are four cases for the curved quadrilaterals 
according to which two consecutive corners are trimmed out 

Except trimmed elements of type C, all trimmed elements are represented as 
quadrilaterals. For the curved quadrilateral which contains one curved edge as part of 
trimming curves, the mapping from unit rectangle is constructed as follows: according to 
the location of the curved edge, there are four types of curved quadrilaterals as shown in 
Fig. 6. Suppose 2 1u u> , where 1 2,u u  are parameters of the trimming curve at the 
intersections. For each case, the mapping Q  between the curved quadrilateral and 
rectangle can be described as follows. 
(a): If 1u  is the parameter of the left intersection point, the mapping Q  is constructed as 

1

2 1

(1 ),   .X Y
u uX Y
u u

φ ζ ζ φ ζ−
= + − =

−
 (2) 

otherwise, 

2

2 1

(1 ),   .X Y
u uX Y
u u

φ ζ ζ φ ζ−
= + − =

−
 ( 2′ ) 

(b): If 1u  is the  parameter of the right intersection point, the mapping Q  is constructed as 

1

2 1

(1 ) ,   (1 ) .X Y
u uX Y
u u

φ ζ ζ φ ζ ζ−
= − + = − +

−
 (3) 

otherwise, 

2

2 1

(1 ) ,   (1 ) .X Y
u uX Y
u u

φ ζ ζ φ ζ ζ−
= − + = − +

−
 ( 3′ ) 

(c): If 1u  is the parameter of the bottom intersection point, the mapping Q  is constructed as 
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1
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(d): If 1u  is the parameter of the top intersection point, the mapping Q  is constructed as 

1

2 1
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u uX Y
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= − + = − +

−
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otherwise, 

2
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Gauss quadrature is commonly used in isogeometric FE approaches. Compared to the 
method proposed by Kim et al. [Kim, Seo and Youn (2010)], the proposed method leads 
to less integration points. Fig. 7 shows the distribution of Gauss points in our approach 
compared to the approach in Kim et al. [Kim, Seo and Youn (2010)] for one trimmed 
element. In Fig. 7, it can be seen that Trimmed element of type A is decomposed into 
three triangles in Kim et al. [Kim, Seo and Youn (2010)], where one of triangle with a 
curved edge. Gauss points are selected for each triangle. But in our method, element of 
type A is decomposed into two quadrilaterals, and the number of Gauss points for each 
quadrilateral is the same with curved triangle. For element of type B, no decomposition is 
carried out in our method, since then the number of Gauss points is less than the method 
in Kim et al. [Kim, Seo and Youn (2010)]. In fact, the reduction of integral points can be 
estimated. Suppose n  Gauss points are chosen for the normal triangle, and m Gauss 
points are chosen for the curved triangle. As the number of integral points for 
quadrilateral element is the same with curved triangle, we can give the number of integral 
points for each type of trimmed element, see Tab. 1. 
 

                    
(a) (b) 
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(c)                                                          (d) 

Figure 7: Integration points and segmentation of trimmed elements. (a)(c) type A and 
type B elements in Kim et al. [Kim, Seo and Youn (2010)], (b)(d) type A and type B 
elements in our method 

Table 1: Comparison of the number of integral points 

Element Original method Our method 

type A 2n+m 2m 
type B n+m m 
type C m m 

4 Numerical examples 
In this section, we solve the Poisson equation on several trimmed geometries to show the 
effectiveness of our method, and compare our results with results obtained by the method 
in Kim et al. [Kim, Seo and Youn (2010)]. 
For the method in Kim et al. [Kim, Seo and Youn (2010)], basis functions are NURBS 
basis functions. Three Gaussian points are used in each direction for quadrilateral 
element, and seven Gaussian points are used for the regular triangle. 

         
(a)                                           (b)                                           (c) 

Figure 8: Integration points and segmentation of trimmed elements with 3 3× elements: 
(a) computational domain of EX1; (b) integration points in Kim et al. [Kim, Seo and 
Youn (2010)]; (c) integration points in the proposed method 



 
 
 
An Improved Integration for Trimmed Geometries                                            625 

In the first example, the exact solution is 2 2 1x y+ − . We choose a very simple geometry, 
the computational domain is fan-shaped. It is constructed by trimming a corner of a 
rectangle using an arc represented by a NURBS curve with degree two. In this example, 
we compare the corresponding 2L  error of numerical solution, and the condition number 
of stiffness matrix with the method in Kim et al. [Kim, Seo and Youn (2010)] as shown 
in Tab. 2. We also compare the computational cost of Ex1 as presented in Tab. 3, where 

eT  represents the trimmed element and eT  represents the integration element after the 
decomposition of eT . 

Table 2: Comparison of our method with the proposed method in Kim et al. [Kim, Seo 
and Youn (2010)] for Ex1 

Number of 
element 

Method in Kim et al. [Kim, Seo 
and Youn (2010)] Our method 

 Cond. 2L  error Cond. 2L  error 

5 5×  47.5051 10×  0.0209621  45.0469 10×  0.0190196  

10 10×  102.2417 10×  0.0145103  101.5930 10×   0.00969233  

20 20×  94.3386 10×  0.0096861  92.9344 10×  0.0058154  

Table 3: Comparison of computational cost with the Method in Kim et al. [Kim, Seo and 
Youn (2010)] 

 Mesh 
Size 

Number 
of eT  

Number of eT  
Number of integral 

points in eT  

Method in 
Kim et al. 

[Kim, Seo and 
Youn (2010)] 

Our 
method 

Method in 
Kim et al. 

[Kim, Seo and 
Youn (2010)] 

Our 
method 

Ex1 

3 3×  
10 10×  
20 20×  

5 
17 
37 

9 
31 
71 

5 
19 
45 

73 
251 
571 

45 
171 
405 

Ex2 6 6×  47 98 60 780 486 

Ex3 6 6×  48 100 72 796 648 

Ex4 

3 3×  
10 10×  
20 20×  

8 
28 
56 

20 
60 

112 

12 
40 
76 

156 
476 
896 

108 
360 
684 
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(a)                                         (b)                                           (c) 

        
(d)                                                  (e) 

Figure 9: Comparison of numerical solution with 20 20× grid. (a) the  method in Kim et 
al. [Kim, Seo and Youn (2010)]; (b) our method; (c) exact solution; (d) 2L error of method 
in Kim et al. [Kim, Seo and Youn (2010)]; (e) 2L error of our proposed method 

We use the method presented in Kim et al. [Kim, Seo and Youn (2009)] to find all the 
active elements, and construct the mapping from the unit square [0,1] [0,1]× to each 
trimmed element as described in Section 3. When the spline surface consists of 
3 3× elements, with our method, the distribution of the integration points on the 
computational domain is more regular than the method in Kim et al. [Kim, Seo and Youn 
(2010)] as illustrated in Fig. 8. The corresponding numerical solution and 2L error are 
shown in Fig. 9. From Tab. 2, we can see that the condition number of the stiffness 
matrix and the 2L error of the numerical solution is reduced almost by one half compared 
to the method in Kim et al. [Kim, Seo and Youn (2010)] on the refined grid. 
In the second example, exact solution is (1 ) (1 )x x y y− − . We construct a computational 
domain with a little more complex geometry, where the rectangle is trimmed by a closed 
spline curve. There are two protrusions in the interior of the final trimmed geometry. In 
this example, the surface contains 6 6× elements first. However, there are other kind of 
trimmed elements except of three types we processed in this coarse mesh, so local 
refinement is performed on the surface as described in Kim et al. [Kim, Seo and Youn 
(2009)] until there are only three types of trimmed elements. In this example, there are 
many trimmed elements of type B, as shown in Fig. 12. The element of type B is 
decomposed into two triangles with the method in Kim et al. [Kim, Seo and Youn 
(2010)], integration on this element then becomes integration on these two triangles. In 
the proposed method, we construct a mapping from type B element to rectangle directly 
while keeping the number of integral elements. Our method can reduce a half integral 
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points and integral elements for this type of trimmed element. For type A, one third of 
integral points and integral elements can be reduced by our method. 
In the third example, we also choose the exact solution (1 ) (1 )x x y y− − . A round hole is 
trimmed out from a rectangle as computational domain. The number of trimmed elements 
of type A and type C are more than type B, in this case the reduction of integral points 
and integral elements is not as significant as the first example. It can be clearly observed 
from Tab. 2. And in this example, the number of trimmed elements of type A becomes 
more and more during mesh refinement process, and the reduction of integral elements is 
clearly demonstrated. 

         
(a)                                                                    (b) 

             
(c)                                                                  (d) 

Figure 10: The computational domain of EX2. (a) elements and integral points of the  
method in Kim et al. [Kim, Seo and Youn(2010)]; (b) enlarge the area of yellow 
rectangle in (a); (c) elements and integral points of our method; (d) enlarge the area of 
yellow rectangle in (c) 
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(a)                                                          (b) 

         
(c)                                                          (d) 

        
(e)                                                           (f) 

Figure 11: The computational domain of EX3: (a) elements and integral points of the  
method in Kim et al. [Kim, Seo and Youn (2010)]; (b) enlarge the area of yellow 
rectangle in (a); (c) elements and integral points of our method; (d) enlarge the area of 
yellow rectangle in (c); (e) numerical solution; (f) 2L error is 44.43065 10−×  
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(a)                                                               (b) 

       
(c)                                                              (d) 

Figure 12: The computational domain of EX3. (a) elements and integral points of the 
method in Kim et al. [Kim, Seo and Youn (2010)]; (b) elements and integral points of our 
method; (c) numerical solution of 10 10× grid; (d) 2L error is 43.26665 10−×  

5 Conclusion 
In this paper, we propose an improved integration of isogeometric analysis over trimmed 
geometries on two-dimensional planar computational domain. By the proposed method, 
the integral elements and integral points in analysis process can be reduced significantly, 
which improves the efficiency of analysis. Moreover, compared with the previous 
method, the distribution of integral points is more regular, and the accuracy of numerical 
solution is also improved. Several numerical examples are given to show the 
effectiveness of the proposed approach. 
In the future, we will consider more efficient integration method, and the improvement of 
integration on curved triangular element. Extension to three-dimensional isogeometric 
analysis is also a part of our future work. 
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