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Abstract: In clustering analysis, the key to deciding clustering quality is to determine the 
optimal number of clusters. At present, most clustering algorithms need to give the 
number of clusters in advance for clustering analysis of the samples. How to gain the 
correct optimal number of clusters has been an important topic of clustering validation 
study. By studying and analyzing the FCM algorithm in this study, an accurate and 
efficient algorithm used to confirm the optimal number of clusters is proposed for the 
defects of traditional FCM algorithm. For time and clustering accuracy problems of FCM 
algorithm and relevant algorithms automatically determining the optimal number of 
clusters, kernel function, AP algorithm and new evaluation indexes were applied to 
improve the confirmation of complexity and search the scope of traditional fuzzy C-
means algorithm, and evaluation of clustering results. Besides, three groups of contrast 
experiments were designed with different datasets for verification. The results showed 
that the improved algorithm improves time efficiency and accuracy to certain degree. 
 
Keywords: Fuzzy C-means clustering, affinity propagation (AP) clustering, evaluation 
index, kernel function. 

1 Introduction 
As the important technology in data mining field, clustering analysis is widely applied in 
statistics, decision support, machine learning, pattern recognition, picture processing, 
spatial database technology and e-commerce, etc. It is a very efficient data analysis 
method. Classical clustering algorithms mainly include partition-based clustering, 
hierarchical clustering algorithm, density-based method, grid-based method, model-based 
method and analysis method based on isolated point, etc. The quality of clustering 
algorithms greatly influences the final results of clustering process. 
Clustering process is an effective grouping of physical or abstract set of objects. The group 
generated in clustering results is called cluster. Cluster is the set of objects with certain 
same features in the database. The concrete manifestations include the following: any 
objects in the cluster have high similarity, while the objects which do not belong to the 
same cluster have relatively large dissimilarity. The value of similarity and dissimilarity can 
be calculated according to various attribute values of description objects. Usually, the 
distance between any objects is the measurement method which is mostly applied. 
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As an important method which is widely applied in data analysis, clustering is used to 
classify the samples as per the specific standards, with the purpose of maximizing intra-
category similarity and minimizing intercategory similarity. In clustering analysis, the 
key to deciding clustering quality is to determine the optimal number of clusters. At 
present, most clustering algorithms need to give the number of clusters in advance for 
clustering analysis of the samples. How to gain the correct optimal number of clusters has 
been an important topic of clustering validation study. The existing method to determine 
the optimal number of clusters is mainly the fuzzy C-means (FCM) algorithm. 

2 Material and methods 
2.1 Improved fuzzy C-means algorithm based on kernel function 
2.1.1 Fuzzy C-means algorithm analysis  
Clustering analysis aims to classify objects according to their different features, degree of 
intimacy and similarity. The boundary of relations among things is usually not clear (i.e. 
fuzzy relation), so the application of fuzzy method for clustering analysis becomes 
inevitable. Fuzzy clustering analysis has been successfully applied in large-scale data 
analysis, data mining, picture analysis, pattern recognition, information fusion and so on. 
And, various fuzzy clustering algorithms appear. Among the numerous fuzzy clustering 
algorithms, fuzzy C-means (FCM) clustering algorithm [Bezdek (1981)] is most widely 
and successfully applied. It is a clustering analysis method based on objective function. 
Membership degree of each object to be classified for all centers of clustering can be 
gained through optimizing objective function so as to decide the category of classification 
objects and reach the purpose of automatic classification [Chen, Li and Wang (2006)].  
FCM clustering algorithm: the set of objects to be classified is set as: 

1 2{ , , }nA A A A= ⋅⋅ ⋅                                                                                                              (1) 

wherein, each object has m characteristic indexes, and is set as: 

1 2( , , )j j j jmA x x x= ⋅⋅ ⋅                                                                                                         (2) 

Now, the object set A is classified into c categories ( 2 c n≤ ≤ ). The matrix which 
consists of vectors of c centers of clustering is set as: 

1 11 12 1

2 21 22 2

1 1

m

m

c c c cm

V v v v
V v v v

V

V v v v

   
   
   = =
   
   
   





    



                                                                                            (3) 

It is simplified as: 1 2( , , )T
cV V V V= ⋅⋅ ⋅ , in which 

1 2{ , , }, 1,2,i i i imV v v v i c= ⋅⋅ ⋅ = ⋅ ⋅ ⋅                                                                                      (4) 

To gain an optimal fuzzy classification, a best fuzzy classification can be chosen from the 
fuzzy classification space as per clustering norms. To calculate the appropriate fuzzy 
classification matrix U and center of clustering V, the objective function: 



 
 
 
Fuzzy C-Means Algorithm Automatically Determining Optimal                             769 

2

1 1

( , ) ( ) || ||
n c

q
ij j i

j i
J U V A Vµ

= =
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is made to reach the minimum. Wherein, certain value can be taken for q (generally q=2). 
|| ||j iA V− represents the distance between object Aj and the vector of ith category of 
centers of clustering. 
Usually, iterative operation is used to figure out the approximate solution of objective 
function given in Formula (5). The detailed steps are as follows: 
Step 1: Choose the number of categories c, 2 c n≤ ≤ ; take a primary fuzzy 
classification matrix (0)U for gradual iteration, 0,1,2,l = ⋅⋅ ⋅  

Step 2: For ( )lU , calculate the center of clustering: 
( ) ( ) ( ) ( )

1 2( , , )l l l l T
cV V V V= ⋅⋅ ⋅                                                                                                  (6) 

in which: 
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Step 3: Amend fuzzy classification matrix ( )lU ; when , j ii A V∀ ≠  
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Step 4: Compare ( )lU  and ( 1)lU + ; if precision 0ε > , ( 1) ( )max{| |}l l
ij ijµ µ ε+ − ≤ . ( 1)lU +  

and ( )lV are the solutions; then, stop iteration. Otherwise, ( 1)lU + 和 ( )lV , return to Step 2 
for repetition. 

The fuzzy classification matrix ( 1)lU +  and the center of clustering ( )lV gained from the 
above algorithm are locally optimal solutions relative to the number of categories c, 
initial fuzzy classification matrix (0)U , ε and q. 
Noise in dataset has a great influence on the whole clustering classification process. At 
present, many algorithms fail to process noise, thus leading to the influence on the dataset 
classification. Or, noise processing results are unsatisfactory. Noise data processing is too 
complex or there is no substantive influence of noise reduction. All these lead to some 
defects of FCM clustering algorithm in practical applications. 
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2.1.2 Objective function optimization based on kernel function  
Kernel function is introduced to enhance optimizing ability of FCM clustering algorithm. 
It is supposed that the center of clustering kvθ  in high-dimensional space can find primary 
image in the primary space. Then, the objective function changes to 

2
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( ) || ( ) ( ) ||
c n

m
ki i k

k i
J x vµ θ θ

= =

= −∑∑                                                                                (10) 

According to Mercer kernel definition, 
2 2( , ) || ( ) ( ) ||

( , ) ( , ) 2 K( , )
i k i k

i i k k i k

d x v x v
K x x K v v x v
θ θ= −

= + −
                                                            (11) 

Meanwhile, Gaussian radial basis function ( ( , ) 1,K x x x X= ∀ ∈ ) is used as the kernel 
function for simplification. Then, the objective function of improved fuzzy C clustering 
algorithm can change to 
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Lagrange multiplication approach is used to the center of clustering and iterative formula 
of membership matrix: 
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The process of improving fuzzy C clustering algorithm is as follows: 
Step 1: Initialize. Give weighted index m and the number of clustering categories 
c(2≤c≤n); set the parameter values of the chosen kernel function; set threshold value of 
iteration stopε ; initialize membership matrix (0)U , iteration counter b=0.  
Step 2: Work out ( , )i kK x v  
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Step 3: Update membership matrix (b)U . 

Step 4: If (b) (b 1)|| ||U U ε+− <  ( || . || ε< is an appropriate norm), stop updating 
membership matrix U, otherwise, make 1U U= +  and turn to Step 2. 

2.1.3 Improved FCM algorithm and analysis  
The division method of standard FCM clustering algorithm is based on the following 
criterion: The sum E of distance between each data object p and corresponding cluster 
center is minimum. The computational formula of E is 

1

( , )
i

k

i
i p C

E d p o
= ∈

= ∑ ∑                                                                                                         (15) 

wherein, io  is the center of cluster iC ; (.)d is distance function; E is the minimum of 
sum of distance between all data objects p and corresponding cluster centers. When 

1k = , time complexity of the algorithm is 2( )O n . After the kernel function is added, 
when the ith initial center point [1, ]i k∈ , the computational formula of time complexity t 
of the algorithm is ( 1)( 1)t n i= + − . 

Time complexity iT of the ith initial center point is 

( 1)( 1)iT m n i= + −                                                                                                          (16) 

Time complexity ( )O T  of the algorithm is 

2

1

( ) ( ) ( )
k

i
i

O T O T O mk n
=

= =∑                                                                                         (17) 

Thus, 2( ) ( )O T O n= . In conclusion, after the kernel function is added, the algorithm 
complexity of FCM clustering algorithm reduces. 

2.2 Confirmation of search scope 
Since clustering results of FCM clustering algorithm depend on the selection of initial 
center of clustering, different initial center of clustering will generate different clustering 
results. Thus, clustering results are unstable. How to determine the optimal clustering 
according to FCM algorithm is important. 
Usually, the basic thought of determining the optimal number of clusters is as follows: 
for the specific dataset, conform the search scope of number of clusters and operate 
clustering algorithm to gain the clustering results of different number of clusters; choose 
appropriate validity indexes to evaluate clustering results, and confirm the optimal 
number of clusters according to the evaluation result. Thus, the core of confirming the 
optimal number of clusters is to confirm reasonable search scope of number of clusters 
and evaluation indexes of clustering effectiveness. 
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To confirm the search scope of number of clusters min max[ , ]k k , mink  and maxk  should be 
confirmed. min 1k = refers to even distribution of samples, without obvious characteristic 
difference. The minimum number of clusters in clustering algorithms is usually 2, i.e. 

min 2k = . There still no explicit theoretical direction about how to confirm maxk . The 

empirical rule that most scholars use is: maxk n≤ , which is described in the Literature 
[Yu and Cheng (2002)]. The conclusion is based on the precondition of uncertainty 
function 1( )f x x−= . But the precondition is not the sufficient condition proved by 
Literature [Yang, Li, Hu et al. (2006)]. The conclusion is deduced based on the 
precondition that the sample space has fractal geometrical characteristics, and the 
conclusion have no universality. Besides, sample size and practical category number of 
all datasets in Literature (Frey and Dueck 2008) also have no such property. Sample size 
and practical category number of some datasets in Literature [Brusco (2008)] also have 
no such property. To sum up, maxk n≤  is only an empirical rule, and does not own 
universality. In this study, AP algorithm proposed by Frey et al. is applied to confirm 

maxk . The algorithm is fast and effective. It has been well applied in multiple fields. 

2.2.1 AP clustering algorithm 
AP clustering algorithm [Kapp (2007); Xiao and Yu (2008)] is a kind of clustering 
algorithm based on affinity information propagation. Its purpose is to find out the set of 
optimal category representatives so that the sum of similarities of all samples to the 
nearest category is largest. AP algorithm deems all N samples in the dataset as the 
candidate category representatives and establishes attraction degree information with 
other samples for each sample. In other words, similarity between any two samples ix  

and kx  (when Euclidean distance is applied for measurement, 2( , ) || ||i ks i k x v= − − ) is 
stored in N N× similarity matrix. AP algorithm applies ( , )s i k  to express the 
appropriateness of sample kx as sample ix . It is initially supposed that the possibility of 
all samples chosen as category representative is same, that is, all ( , )s k k  are set with the 
same value p. To pick out the appropriate category representative, it is necessary to 
gather relevant evidence from samples continuously. Thus, AP algorithm introduces two 
important information quantities parameters: reliability r and availability a. These two 
parameters represent different competition purpose ( , )r i k  points to kx from ix . It 
represents the evidence from kx , and expresses the appropriateness degree of kx  used as 
the category representative of ix , and ( , )a i k  points to ix from kx . It represents the 
evidence accumulated by ix , and is used to express the appropriateness of ix choosing 

kx  as the category representative. For any sample ix , the sum of reliability of all 
samples ( , )r i k  and availability ( , )a i k  is calculated. The sample kx involving the 
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largest sum is category representative. The iteration process of AP algorithm is the 
alteration and update process of two information quantities. 
To prevent oscillation in the iteration process, AP algorithm introduces the factor λ to 
prevent oscillation, and the value of λ is between 0 and 1. The update result of 

( , )r i k and ( , )a i k is gained through the weighing of current iteration value and the last 
iteration result. 

2.2.2 AP feasibility analysis 
AP algorithm does not give the number of clusters. When the algorithm ends, the number 
of clusters is determined automatically. For the clustering structure of intra-category 
compactness and inter-category alienation, AP algorithm can get the accurate clustering 
result. But for the close clustering structure, the algorithm tends to generate much local 
clustering. Thus, the number of clusters is generally large and the accurate clustering 
results cannot be given [Wang, Li, Zhang et al. (2007)]. Because of its fast speed and 
effectiveness, AP algorithm rather than   C-means clustering algorithm is used to 
complete initial category number screening of dataset. Since the category number 
searched by AP algorithm is greater than n , the maximum maxk of category number is 
reduced from n (sample size) to the number of clusters APk generated by AP algorithm. 

Compared with n , the scheme involves clustering structure distribution of samples, 
which is scientific. The experiment also successfully verifies the feasibility of its scheme. 

2.3 Confirmation of new evaluation index 
At present, many validity evaluation indexes have been proposed to analyze clustering 
results for FCM algorithm, such as partition coefficient VPC [Bezdek (1974)], partition 
entropy VPE [Bezdek (1974)], VOS proposed by Kim et al. [Kim, Lee, Lee et al. (2004)] 
VXB index proposed by Xie et al. [Xie and Beni (1991)], VFS index proposed by 
Fukuyama et al. [Fukuyama and Sugeno (1989)], VK index pro-posed by Kwon [Kwon 
(1998)], VCWB index proposed by Rezaee et al. [Rezaee, Lelieveldt and Reiber (1998)], 
VB index proposed by Boudraa [Boudraa (1999)], VSV index proposed by Kim et al. [Kim, 
Park and Park (2001)], Wint (Weighted inter-intra) [Boudraa (1999)] and Silhouette 
[Silhouette (2004)] index. However, due to the defects of these indexes, it is hard for them 
to judge the clustering results. The clustering validity test effect is not ideal enough. Thus, 
geometric structure of datasets and clusters with different sizes are fully considered in this 
study. The specific value of intra-category compactness and inter-category separation 
degree is combined with clustering membership degree to define a new clustering validity 
index. Besides, the information of dataset and its geometric structure are fully considered. 
So, the optimal partition and the optimal number of clusters of fuzzy partition can be 
accurately confirmed by FCM algorithm. On this basis, a method to confirm the optimal 
number of clusters of samples is proposed to evaluate the clustering results of AP algorithm 
and determine the optimal number of clusters of samples. 
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2.3.1 Definition of compactness Index 
Compactness index is used to measure intra-category compactness, and can be expressed 
with intra-category weighted squared error sum as follows: 
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|| ||
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wherein, 
( )

1

N i

i ij
j
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= ∑ is the weight of each category, that is, a different weight 

corresponds to every different category. The significance of weight represents the support 
degree of each different category for dataset. ( )N i  represents the number of data 
samples included in the ith category. 

As c increases, 
1
21( )

1
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+
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and weight iω  reduce. 
1

iω
 inhibits the reduction of measured 

value through weighing each category. 

When the noise point is separately regarded as one category, 
1 1

iω
= . At this moment, the 

weight of such category will be larger than other categories. To make compactness index 

more robust, 
1
21( )

1
c
c

+
−

is added for adjustment. 

2.3.2 Definition of separation index 
Separation index is a method to measure separation degree of two fuzzy sets. Dispersion 
between two categories is defined as follows: the sample belongs to the minimum of 
membership degree of these two categories. Separation measurement uses the largest 
difference of all paired fuzzy clusters. So, similarity between two fuzzy sets iF and jF  is 
defined as: 

'( , ) max(min( , ))
k

i j ik jkx X
S F F µ µ

∈
=                                                                                    (19) 

Separation measurement of given fuzzy partition is 
( , ) 1 max '( , )

1 max(max(min( , )))
k

i ji j

ik jki j x X

S c U S F F

µ µ
≠

≠ ∈

= −

= −
                                                                       (20) 

Then, the boundary of separation index is 0 ( , ) 1S c U≤ ≤ ; when iF = jF , ( , ) 0S c U = . 
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2.3.3 New evaluation index 
Since compactness and separation have different scalar quantity, normalization result can 
be expressed as: 

max

( , )( , )
( , )

N V c UV c U
V c U

=                                                                                                    (21) 

max

( , )( , )
( , )

N S c US c U
S c U

=                                                                                                    (22) 

These two formulas are effectively combined to get the new evaluation indexes of 
clustering effect: 

( , )( , )
( , )

N
N

N
V c UO c U
S c U

=                                                                                                     (23) 

In the new validity indexes, compactness index ( , )V c U reflects intra-category total 
variation, and it is used to express the concentration degree of intra-category samples. 
When its value is smaller, compactness of category is better. Separation index 

( , )S c U reflects intra-category total variation, and it is used to express the distance 
among fuzzy clusters. When separation is larger, the partition result is better. ( , )V c U  
and ( , )S c U  are combined to reflect the partition features of dataset. When the indexes 
are smaller, intra-category is more compact, intra-category is more separate and the 
clustering result is better. 

3 Results 
To test validity and operation efficiency of the proposed algorithm, three groups of 
experiments were applied to carry out simulation test of artificial dataset and true dataset, 
and the algorithms were compared. 

Table 1: Datasets and standard number of clusters 

Dataset  Data source  Standard number of clusters 
Dataset1 Artificial  2 
Dataset2 Artificial 4 
Dataset3 Artificial 13 
Iris Literature  3 
Wine Literature  3 

There are three artificial datasets: Dataset1, Dataset2 and Dataset3. Dataset1 is composed 
of two two-dimensional Gaussian distribution data with the centers of (0, 0) and (20, 20) 
respectively. Each category has 400 samples. Dataset2 is composed of four two-
dimensional Gaussian distribution data with the centers of (0, 0), (5, 7), (12, 17) and (19, 
24) respectively. Each category has 400 samples. Dataset3 is the sample dataset 
generated artificially at random. The number of samples is 150. The true number of 
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clusters is 13. The true dataset is composed of UCI true datasets including Iris and Wine 
datasets. The standard number clusters, data and sources of artificial datasets and UCI 
true datasets are shown in Tab. 1. 
Experiment 1: Validity experiment of kernel-based improved FCM algorithm     
IRIS dataset and Wine dataset were chosen as the test samples. FMC clustering algorithm 
and improved FMC clustering algorithm were simulated. The change trend of objective 
function with iteration times is shown in the Fig. 1. 

 

Figure 1: Convergence comparison chart of FCM algorithm based on improved kernel 
function 

In the Fig. 1, Line 1 represents the first clustering of FCM algorithm; Line 2 represents the 
second clustering of FCM algorithm; Line 3 represents the first clustering of improved 
FCM algorithm; Line 4 represents the second clustering of improved FCM algorithm.  
According to the figure, the iteration times of improved FCM algorithm is obviously 
lower than that of traditional FCM algorithm in the process where the target value tends 
to coincide. Thus, the validity of the algorithm is proved. 
Experiment 2: Validity experiment of AP algorithm determining upper limit of search. 
Artificial Dataset3 was chosen asexample. Simulation experiment was carried out for

max apk k= and maxk n= , respectively.  

To eliminate the influence of this algorithm, PC was used as the evaluation index for 
contrast experiment. The optimal number of clusters is shown in the following figure. 
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（a） max apk k=  

 
（b） maxk n=  

Figure 2: Comparison chart of optimal number of clusters 

It can be easily seen that, since the search scope confirmed by maxk n=  is smaller than 
the practical optimal number of clusters, the accurate optimal number of clusters cannot 
be gained. The accurate optimal number of clusters is obtained through AP algorithm. 
Experiment 3: Comparison experiment of several validity indexes 
Artificial Dataset1 and Dataset2 as well as UCI datasets Iris and Wine were selected to 
verify several representative evaluation indexes via comparisons. The results are shown 
in Tab. 2. 
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Table 2: Comparison of various indicators 

Dataset  

Optimal 
number 
of 
clusters  

PC PE XB ON 

Number 
of 

clusters 
Value  

Number 
of 

clusters 
Value  

Number 
of 

clusters 
Value  

Number 
of 

clusters 
Value  

Dataset1 2 2 0.6736 2 0.5236 2 0.0437 2 0.7221 

Dataset2 4 3 0.7360 2 0.5792 4 0.0469 4 0.8686 

Iris 3 3 0.8894 2 0.0633 2 0.0536 3 1.0093 

Wine 3 3 0.8722 2 0.1921 3 0.0459 3 0.8831 

Judging from the above results, the evaluation indexes proposed in this study can be all 
converged and get the accurate number of clusters in 4 groups data. They perform better 
than other indexes. The theoretical research and experimental results indicate that, 
compared with other indexes and methods, the indexes in this study have better 
performance and stability. 

5 Discussion 
The above three groups contrast experiments verify the timeliness of improved algorithm, 
validity of search scope and the accuracy of evaluation indexes respectively. The result 
shows that the proposed fuzzy clustering algorithm automatically determining the number 
of clusters is reliable. 

6 Conclusion 
Based on the analysis of FCM algorithm, an accurate and efficient algorithm used to 
confirm the optimal number of clusters is proposed in this study to solve the defects of 
traditional FCM algorithm. The algorithm is improved in the aspects of reducing 
algorithm complexity, confirming search scope and constructing clustering validity index. 
In addition, multiple groups of contrast experiments verify the improvement of algorithm 
with higher efficiency and accuracy. 
Despite some problems exiting in the algorithm, the future researches will be completed 
to improve the time efficiency, which is caused by mutual application of various 
algorithms in the process of automatically determining the number of clusters. 
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