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Abstract: Electric vehicles (EVs) are recognized as one of the most promising 
technologies worldwide to address the fossil fuel energy resource crisis and environmental 
pollution. As the initial work of EV charging station (EVCS) construction, site selection 
plays a vital role in its whole life cycle. In this paper, a multi-objective optimization model 
for the location layout of EVCSs is established when considering various factors such as 
user demand, investment cost, soil locations, the emergency charging mileage limit, the 
actual road condition and service network reliability. The model takes the minimum 
investment cost and the minimum user charging cost as the dual objectives. On the basis 
of satisfying the user’s charging demand and the capacity constraints of EVCSs, the 
redundant design of the charging pile and station is considered to ensure the reliability of 
the service network. In the allocation of user charging demand, in this paper, two factors 
of time and distance are considered, and the equal time load distance method is adopted to 
distribute traffic flow under the limitation of emergency charging mileage. When 
calculating the average travel speed of a road section, an accounting method based on the 
land price level is proposed considering the congestion. Then, the linear weighting method 
is applied to normalizing the multi-objective function, and the genetic algorithm is 
employed to solve the problem. Finally, a computational experiment is presented to 
demonstrate the applicability and effectiveness of the proposed approach. The results show 
that the proposed approach is a useful, practical, and effective way to find the optimal 
location of EVCSs. 
 
Keywords: Electric vehicle charging stations (EVCS), multi-objective decision making, 
location optimization, genetic algorithm. 

1 Introduction 
As a new type of energy-saving transport, electric vehicles (EVs) have gradually become 
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the focus of world attention and the inevitable trend of auto industry development 
[Dharmakeerthi and Saha (2012)]. With the rapid growth of the number of EVs, the 
backward charging infrastructure has been unable to meet the charging needs of EVs. The 
construction of public electric vehicle charging stations (EVCSs) has become an important 
guarantee for the long-term development of the EV industry. Therefore, it is necessary to 
fully consider the charging demand, improve the service level, and plan the scientific 
locations of charging infrastructure, which will be one of the key factors for EVs to replace 
traditional fuel vehicles. 
As the construction of China's EVCSs has just started, a scientific and theoretical system has 
not yet been formed in the location and layout of charging facilities. Actual planning can only 
rely on the general guidelines and relevant experience presented in the relevant standard 
documents [Liu, Wang and Wang (2018)]. When some cities implement the EVCS promotion 
goal, they over-emphasize the increase in the number of infrastructures for improving the 
service capacity of the EVCS network that ignores the consistency of the location of the 
infrastructure and the distribution of charging requirements. Therefore, it is urgent to carry out 
optimization approaches to the location layout of charging facilities for enhancing the 
construction of the EVCS network and promoting the further popularization of EVs. 
There are two main approaches namely the spatial approach and the flow-based approach 
in the literature to simulating the optimal location of EVCSs. The spatial approach is an 
adaptation of well-known models such as p-median [Toregas, Swain and Revelle (1971); 
Campbell (1996); An, Zeng and Zhang (2014)] and coverage problems[Chen, Shi, Chen et 
al. (2015) ; Wang, Ju, Gao et al. (2018) ;Liu, Yang, Zhou et al. (2019)] used for the facility 
location [Wang, Gao, Sherratt et al. (2018); Wang, Gao, Liu et al. (2019)]. The P-median 
problem is based on the minimum demand point and the average distance from the service 
station. It is assumed that the supply station is located near the vehicle fuel exhaustion and 
was first proposed by Hakimi [Hakimi (1964)]. Goodchile et al. [Goodchile and Noronha 
(1987)] proposed a model combining long-distance and short-distance transportation 
through the extension of the basic P-median model. Linhave et al. [Lin, Ogden, Fan et al. 
(2008)] put forward an improved P-median model of reentry into refueling by assuming 
that any point in the path may become a demand point. The coverage problem is to meet 
the needs of customers concerning covering all demand points, and the total number of 
stations or construction costs of the service station is the minimum planning target. It is 
first proposed by Toregas et al. [Toregas, Swain, Revelle et al. (1971)], and is often used 
to solve the site selection problem of emergency service facilities. Church et al. [Church 
and Revelle (1974)] first found the problem of the maximum coverage location. Under the 
limited number of construction service facilities, the most demanding points were covered. 
Current et al. [Current, Revelle and Cohon (1985)] first proposed the maximum 
coverage/shortest path problem to cover as many demand points as possible, and the 
shortest path from the demand point to the service facility. Besides, Melaina et al. [Melaina 
and Bremson (2008)] put forward a high-level maximum coverage requirement to meet the 
fueling needs of the total urban population. 
Compared with the spatial approach, the flow-based approach can better fit people’s travel 
behavior, or in other words, charging consumers are less likely to travel in order to receive 
services. Instead, they usually tend to receive services by the way [Kitamura and Sperling 

https://www.sciencedirect.com/science/article/pii/S0191261517305052#bib0002
https://www.sciencedirect.com/topics/social-sciences/facility-location
https://www.sciencedirect.com/topics/social-sciences/facility-location
https://www.sciencedirect.com/science/article/pii/S0191261517305052#bib0002


 
A Multi-Objective Decision-Making Approach for the Optimal Location             815 

(1987)]. The flow-based approach is an adaptation of 3 kinds of models such as the Flow 
Capturing location Model (FCLM), the Flow Refueling Location Model (FRLM), and the 
Capacitated Flow Refueling Location Model (CFRLM). The FCLM proposed by Hodgson 
in 1990 is the basis of the flow demand model. Hodgson et al. [Hodgson, Rosing and 
Storrier (1996)] used the model for the morning peak traffic study in Edmonton, Canada, 
to show that even a simple greedy algorithm can be employed to solve practical problems, 
and an effective, robust solution can be given. However, the FCLM model still has two 
major shortcomings. Firstly, the travel O-D data required for the model is difficult to obtain. 
Secondly, it is only suitable for short-distance travel, and it is difficult to adapt to the case, 
where the EV may be charged multiple times. For the FCLM model, to ignore the mileage 
limitation under the energy storage constraints, Kubv et al. [Kuby and Lim (2005)] 
comprehensively considered the mileage parameters and established the FRLM model. 
Due to the limitation of mileage, the FRLM model is more complex, but more realistic. 
Therefore, in many studies, it has been applied to the study of actual road networks [Lee 
and Han (2017); He, Yang, Tang et al. (2018)]. Related studies have shown that the FRLM 
model can give a more stable and continuous optimization layout [Upchurch and Kuby 
(2010)]. Although the FRLM model is closer to reality, it can only solve the problem of no 
capacity limitation. The space and energy supply capacity of the supply station is unlimited, 
and it can serve all vehicles passing through the site at the same time. In response to the 
capacity limitation of the supply station, Upchurch et al. [Upchurch, Kuby and Lim (2009)] 
considered the limited capacity factor for correcting the type, and thus the Capacitated 
Flow Refueling Location Model was obtained. 
The various models mentioned above are all single-objective. However, the optimal 
location of EVCSs is an essentially multi-objective problem [Bapna, Thakur and Nair 
(2002)]. The construction cost of the EVCSs is high, and the capital investment is limited. 
At the same time, certain service capabilities must be guaranteed to promote the 
development of EVs. Therefore, multi-objective optimization is also an inevitable choice 
in the research of the charging station layout. Since the construction of EVCSs in China is 
often first invested by enterprises, the multi-objective optimization model for the location 
of EVCSs is very concerned about cost. In this context, in this paper, considering 
investment cost and user time cost, a multi-objective decision-making approach is 
proposed. In addition to that, the calculation and calibration methods of the relevant 
parameters are studied when combined with the user's charging behavior characteristics. 
The research can provide some theoretical support and technical references for the 
optimization of the EVCS location layout, which will further enhance the construction of 
EV charging infrastructure. 
Our work contributes to the literature as follows: (1) Establishing a multi-objective 
optimization model with a full consideration of land cost, construction cost, operation cost 
as well as other influencing factors like user demands, land locations, emergency mileage 
limits, actual road conditions and service network reliability; (2) Using the Monte Carlo 
method to characterize the distribution regularities of EV users’ charging demand; (3) 
Scientifically quantifying the differentiation of land prices at different candidate sites; (4) 
Redundant design considering not only charging piles but also charging stations. 
The rest of this paper is organized as follows. In Section 2, the formulation of the proposed 
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model is laid down. Then, the simulation environment is described in Section 3. In Section 
4, computational experiments are discussed, and obtained results are also analyzed. Finally, 
the conclusion is given in Section 5. 

2 The system model  
2.1 Basic assumptions 
In this paper, the optimization of the fast charging facility location is mainly studied in 
order to meet the emergency charging requirements of urban EVs in the early stage, and 
when the demand for charging is known, the set of charging demand points has been 
determined, and the set of candidate EVCSs is known. There are some assumptions of 
building a mathematical model, as shown below. 
(1) Abstract the virtual road network intersection as a demand point, and the number of 
demand points represents the charging demand; 
(2) Each candidate EVCS only provides a fast charging mode, and the upper limit of the 
number of fast charging piles in their own EVCS is known; 
(3) The impact of user-seeking behavior caused by charging demand on the surrounding 
traffic flow is neglected; 
(4) The impact on the same amount of remaining electricity is negligible because of 
different driving habits and road conditions, and the remaining electricity of the EV is 
linearly and positively correlated with the remaining history; 
(5) There is no capacity limit for the number of parking spaces around each candidate site; 
(6) The users arrive only within the time when the EVCS provides the service, while the 
probability is independent of the time, and the arrival situation is independent; 
(7) The user arrival time coincides with the service time provided by the EVCS. The 
charging service is accepted once the EVCS is found, or in other words, there is no 
possibility of secondary station hunting and station queuing loss. 
(8) The users are familiar with the surrounding EVCS location, the road network, the traffic 
condition, etc., and can find the shortest path within the reachable range. 

2.2 Model constraints 
The optimization of the EVCS location can be realized with a multi-objective optimal 
model, in which 3 constraints, namely ① to meet the user’s fast charging demands; ② 

to meet the EVCS capacity constraints and ③ to ensure the reliability of the service 
network should be considered.  
To ensure the reliability of the service network, the existing researches only consider 
whether here is a surplus of charging pile capacity that can still meet the charging demand 
when a small amount of equipment fails. However, there is no solution to the problem that 
a charging station stops working, which will have a huge impact on the entire charging 
service network. Therefore, the innovative proposal of this paper not only considers the 
design of the fast charging pile in one EVCS, but also gives a solution to the redundant 
design of the entire EVCS networks. 

https://www.sciencedirect.com/science/article/pii/S0191261517305052#sec0006
https://www.sciencedirect.com/science/article/pii/S0191261517305052#sec0010
https://www.sciencedirect.com/science/article/pii/S0191261517305052#sec0015
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1) To meet the user's charging demands 
The primary goal of EVCS location selection is to meet the user’s charging demands. 
Therefore, we must find a corresponding method to obtain the distribution regularities of 
those charging demands and set up the prediction model by adopting Monte Carlo and 
other methods to characterize the distribution of users’ demands. 
a. The time probability distribution of EVs’ charging time 
According to the survey of household vehicles in Shanghai, the time probability density 
distribution curve of the EVs that start to charge is obtained by adopting the maximum 
likelihood estimation method, as shown in Fig. 1. 

 

Figure 1: The probability density distribution curve of the EV charging time 

b. The probability distribution of daily mileage 
The distribution regularities of EVs’ daily mileage can be obtained by normalizing the 
survey data on the daily mileage of private cars (Fig. 2). No more than 86% of EVs travel 
more than 60 km per day.  

 
Figure 2: The distribution regularities of EVs’ daily mileage 
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c. The distribution of continuous charging time 
Assuming that an EV consumes 15 kWh/100 km, then W = 1.609 ∗ 15 kWh =
24.140 kWh. If charging with power 𝑃𝑃𝑐𝑐𝑐𝑐 = 8 𝑘𝑘𝑘𝑘, and setting the charging efficiency to 0.9, 
the distribution regularities of the continuous charging time can be obtained in the figure. As 
can be seen from Fig. 3, the continuous charging time is mainly distributed within 0-2 hours. 

 
Figure 3: The EV’s distribution regularities of continuous charging time 

d. The expectation of charging load for a single EV 
Using the Monte Carlo method to repeat the simulation experiment several times, the 
distribution regularities of the expected value concerning the charging load for a single EV 
are shown in Fig. 4. It can be seen that the charging load value reaches the maximum at 
around 15:00. 

      

Figure 4: The one-day distribution of fast charging load expectation 
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Based on the distribution regularities of the above charging requirements, the user’s 
charging demands should be satisfied from the following 3 aspects: 
(1) Users can only receive charging services when an EVCS is available at one candidate site. 
𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖                                                               (1) 
where 𝑦𝑦𝑖𝑖𝑖𝑖 indicates the ratio of receiving service from demand point i at EVCS 𝑗𝑗. The 
value ranges from 0 to 1; 𝑍𝑍𝑖𝑖 indicates whether EVCS 𝑗𝑗 is established (𝑍𝑍𝑖𝑖 = 1) or not 
(𝑍𝑍𝑖𝑖 = 0). 
(2) Users can only receive charging services within the reach of emergency charging miles. 
𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑑𝑑𝑐𝑐𝑚𝑚𝑚𝑚                                                            (2) 
where 𝑑𝑑𝑖𝑖𝑖𝑖 denotes the travel length from demand point 𝑖𝑖 to EVCS 𝑗𝑗 (km); 𝑑𝑑𝑐𝑐𝑚𝑚𝑚𝑚 refers 
to the emergency charging mileage (km). 
(3) All users’ charging demands can be satisfied. 
∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 1                                                             (3) 
where 𝑦𝑦𝑖𝑖𝑖𝑖 denotes the ratio of receiving service from demand point 𝑖𝑖 at EVCS 𝑗𝑗.  
2) To meet the EVCS capacity limit 
(1) Conditional restrictions for deploying fast charging piles 
𝑚𝑚𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖𝑚𝑚𝑖𝑖                                                             (4) 
where, 𝑚𝑚𝑖𝑖  indicates the number of charging piles in candidate EVCS 𝑗𝑗; 𝑍𝑍𝑖𝑖  indicates 
whether EVCS 𝑗𝑗 is established (𝑍𝑍𝑖𝑖 = 1) or not (𝑍𝑍𝑖𝑖 = 0). 
When the EVCS is not built at point 𝑗𝑗, that is, 𝑍𝑍𝑖𝑖 = 0, 𝑚𝑚𝑖𝑖 can only take a value of 0 if the 
inequality is established. Therefore, it can satisfy the constraint that the fast charging piles 
can only be deployed at the selected candidate EVCSs. 
(2) The number range of fast charging piles  
According to the “EVCS Design Standard GB50966-2014”, one EVCS should be equipped 
with at least 3 charging devices. However, the concentrated charging can cause great 
pressure on the local power grid. At the same time, more charging piles will increase 
investment cost accordingly. Therefore, in one EVCS there is an upper limit value 𝑛𝑛𝑖𝑖. 
𝑚𝑚𝑖𝑖 ∈ �3,𝑛𝑛𝑖𝑖�        𝑚𝑚𝑖𝑖 is an integer.                                      (5) 
(3) Charging service capacity in a single EVCS 
The maximum charging service capacity should exceed all charging demands for the 
number of charging piles is limited. 
∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝑖𝑖 ≤ 𝑡𝑡𝑐𝑐𝜇𝜇𝑖𝑖                                                         (6) 
where 𝜔𝜔𝑖𝑖  indicates charging demands of point i ; 𝜇𝜇𝑖𝑖  represents the average service 
capacity per unit time in EVCS 𝑗𝑗 (pcu/h), and 𝑡𝑡𝑐𝑐 is the time of service provided by EVCS 
within one day (h). 
3) To ensure the reliability of the service network 
According to the above analysis, not only the redundant design of the charging pile but 
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also the redundant design of the entire charging station is taken into account innovatively 
in this paper. 
(1) Charging pile surplus design 
If the charging pile fails, that is, the user’s charging demands cannot be fully satisfied, a 
redundant design with a parameter of σ is set for each EVCS to provide additional charging 
service capabilities. 
(1 + σ)∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝑖𝑖 ≤ 𝑡𝑡𝑐𝑐𝜇𝜇𝑖𝑖                                                  (7) 
where σ denotes the surplus level of the charging station capacity, and other parameters 
are defined above. 
(2) Charging station surplus design 
When there is something wrong with the power grid or during the maintenance of large 
facilities, the entire EVCS will not be able to provide charging services. In order to ensure 
that the rest of the stations can make it, set δ serves as the EVCS collection in the layout 
scheme (δ ∈ J), and 𝛿𝛿𝜑𝜑  is the set after removing the station φ (φ is a sequence of 
positive integers, and the maximum value is the total number of EVCS in δ). Then 
∀φ must be satisfied. 
∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝑖𝑖 ≤ 𝑡𝑡𝑐𝑐𝜇𝜇𝑖𝑖           𝑗𝑗 ∈ 𝛿𝛿𝜑𝜑                                              (8) 

2.3 Charging station location layout optimization model 
This paper aims to establish a multi-optimization model for the optimal location layout of 
candidate EVCSs, with the dual objectives of the minimum investment cost and the 
minimum user time cost. 
1) Minimum investment cost  
Minimizing the investment cost is one of the objective functions of candidate EVCSs 
optimization. The accounting of the investment cost mainly includes the land cost, the 
construction cost and the operation cost. The differences in land prices of different candidate 
sites will be scientifically quantified, which is one of the major innovations in the paper. 
a. Land cost accounting 
In the occupation of urban land resources to construct EVCSs, the land cost accounts for a 
large proportion. The land prices vary because of locations and the degree of prosperity. 
Therefore, it is necessary to differentially calculate the land price of each candidate site 
based on its location. In accordance with the “Urban Land Valuation Regulations 
(GB/T18508-2014)”, the actual land price is revised at a certain benchmark land price. The 
Formula 9 for the calculation is as follows.  
𝐶𝐶𝑖𝑖1 = 𝑠𝑠𝑖𝑖�𝑉𝑉𝑖𝑖(1 ± ∑𝑘𝑘𝑖𝑖𝑚𝑚)𝑘𝑘𝑖𝑖𝑗𝑗 + 𝐷𝐷𝑖𝑖�                                           (9) 
in which j denotes the number of candidate stations; 𝐶𝐶𝑖𝑖1 denotes the land cost for the 
candidate station j (ten thousand yuan); 𝑠𝑠𝑖𝑖  denotes the floor space of the station j; 𝑉𝑉𝑖𝑖 
denotes the land benchmark land price (ten thousand yuan/m2); 𝑘𝑘𝑖𝑖𝑚𝑚  denotes the land 
parcel price correction factor; 𝑘𝑘𝑖𝑖𝑗𝑗  denotes other correction factors such as the land 
valuation date, the floor area ratio, and the land use period; 𝐷𝐷𝑖𝑖 denotes the land 
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development intensity correction factor. 
b. Construction and operation cost 
The construction cost 𝐶𝐶𝑖𝑖2mainly includes the cost of purchasing charging piles and 
supporting construction. It is linearly positively correlated with the number of charging 
piles in the station. The more the number of charging piles 𝑚𝑚𝑖𝑖  is, the higher the 
construction cost 𝐶𝐶𝑖𝑖2 is, as shown in Eq. (10). The operation cost 𝐶𝐶𝑖𝑖3 mainly includes the 
cost of equipment consumption, maintenance labor and equipment maintenance, which are 
calculated according to a certain conversion factor 𝛾𝛾 as shown in Formula (11). 
𝐶𝐶𝑖𝑖2 = 𝑓𝑓(𝑚𝑚𝑖𝑖)                                                          (10) 
𝐶𝐶𝑖𝑖3 = 𝛾𝛾𝐶𝐶𝑖𝑖2                                                         (11) 
Because the land cost and the construction cost are fairly large and the operation period 
generally lasts as long as 10 years, the actual value of cash flow varies greatly. Therefore, 
the conversion coefficient T should be taken into consideration in the calculation by 
introducing the concept of the discount rate 𝑟𝑟0, and the operating life 𝑛𝑛 to the model. 

𝑇𝑇 = 𝑟𝑟0(1+𝑟𝑟0)𝑛𝑛

(1+𝑟𝑟0)𝑛𝑛−1
                                                      (12) 

Combined with Formulas 9-12, the minimum objective function of the annual total 
investment cost is as follows. 

min𝐶𝐶 = ∑ 𝑍𝑍𝑖𝑖�𝑇𝑇�𝐶𝐶𝑖𝑖1 + 𝐶𝐶𝑖𝑖2�+ 𝐶𝐶𝑖𝑖3�𝑖𝑖 = ∑ 𝑍𝑍𝑖𝑖 �
𝑟𝑟0(1+𝑟𝑟0)𝑛𝑛

(1+𝑟𝑟0)𝑛𝑛−1
�c𝑖𝑖𝑗𝑗𝑠𝑠𝑖𝑖 + f�𝑚𝑚𝑖𝑖�� + γf�𝑚𝑚𝑖𝑖��𝑖𝑖  (13) 

2) Minimum user time cost  
The user time cost consists of two parts: the travel time cost on the road and the waiting 
time cost in the station. Firstly, according to the emergency charging mileage, the set of 
EVCSs that can reach each demand point is divided, and then the time load distance method 
is employed for traffic distribution, that is, the probability that the user selects an EVCS is 
inversely proportional to the time of the arrival at the station. 
a. travel time on the road 
The travel time on road refers to the total time taken by the user from looking for the 
charging station to reaching the EVCS. It is assumed that the road conditions and the 
average traveling speed are the same, that is, the shortest travel time matrix is obtained 
without considering the congestion effect. 
𝑇𝑇1 = ∑ ∑ 𝜔𝜔𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                                   (14) 
where 𝑇𝑇𝑗𝑗 is the total travel time spent by all users looking for an EVCS (hour); 𝑡𝑡𝑖𝑖𝑖𝑖 is the 
travel time from i to j (hour); 𝜔𝜔𝑖𝑖 indicates charging demands of point I, and 𝑦𝑦𝑖𝑖𝑖𝑖 is the 
ratio of receiving services. 
b. waiting time in the station 
The EVCS can be regarded as a queuing system, and the expected queuing time of the 
charging station j can be calculated by using the M/M/c/∞ queuing system theory. 
User arrival frequency： 
𝜆𝜆𝑖𝑖 = ∑ 𝜔𝜔𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 /𝑡𝑡𝑐𝑐                                                    (15) 



 
822                                       CMC, vol.60, no.2, pp.813-834, 2019 

The average service capacity per hour: 
𝜇𝜇𝑖𝑖 = 𝑚𝑚𝑖𝑖/𝑡𝑡𝑓𝑓                                                         (16) 
The service intensity of the queuing system: 
𝜌𝜌𝑖𝑖0 = 𝜆𝜆𝑖𝑖/𝜇𝜇𝑖𝑖                                                         (17) 
The probability that all charging piles are idle: 

𝑃𝑃𝑖𝑖0 = �∑ �𝑐𝑐𝑗𝑗𝜌𝜌𝑗𝑗�
𝑘𝑘

𝑘𝑘!
𝑐𝑐𝑗𝑗−1
𝑘𝑘=0 + �𝑐𝑐𝑗𝑗𝜌𝜌𝑗𝑗�

𝑚𝑚𝑗𝑗

𝑐𝑐𝑗𝑗!(1−𝜌𝜌𝑗𝑗)
�
−1

                                     (18) 

The expected queuing time:  

𝑊𝑊𝑖𝑖𝑗𝑗 = 𝑐𝑐𝑗𝑗
𝑚𝑚𝑗𝑗𝜌𝜌𝑗𝑗

𝑚𝑚𝑗𝑗+1𝑃𝑃𝑗𝑗0
𝜆𝜆𝑗𝑗𝑐𝑐𝑗𝑗!(1−𝜌𝜌𝑗𝑗)2

                                                  (19) 

The total time that all users spend waiting to receive services can be calculated according 
to the following formula. 
𝑇𝑇2 = ∑ (𝑊𝑊𝑖𝑖𝑗𝑗 ∑ 𝜔𝜔𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 ）𝑖𝑖                                            (20) 
where 𝑡𝑡𝑐𝑐  is the time of service provided by the EVCS within one day (hour); 𝑡𝑡𝑓𝑓  is the 
average charging time per car (hour/car), and 𝑚𝑚𝑖𝑖 is the number of charging piles in EVCS 𝑗𝑗. 
Combined with Formulas 14-20, the minimum objective function of the total user time cost 
is as follows: 
𝑚𝑚𝑖𝑖𝑛𝑛 𝑇𝑇 = 365𝑐𝑐𝑗𝑗(𝑇𝑇1 + 𝑇𝑇2) = 365𝑐𝑐𝑗𝑗(∑ ∑ 𝜔𝜔𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + ∑ �𝑊𝑊𝑖𝑖𝑗𝑗 ∑ 𝜔𝜔𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 �𝑖𝑖 )           (21) 
in which, 𝑐𝑐𝑗𝑗 is the user’s unit travel time cost (ten thousand yuan/hour) 
3) Multi-objective optimization model 
Two objective functions are proposed in this paper, namely, the minimum investment 
cost and the minimum user time cost, which can be combined into a bi-objective 
programming function. The Formulas 22-31 constitute an optimization model for the 
location layout of EVCSs. 

min𝐶𝐶 = ∑ 𝑍𝑍𝑖𝑖（
𝑟𝑟0(1+𝑟𝑟0)𝑛𝑛

(1+𝑟𝑟0)𝑛𝑛−1
(𝑐𝑐𝑖𝑖1𝑠𝑠𝑖𝑖 + 𝑓𝑓(𝑚𝑚𝑖𝑖)）𝑖𝑖 + 𝛾𝛾𝑓𝑓(𝑚𝑚𝑖𝑖)                    (22) 

min𝑇𝑇 = 365𝑐𝑐𝑗𝑗(∑ ∑ 𝜔𝜔𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + ∑ (𝑖𝑖 𝑊𝑊𝑖𝑖𝑗𝑗 ∑ 𝜔𝜔𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 ))                      (23) 
s.t. 
∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 1                                                       (24) 
𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖                                                         (25) 
𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑑𝑑𝑐𝑐𝑚𝑚𝑚𝑚                                                      (26) 
𝑚𝑚𝑖𝑖 ≤ 𝑍𝑍𝑖𝑖𝑚𝑚𝑖𝑖                                                      (27) 
(1 + σ)∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝑖𝑖 ≤ 𝑡𝑡𝑐𝑐𝜇𝜇𝑖𝑖                                          (28) 
∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖𝑖𝑖 ≤ 𝑡𝑡𝑐𝑐𝜇𝜇𝑖𝑖           𝑗𝑗 ∈ 𝛿𝛿𝜑𝜑                                         (29) 

𝑚𝑚𝑖𝑖 ∈ �3,𝑛𝑛𝑖𝑖�  𝑚𝑚𝑖𝑖 is an integer.                                      (30) 
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𝑍𝑍𝑖𝑖 = �  
0, EVCS 𝑗𝑗 is not established

1, EVCS 𝑗𝑗 is established                                      (31) 

𝑍𝑍𝑖𝑖 indicates whether EVCS 𝑗𝑗 is established (𝑍𝑍𝑖𝑖 = 1) or not (𝑍𝑍𝑖𝑖 = 0). 

3 Simulation environment 
3.1 EVCS floor space (𝑠𝑠𝑖𝑖) 
The floor space of an EVCS is mainly related to the form of its spatial layout and the 
number of related facilities. This paper draws on the relevant provisions of the “Electric 
Vehicle Charging Station Design Standard (GB 50966-2014)”, and the floor space is 
calculated according to the layout form in Fig. 5. 

 
Figure 5: The EVCS layout form from GB 50966-2014 

a) The EVCS spatial layout; b) Dimensional calibration (unit: m) 
The floor space of the charging zone:  
𝑠𝑠𝑖𝑖1 = 15 × 2�𝑚𝑚𝑖𝑖/2�                                                    (32) 
The charging parking spaces are symmetrically arranged in a single row, and therefore the 
number of charging piles 𝑚𝑚𝑖𝑖  is an even number. The upward integer function⌈ ⌉ is 
introduced, and the area of the charging zone contains the number (2�𝑚𝑚𝑖𝑖/2�) of charging 
spaces. The size of each charging space is 2.5×6=15 m2. 
The total area of the charging zone in an EVCS is 𝑠𝑠𝑖𝑖1.  𝑠𝑠𝑖𝑖1 = 15 × 2�𝑚𝑚𝑖𝑖/2� 
According to the size calibration in the figure, the floor space of the carriageway in the 
EVCS is 𝑠𝑠𝑖𝑖2. 

𝑠𝑠𝑖𝑖2 = 2 × 3.5 × 21 + 2.5 × 2 × 6 × �𝑚𝑚𝑖𝑖/2�+ 2 × 6 × (6 + 12 + 6) = 435 + 30�𝑚𝑚𝑖𝑖/2�                       
 (33) 
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The EVCS is composed of a charging zone, an in-station carriageway and a supporting 
facility area in which the area 𝑠𝑠𝑖𝑖3 is about 350 m2. A total EVCS floor space 𝑠𝑠𝑖𝑖 can be 
calculated as follows. 
𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖1 + 𝑠𝑠𝑖𝑖2 + 𝑠𝑠𝑖𝑖3 = 785 + 60�𝑚𝑚𝑖𝑖/2�                                   (34) 

3.2 Emergency charging mileage (𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎) 
The state of charge (SOC) is various when different users recharge. A statistical analysis 
of users purchasing EVs shows that more than 96% of users will choose to charge when 
SOC is more than 20%. Therefore, the value of emergency charging mileage is based on a 
20% SOC. Assuming a linear positive correlation between SOC and the remaining mileage, 
the formula for calculating the emergency charging mileage is shown in Eq. (35): 
𝑑𝑑𝑐𝑐𝑚𝑚𝑚𝑚 = 20%𝑑𝑑𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟                                                   (35) 
in which, 𝑑𝑑𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟 denotes EV’s cruising range (km). 

 
Figure 6: SOC distribution at the charging start time 

3.3 Maximum number of fast charging piles at candidate EVCSs (𝒏𝒏𝒋𝒋) 
The large current transmission at a time and in one space can put a lot of pressure on the 
local power grid. Therefore, it is necessary to determine how many fast charging piles 
should be set based on the grid limit and surrounding land utilization. The number of 
charging piles of 25 EVCSs was investigated in Shanghai. The distribution and cumulative 
frequency are statistically analyzed in Fig. 7, in which the number of fast charging piles in 
more than 90% of charging stations does not exceed 10. Therefore, the reasonable 
maximum number of fast charging piles for candidate EVCSs was set to 10, that is, the 
value of 𝑛𝑛𝑖𝑖 is 10. 
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Figure 7: The distribution and cumulative frequency of fast charging piles 

4 The computational experiment 
4.1 Test networks 
The actual road network features are expressed in mathematical language: the edges in the 
topology map represent road segments, and the points represent the intersections. The 
candidate EVCSs are mainly laid out on the arterial roads. This computational experiment 
is mainly designed to verify the feasibility and effectiveness of the multi-objective 
optimization model. 

 
Figure 8: Demand points and candidate EVCSs’ locations in the road network topology 

In Fig. 8, the solid dots in the above figure represent 30 EV charging demand points, while 
the solid squares represent the locations of 10 candidate EVCSs. The quantity demands of 
30 EV charging demand points are shown in the table below. 
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Table 1: The quantity demands of 30 EV charging demand points 

Point 
number 

Quantity 
demand 

Point 
number 

Quantity 
demand 

Point 
number 

Quantity 
demand 

1 9 11 8 21 14 
2 10 12 14 22 11 
3 11 13 5 23 13 
4 9 14 15 24 9 
5 9 15 11 25 10 
6 11 16 10 26 11 
7 12 17 8 27 8 
8 6 18 9 28 10 
9 13 19 7 29 8 
10 12 20 10 30 7 

4.2 Parameter analysis 
1) Land price per unit area 
The reality is that the closer the land to the city center, the higher the level of land 
development and the better the infrastructure. The case area is divided into six levels, as 
shown in Fig. 9, and the benchmark land price for each land level is shown in Tab. 2. 

Table 2: The land level and the unit land price 𝑐𝑐𝑖𝑖1of each candidate EVCS  

j Land 
level 

𝑐𝑐𝑖𝑖1(ten thousand 
yuan/m2) j Land 

level 
𝑐𝑐𝑖𝑖1(ten thousand 

yuan/m2) 
1 Ⅴ 0.0716 6 Ⅲ 0.1173 
2 Ⅳ 0.0852 7 Ⅱ 0.1781 
3 Ⅳ 0.0852 8 Ⅲ 0.1173 
4 Ⅳ 0.0852 9 Ⅴ 0.0716 
5 Ⅱ 0.01781 10 Ⅴ 0.0716 

The correspondence between the road location and the land price distribution is shown in 
Fig. 9 by combining the road network topology and the land level division map. 
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Figure 9: The correspondence between the road location and the land price distribution 

There are two principles in determining the land level to which each road segment belongs. 
① When the road section locates at the boundary of two land levels, the level of this 
section should follow the higher one. ② When the road section spans several land levels, 
if it crosses the core area, it is calculated according to the highest land level; if not, 
according to the one with the highest proportion in the section. 
2) travel time from demand points to candidate EVCSs 
According to the above principle, the average travel speed of each road section can be 
determined in Tab. 3. For the description, the first and last node numbers of the road 
segments are used for explanation. 
The adjacency matrix of the link length is obtained by batch measurement of the road 
network topology. In combination with the road speedometer 5, the ratio of the length to 
the speed is the travel time of each road segment. The shortest path assignment is performed 
based on the adjacency matrix of the link length and the time matrix. The shortest travel 
time from demand points to candidate EVCSs is shown in Tab. 4. 

4.3 Solution method for the model 
Since the EVCS location problem is the NP-hard problem, a heuristic algorithm instead of 
an exact algorithm was adopted. A generic solution to the multi-objective optimization 
problem is the genetic algorithm [Wang, David, Ochoa et al. (2011)]. Genetic algorithms 
generate solutions to optimization complex problems using techniques inspired by natural 
evolution, such as inheritance, mutation, selection, and crossover [Chen, Kockelman and 
Khan (2012)]. In the Matlab programming process, the crossover rate of 𝑃𝑃𝑐𝑐 is 0.6; the 
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mutation rate 𝑃𝑃𝑐𝑐  is 0.1; the population size N is 20, and the maximum number of 
evolutions T is 200. 

Table 3: The generic solution step for the optimal EVCS location model 

Step 1. Define the value of Zj in group b as Zjb; optimal layout scheme is mjb; 
objective function value is Fb; M is a sufficiently large positive number, 
and the initialization parameter b=1. 

Step 2. Determine whether Zjb meets the constraint conditions. If it is satisfied, 
move to the next step and calculate the optimal facility configuration. 
Otherwise, let Fb=M, and go to Step 10. 

Step 3. The initial population is randomly generated to determine whether the 
constraint is satisfied, and if not, the initial population is regenerated. If 
yes, go to Step 4. 

Step4. Calculate the fitness value; determine whether the optimization criterion is 
met, and if so, end the genetic calculation, record Fb and mjb, and go to 
Step 10; otherwise, proceed to the next step. 

Step 5. After retaining the two individuals with the highest fitness directly into the 
new population, proceed to Step 6. 

Step 6. Select the parent according to the roulette strategy. 
Step 7. Generate new individuals according to a certain crossover probability and 

crossover method. 
Step 8. Generate new individuals according to certain mutation probabilities and 

variation methods. 
Step 9. The two individuals with the highest fitness plus the individuals generated 

by Step7 and Step7 form a new population and return to Step 4. 
Step 10. 

Let 𝐹𝐹𝑏𝑏 = �
𝐹𝐹𝑏𝑏 ，𝑏𝑏 = 1

𝑚𝑚𝑖𝑖𝑛𝑛{𝐹𝐹𝑏𝑏 ,𝐹𝐹𝑏𝑏−1},𝑏𝑏＞1
; Determine if b≥B; end the algorithm, 

and output Fb, and the corresponding mjb and Zjb; if not, let b=b+1, go to 
Step 2. 

4.4 Discussion 
The bi-objective programming function can be converted to a single-objective 
programming function by a linear weighting method, which will produce three optimal 
target scenarios (see Tab. 4). The total investment cost results obtained by the program are 
compared with the sum of the cost of each item, which shows that the error is 6.4‰ within 
an acceptable range. 
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Figure 10: Optimal charging facility size in different models 

Table 4: Results of 3 optimal target scenarios (ten thousand yuan/year) 

Result of EVCS selection  
Minimum 
Investment 
Cost Model 

Minimum 
User Time 

Cost Model 

Multi-objective 
Optimization 

Model 
Selected EVCSs’ 

locations (2) (9) (3) (4) (7) (9) (2) (3) (7) 

Number of selected 
EVCSs 2 4 3 

Number of charging piles 12 22 20 
Investment Cost 195.44 293.15 254.07 
User Time Cost 525.68 315.41 340.64 

Total Cost 721.12 608.56 594.71 

Tab. 6 and Fig. 10 illustrates that the optimal charging facility size needs to be the largest 
with 4 selected EVCSs and 22 charging piles when the objective function is the minimum 
user time cost. When the investment cost is the lowest, the optimal charging facility size 
will be reduced to 2 EVCSs and 12 charging piles. The number of charging facilities of 
multi-objective optimization is intermediate because the above two optimal objectives are 
considered comprehensively. 
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Figure 11: The layout structure of EVCSs among different optimal objectives 

Fig. 11 reveals that the layout structure of the charging station changes among different 
optimal objectives. When the optimal objective is the minimum user time cost, the optimal 
positions of EVCS (3, 4, 7, and 9) cover most of the road sections with more charging 
demands. The optimal goal is that when the investment cost is the lowest, the optimal 
positions (2, 9) are mainly located in the IV and VI areas where the land price is cheaper. 
In general, the heterogeneity of charging demands and the differences in traffic 
accessibility makes the layout density of the charging station, especially the charging pile, 
differ from the service range. As the population density and traffic accessibility decrease, 
the density of charging stations and piles also decreases, and tends to decrease from 
downtown to suburbs. 
The results of these three optimization models are characterized by good stability, as the 
candidate points (2) (3) (7) were selected twice, which is exactly the result of the multi-
objective optimal model. This indicates that once the multi-objective optimal scheme is 
implemented, the EVCSs construction in the initial stage can still meet the charging needs 
in the future with the development of EVs. 
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Figure 12: Comparison of various costs among different optimal objectives 

As can be seen from the Fig. 12, the minimum investment cost model has the lowest 
investment cost, but brings a huge increase in the user time cost. While the minimum user 
time cost model has the highest investment cost, which in turn reduces the time spent by 
users. Therefore, there is a clear mutual constraint between these two optimal goals. 
From the perspective of urban planners, it is necessary to take into account the high 
construction cost of EVCS, ensure the utilization of the charging piles, and also make the EV 
users feel convenient and spend as little time as possible. And the EVCS construction should 
also be forward-looking to meet the needs of the future development. Therefore, the multi-
objective optimization model can balance the interests of both users and investors, and more 
effectively meet the above-mentioned requirements. 

 
Figure 13: The optimal EVCSs layout of the multi-objective optimal model 
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The multi-objective optimization model is the most ideal solution with 3 selected charging 
station positions (2, 3, and 7). Position 7 can radiate to a large number of demand points 
because of its central location, and has 10 charging piles, which can be considered as high-
level charging stations. The other two charging station positions (2) and (3) are configured 
with 5 charging posts, which can be regarded as sub-level charging stations. 
This paper simulates the initial stage of EVCS construction where the charging demand is 
greater than the supply of charging services, and as a result, some customers cannot obtain 
charging services. In this case, the sub-level charging station can be placed outside the 
service area of the high-level charging station for more users. 
The figure can also reflect the differences in the scope of EVCS services from two aspects. 
On the one hand, the service range of the EVCS is not a regular hexagon; on the other hand, 
the service range of the sub-level charging station is limited due to factors such as user 
bypass distance and battery life. 

4.5 Future work 
The research content and results can be improved in the future, and our future work will 
mainly focus on the following aspects. 
a. This paper focuses on the initial stage of EV promotion, assuming that the proportion of 
EVs in total road traffic is quite small. However, as the number of EVs increases, it is 
necessary to further consider the congestion effect of traffic flow caused by charging 
demands on road traffic. 
b. In order to highlight the research focus, less power factors are considered in this paper. 
However, when the EVs promotion steps into a mature stage, the charging demand will 
increase, and the layout of the EVCS will have a relatively significant impact on the local 
power grid. Therefore, it is imperative to consider the power factor in further research. 

5 Conclusion 
The location layout model of urban charging facilities constructed in this paper 
comprehensively considers various factors such as user demand, the investment cost, soil 
locations, emergency charging mileage and service network reliability, and 
comprehensively reflects the problems of building charging stations. 
Combined with the user's charging behavior characteristics, the calculation and calibration 
methods for the relevant parameters of the model have been studied. Based on these goals, 
the mixed integer linear programming model was first employed to determine the 
constraints and the objective function. Since the placement problem is the NP-hard problem, 
the heuristic algorithm instead of an exact algorithm was adopted, which did not work for 
many variables and constraints. Finally, simulation results in the MATLAB demonstrate 
that the proposed locating method is effective and practical. 
At the same time, the solution results of the example also show that the proposed multi-
objective programming model can take into account the interests of users and planners, 
conforms to relevant policy norms, and has strong practical significance. 
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