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Robust Re-Weighted Multi-View Feature Selection
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Abstract: In practical application, many objects are described by multi-view features
because multiple views can provide a more informative representation than the single view.
When dealing with the multi-view data, the high dimensionality is often an obstacle as
it can bring the expensive time consumption and an increased chance of over-fitting. So
how to identify the relevant views and features is an important issue. The matrix-based
multi-view feature selection that can integrate multiple views to select relevant feature
subset has aroused widely concern in recent years. The existing supervised multi-view
feature selection methods usually concatenate all views into the long vectors to design
the models. However, this concatenation has no physical meaning and indicates that
different views play the similar roles for a specific task. In this paper, we propose a
robust re-weighted multi-view feature selection method by constructing the penalty term
based on the low-dimensional subspaces of each view through the least-absolute criterion.
The proposed model can fully consider the complementary property of multiple views and
the specificity of each view. It can not only induce robustness to mitigate the impacts of
outliers, but also learn the corresponding weights adaptively for different views without
any presetting parameter. In the process of optimization, the proposed model can be
splitted to several small scale sub-problems. An iterative algorithm based on the iteratively
re-weighted least squares is proposed to efficiently solve these sub-problems. Furthermore,
the convergence of the iterative algorithm is theoretical analyzed. Extensive comparable
experiments with several state-of-the-art feature selection methods verify the effectiveness
of the proposed method.
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1 Introduction

In many applications, we need to deal with a large number of data which have high
dimensionality. Handling high dimensional data (such as image and video data) may bring
many challenges, including the added computational complexity and the increased chance
of over-fitting. So how to effectively reduce the dimensionality has become an important
issue. As an effective method of selecting representative features, feature selection has
attracted many attentions. Feature selection methods [Fang, Cai, Sun et al. (2018)]
can be grouped into filter methods, wrapper methods, and embedded methods. Filter
methods select features according to the general characteristics of data without taking
the learning model into consideration. Wrapper methods select features by taking the
performance of some model as criterion. Embedded methods incorporate feature selection
and classification process into a single optimization problem, which can achieve reasonable
computational cost and good classification performance. Thus, embedded methods are in
the dominant position in machine learning, and Least absolute shrinkage and selection
operator (Lasso) [Tibshirani(2011)] is one of the most important representatives.
Recently, unlike the previous vector-based feature selection methods (such as Lasso) that
are only used for binary classification, many of matrix-based structured sparsity-inducing
feature selection (SSFS) methods have been proposed to solve multi-class classification
[Gui, Sun, Ji et al. (2016) ]. Obozinski et al. [Obozinski, Taskar and Jordan (2006)] first
introduced l2,1-norm regularization term which is an extension of l1-norm in Lasso for
multi-task feature selection. The l2,1-norm regularizer can obtain a joint sparsity matrix
because minimizing l2,1-norm will make the rows of transformation matrix corresponding
to the nonessential features become zeros or close to zeros. Thanks to its good performance,
many SSFS methods based on l2,1-norm regularizer have been proposed [Yang, Ma,
Hauptman et al. (2013); Chen, Zhou and Ye (2011); Wang, Nie, Huang et al. (2011);
Wang, Nie, Huang et al. (2011); Jebara (2011)]. In addition, Nie et al. [Nie, Huang, Cai et
al. (2011)] utilized l2,1-norm penalty to construct a robust SSFS method called RFS to deal
with bioinformatics tasks. Unlike the frequently-used least squared penalty, the residual
in RFS is not squared, and thus the outliers have less influence. With the aid of l2,1-norm
penalty, several robust SSFS methods have been proposed [Zhu, Zuo, Zhang et al. (2015);
Du, Ma, Li et al. (2017)].
As is known, the description of an object from multiple views is more informative than
the one from single view, and a large amount of multi-view data have been collected. In
order to describe this kind of data in a better way, a lot of features are extracted by different
feature extractors. How to integrate these views to select more relevant feature subset
is important for the subsequent classification model. Xiao et al. [Xiao, Sun, He et al.
(2013)] firstly proposed the two-view feature selection method. However, many objects are
described from more than two views. Wang et al. [Wang, Nie, Huang et al. (2012); Wang,
Nie and Huang (2013); Wang, Nie, Huang et al. (2013)] proposed the improved multi-view
feature selection methods to handle the general case. In Wang et al. [Wang, Nie and Huang
(2012)], they established a multi-view feature selection framework by adopting G1-norm
regularizer and l2,1-norm regularizer to make both views and features sparsity. In Wang et
al. [Wang, Nie and Huang (2013); Wang, Nie, Huang et al. (2013)], SSMVFS and SMML
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were proposed by using the same framework to induce the structured sparsity. Specifically,
SSMVFS employed the discriminative K-means loss for clustering, and SMML employed
the hinge loss for classification. Zhang et al. [Zhang, Tian, Yang et al. (2014)] proposed
a multi-view feature selection method based on G2,1-norm regularizer by incorporating
the view-wise structure information. Gui et al. [Gui, Rao, Sun et al. (2014)] proposed a
joint feature extraction and feature selection method by considering both complementary
property and consistency of different views.
Multi-view feature selection methods have achieved good performance. Concatenating
multiple views into new vectors is a common way when establishing the multi-view feature
selection schemes. However, the concatenated vectors have no physical meaning, and the
concatenation implies that the different views have similar effects on a specific class. In
addition, the concatenated vectors are always high dimensional, which increases the chance
of over-fitting. Noticing these limitations, some multi-view clustering methods [Xu, Wang
and Lai (2016); Xu, Han, Nie et al. (2017)] have been proposed to learn the corresponding
distribution of different views.
Inspired by the above work, we propose a robust re-weighted multi-view feature selection
method (RRMVFS) without concatenation. For each view, we make the predictive values
close to the real labels, and construct the penalty term by using the least-absolute criterion,
which can not only induce robustness but also learn the corresponding view weights
adaptively without any presetting parameter. Based on the proposed penalty, the scheme
is established by adding G1-norm and l2,1-norm regularization terms for the structured
sparsity. In the procedure of optimization, the proposed model can be decomposed into
several small scale subproblems, and an iterative algorithm based on Iterative Re-weighted
Least Squares (IRLS)[Daubechies, Devore, Fornasier et al. (2008)] is proposed to solve
the new model. Furthermore, the theoretical analysis of convergence is also presented.
In a nutshell, the proposed multi-view feature selection method has the following
advantages:
• It can fully consider the complementary property of multiple views as well as the
specificity of each view, since it assigns all views of each sample to the same class while
separately imposes penalty for each view.
• It can reduce the influence of outliers effectively because the least-absolute residuals of
each view are combined as penalty.
• It can learn the view weights adaptively by a re-weighted way, where the weights are
updated according to the current weights and bias matrix without any presetting parameter.
• It can be efficiently solved due to the following two reasons. One is that the objective
function can be decomposed into several small scale optimization subproblems, and the
other one is that IRLS can solve the least-absolute residual problem within finite iterations.
• Extensive comparison experiments with several state-of-the-art feature selection methods
show the effectiveness of the proposed method.
The paper is organized as follows. In Section 2, we present our feature selection model
and algorithm in detail, and the convergence of the proposed algorithm is analysed. After
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presenting the extensive experiments in Section 3, we draw the conclusions in Section 4.
Now, we give the notation in this paper. Given N samples which have V views belonging
to P classes, the data matrix of the vth view is denoted as X(v) = [x

(v)
1 ,x

(v)
2 , · · · ,x(v)

N ] ∈
Rdv×N , where x

(v)
n ∈ Rdv is the vth view of the nth sample, and dv is the feature number

of the vth view, v = 1, · · · , V . The data matrix of all views can be represented by

X = [X(1);X(2); · · · ;X(V )] ∈ Rd×N ( [A;B] represents
[
A
B

]
), where d =

∑V
v=1 dv.

Each sample is denoted by xn = [x
(1)
n ;x

(2)
n ; · · · ;x

(V )
n ] ∈ Rd (that is, the nth column of

X), and its label vector is denoted as yn = (y1n, y2n, · · · , yPn)T ∈ RP . If a sample
belongs to the pth class, then the pth element of yn is 1, i.e, ypn = 1, and others
are −1. The label matrix is denoted as Y = [y1,y2, · · · ,yN ] ∈ RP×N . For each
class and each view, there is a feature transformation vector denoted by w

(v)
p ∈ Rdv

(p = 1, · · · , P ; v = 1, · · · , V ). Then the feature transformation matrix is represented
as W = [w

(1)
1 , · · · ,w(1)

P ; · · · , · · · , · · · ;w
(V )
1 , · · · ,w(V )

P ] ∈ Rd×P , and the feature
transformation matrix of the vth view is W (v) = [w

(v)
1 ,w

(v)
2 · · · ,w

(v)
P ] ∈ Rdv×P .

2 Robust re-weighted multi-view feature selection method
2.1 Model formulation

In order to select the relevant views and feature subset from the original ones, we first
use label information of the multi-view data to build the penalty term through the loss
minimization principle. We calculate the penalty term by least-absolute criterion which
can induce robustness. Instead of concatenating all views as long vectors, the penalty term
is established as the sum of the residuals calculated on the latent subspace of each view:
V∑
v=1

‖W (v)TX(v) + b(v)1TN − Y ‖F (1)

where b(v) ∈ RP is a bias vector of the vth view, and 1N ∈ RN is the vector of all ones.
The residuals are not squared and thus outliers have less effect compared with the squared
residuals. Since different views have different effects for a specific class, we use G1-norm
regularizer to enforce the sparsity between views. Meanwhile, we use l2,1-norm regularizer
which has the ability of imposing the transformation matrix sparse between rows to select
the representative features. The formulation of the proposed multi-view feature selection
method can be described as follows:

min
W

J(W,B) =

V∑
v=1

‖W (v)TX(v) + b(v)1TN − Y ‖F + γ1‖W‖G1
+ γ2‖W‖2,1 (2)

where B = [b(1), b(2), · · · , b(V )] ∈ RP×V , γ1 and γ2 > 0 are two non-negative trade-off
parameters.
Formulation (2) assigns all views of each sample to the same class, and imposes the
penalty separately on each view. It simultaneously considers the complementary property
of different views and the specificity of each view.
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2.2 Optimization algorithm

Next we give an iterative optimization algorithm to solve the problem (2). Firstly, we
transform the objective function of (2) as:

V∑
v=1

‖W (v)TX(v) + b(v)1TN − Y ‖F + γ1

V∑
v=1

P∑
p=1

‖w(v)
p ‖2 + γ2

V∑
v=1

‖W (v)‖2,1

=

V∑
v=1

Jv(W (v), b(v)) (3)

where Jv(W (v), b(v)) = ‖W (v)TX(v)+b(v)1TN−Y ‖F +γ1
∑P

p=1 ‖w
(v)
p ‖2+γ2‖W (v)‖2,1

Since Jv(W (v), b(v)) is only related to the vth view and nonnegative, the problem (2) can
be decomposed into solving V -subproblems:

min
W (v),b(v)

Jv(W (v), b(v)) (4)

Note that the problem (4) cannot be easily solved by the sophisticated optimization
algorithms since its objective function is nonsmooth. We utilize IRLS method [Daubechies,
Devore, Fornasier et al. (2008)] to solve it, and change it as follows:

min
W (v),b(v),αv

αv‖W (v)TX(v) + b(v)1TN − Y ‖2F + γ1

P∑
p=1

‖w(v)
p ‖2 + γ2‖W (v)‖2,1 (5)

where αv = 1
2‖W (v)TX(v)+b(v)1T

N−Y ‖F
.

1. Fix αv, update W (v), b(v). For problem (5), we can solve the following problem
iteratively with the fixed αv:

min
W (v),b(v)

αv‖W (v)TX(v) + b(v)1TN − Y ‖2F + γ1

P∑
p=1

w(v)
p

T
D̃(v)
p w(v)

p

+ γ2tr(W (v)T D̄(v)W (v)) (6)

where D̃(v)
p = 1

2‖w(v)
p ‖2

Idv (Idv is an identity matrix), tr(·) is the trace norm of matrix, and

D̄(v) = diag( 1
2‖W (v)

1: ‖2
, · · · , 1

2‖W (v)
dv :‖2

), where W (v)
i: is the ith row of W (v). Since

tr(W (v)T D̄(v)W (v)) =

P∑
p=1

w(v)
p

T
D̄(v)w(v)

p (7)

αv‖W (v)TX(v) + b(v)1TN − Y ‖2F = αv
P∑
p=1

N∑
n=1

(w(v)
p

T
x(v)
n + b(v)p − ypn)2 (8)
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the problem (6) becomes

min
W (v),b(v)

P∑
p=1

(
αv

N∑
n=1

(w(v)
p

T
x(v)
n + b(v)p − ypn)2 + γ1w

(v)
p

T
D̃(v)
p w(v)

p

+γ2w
(v)
p

T
D̄(v)w(v)

p

)
(9)

Define Jvp (w
(v)
p , b

(v)
p ) = αv

∑N
n=1(w

(v)
p

T
x
(v)
n + b

(v)
p − ypn)2 + γ1w

(v)
p

T
D̃

(v)
p w

(v)
p +

γ2w
(v)
p

T
D̄(v)w

(v)
p . Since Jvp (w

(v)
p , b

(v)
p ) is only related to the pth class and nonnegative,

the problem (9) can be decomposed into solving P -subproblems:

min
w

(v)
p ,b

(v)
p

Jvp (w(v)
p , b(v)p ) (10)

Taking the derivative of the (10) with the respect to b(v)p and w
(v)
p and setting them to zeros,

we can obtain

αv
N∑
n=1

(2x(v)
n

T
w(v)
p + 2b(v)p − 2ypn) = 0 (11)

αv
N∑
n=1

(2x(v)
n x(v)

n

T
w(v)
p + 2x(v)

n b(v)p − 2x(v)
n ypn) + 2γ1D̃

(v)
p w(v)

p + 2γ2D̄
(v)w(v)

p = 0 (12)

So from (11), we have

b(v)p =

∑N
n=1(ypn − x

(v)
n

T
w

(v)
p )

N
=
Yp1N −w

(v)
p

T
X(v)1N

N
(13)

where Yp = (yp1, · · · , ypN ) ∈ RN . Substituting (13) into (12), we have

w(v)
p = (αvX(v)HX(v)T + γ1D̃

(v)
p + γ2D̄

(v))−1αvX(v)HY T
p (14)

where H = IN − 1N1T
N

N with IN being an identity matrix.

2. Fix W (v), b(v), update αv. The non-negative weight αv for each view can be updated
as

αv =
1

2‖W (v)TX(v) + b(v)1TN − Y ‖F
, v = 1, 2, · · · , V (15)

The proposed multi-view feature selection algorithm (RRMVFS) is summarized in
Algorithm 1.

2.3 Convergence analysis

Theorem 1. The values of the objective function of (2) monotonically decrease in each
iteration in Algorithm 1, and the algorithm converges.
Proof: From Eq. (3), in order to prove J(Wt+1, Bt+1) ≤ J(Wt, Bt), we only need to
prove that Jv(W (v), b(v)) monotonically decreases in each iteration.
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Algorithm 1: Robust Re-weighted Multi-view Feature Selection
(RRMVFS)
Input: data matrix of each view X(v), v = 1, 2, · · · , V, label matrix Y =
[y1,y2, · · · ,yN ].
Output: transformation matrix W (v), v = 1, 2, · · · , V .
Initialization
1. Set t = 0, threshold ε = 10−5, the largest iterative number T = 20;
Set (W (v))0 ∈ Rdv×P (v = 1, · · · , V ) all elements 1, and (b

(v)
p )0 can be

calculated by (b
(v)
p )0 =

Yp1N−(w
(v)
p )0

T
X(v)1N

N (1 ≤ p ≤ P, 1 ≤ v ≤ V ) as well
as (αv)0 = 1

2‖(W (v))0
T
X(v)+(b(v))01T

N−Y ‖F
(1 ≤ v ≤ V )

while not converged do
2. Compute the diagonal matrices (D̄(v))t (1 ≤ v ≤ V ) with the ith
diagonal element 1

2‖(W (v)
i: )t−1‖2

; Compute the diagonal matrices (D̃
(v)
p )t =

1

2‖(w(v)
p )t−1‖2

Idv (1 ≤ v ≤ V ) with Idv being an identity matrix.

3. For each w
(v)
p and b

(v)
p (1 ≤ p ≤ P, 1 ≤ v ≤ V ), compute

(w
(v)
p )t+1 = ((αv)tX

(v)HX(v)T +γ1(D̃
(v)
p )t+γ2(D̄

(v))t)
−1(αv)tX

(v)HY T
p ,

and (b
(v)
p )t+1 =

Yp1N−(w
(v)
p )t+1

T
X(v)1N

N
4. Calculate (αv)t+1 = 1

2‖(W (v))t+1
T
X(v)+(b(v))t+11T

N−Y ‖F
(1 ≤ v ≤ V );

5. Check the convergence condition J(Wt, Bt)− J(Wt+1, Bt+1) < ε (J(·, ·)
is the objective function of (2) ) or t > T ;
6. t=t+1;
End While

By Step 3 in Algorithm 1, we have

(
(W (v))t+1, (b

(v))t+1

)
= arg min

W (v),b(v)
(αv)t‖W (v)TX(v) + b(v)1TN − Y ‖2F

+ γ1

P∑
p=1

w(v)
p

T
(D̃(v)

p )tw
(v)
p + γ2tr

(
(W (v))T (D̄v)t(W

(v))
)

(16)

Noticing that (αv)t = 1
2‖(W (v))t

TX(v)+(b(v))t1T
N−Y ‖F

and substituting (D̃
(v)
p )t and (D̄v)t by
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definitions, we can get

‖(W (v))t+1
T
X(v) + (b(v))t+11

T
N − Y ‖2F

2‖(W (v))t
T
X(v) + (b(v))t1TN − Y ‖F

+ γ1

P∑
p=1

‖(w(v)
p )t+1‖22

2‖(w(v)
p )t‖2

+ γ2

dv∑
i=1

‖(W (v)
i: )t+1‖22

2‖(W (v)
i: )t‖2

≤
‖(W (v))t

T
X(v) + (b(v))t1

T
N − Y ‖2F

2‖(W (v))t
T
X(v) + (b(v))t1TN − Y ‖F

+ γ1

P∑
p=1

‖(w(v)
p )t‖22

2‖(w(v)
p )t‖2

+ γ2

dv∑
i=1

‖(W (v)
i: )t‖22

2‖(W (v)
i: )t‖2

(17)

Since for f(z) = z − z2

2β , given any z 6= β ∈ Rn, f(z) ≤ f(β) holds, we get

‖(W (v))t+1
T
X(v) + (b(v))t+11

T
N − Y ‖F −

‖(W (v))t+1
T
X(v) + (b(v))t+11

T
N − Y ‖2F

2‖(W (v))t
T
X(v) + (b(v))t1TN − Y ‖F

≤‖(W (v))t
T
X(v) + (b(v))t1

T
N − Y ‖F −

‖(W (v))t
T
X(v) + (b(v))t1

T
N − Y ‖2F

2‖(W (v))t
T
X(v) + (b(v))t1TN − Y ‖F

(18)

γ1

P∑
p=1

‖(w(v)
p )t+1‖2 − γ1

P∑
p=1

‖(w(v)
p )t+1‖22

2‖(w(v)
p )t‖2

≤ γ1
P∑
p=1

‖(w(v)
p )t‖2 − γ1

P∑
p=1

‖(w(v)
p )t‖22

2‖(w(v)
p )t‖2

(19)

γ2

dv∑
i=1

‖(W (v)
i: )t+1‖2 − γ2

d∑
i=1

‖(W (v)
i: )t+1‖22

2‖(W (v)
i: )t‖2

≤ γ2
dv∑
i=1

‖(W (v)
i: )t‖2 − γ2

d∑
i=1

‖(W (v)
i: )t‖22

2‖(W (v)
i: )t‖2

(20)

From (17)-(20), we obtain

‖(W (v))t+1
T
X(v) + (b(v))t+11

T
N − Y ‖F + γ1

P∑
p=1

‖(w(v)
p )t+1‖2 + γ2

dv∑
i=1

‖(W (v)
i: )t+1‖2

≤‖(W (v))t
T
X(v) + (b(v))t1

T
N − Y ‖F + γ1

P∑
p=1

‖(w(v)
p )t‖2 + γ2

dv∑
i=1

‖(W (v)
i: )t‖2 (21)

That is, Jv(W (v)
t+1, b

(v)
t+1) ≤ Jv(W

(v)
t , b

(v)
t ). Thus,

V∑
v=1

Jv(W
(v)
t+1, b

(v)
t+1) ≤

V∑
v=1

Jv(W
(v)
t , b

(v)
t )

So, we get J(Wt+1, Bt+1) ≤ J(Wt, Bt), that is, Algorithm 1 decreases the objective values
in each iteration. Since J(W,B) ≥ 0, Algorithm 1 converges.

3 Experiments
In this section, we evaluate the effectiveness of the proposed method by comparing it with
several related feature selection methods.
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3.1 Experimental setup

We compare the performance of our method RRMVFS with several related methods:
Single, CAT, RFS [Nie, Huang, Cai et al. (2011)], SSMVFS [Wang, Nie and Huang
(2013)], SMML [Wang, Nie, Huang et al. (2013)], DSML-FS [Gui, Rao, Sun et al. (2014)],
and WMCFS [Xu, Wang and Lai (2016)]. Single refers to using single-view features
to find best performance for classification. CAT refers to using concatenated vectors for
classification without feature selection. RFS is an efficient robust feature selection method,
but not designed for multi-view feature selection. The other feature selection methods are
designed for multi-view feature selection. The parameters γ1 and γ2 in feature selection
methods are tuned from the set {10i|i = −5,−4, · · · , 5}. The exponential parameter ρ in
WMCFS method is set to be 5 according to Xu et al. [Xu, Wang and Lai (2016)].
The public available data sets, including images data set NUS-WIDE-OBJECT (NUS),
handwritten numerals data set mfeat, and Internet pages data set Ads are employed in the
experiments. For NUS data set, we choose all 12 animal classes including 8182 images.
For Ads, there exist some incomplete data. We first discard the incomplete data and then
randomly choose some non-AD samples so that the number of non-AD data is the same
as that of AD data. The total number of the samples employed in Ads is 918. For mfeat
data set, all of data are employed. In each data set, the samples are randomly and averagely
divided into two parts. One part is used for training and the other part is used for testing.
In the training set, we randomly choose 6 (9, or 12) samples from each class to learn
transformation matrix of these compared methods. In the test set, we employ 20% of data
for validation, and the parameters that achieve the best performance on the validation set
are employed for testing. We arrange features in descending order based on the values of
‖Wi:‖2, i = 1, 2, · · · , d, and select a certain number of top-ranked features. The numbers
of selected features are {10%, · · · , 90%} of the total amount of features, respectively. Then
the selected features are taken as the inputs of the subsequent 1-nearest neighbour (1NN)
classifier. We conduct two kinds of experiments. First, we conduct experiments on all views
to evaluate these methods. Then, we conduct experiments on the subsets formed by two
views and four views to make the evaluation of views. For all experiments, ten independent
and random choices of training samples are employed, and the averaged accuracies (AC)
and F1 scores (macroF1) are reported.

3.2 Evaluation of feature selection

Figs. 1, 2, and 3 show the performance of the compared methods w.r.t. the different
percentages of selected features on NUS, mfeat and Ads data sets, respectively. From these
figures, we can see that, the performance of these methods under AC are consistent with
the one under macroF1 scores. CAT has the better performance than Single in all cases,
which means that it is essential to combine different views to select features. The feature
selection methods, including ours, achieve the comparable or even better performance
than CAT. Specifically, from Fig. 1, we can see that three feature selection methods
including RFS, SSMVFS, and DSML-FS show the comparable performance on NUS data
set. SSMVFS and DSML-FS are the feature selection methods designed for multi-view
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Figure 1: ACs and macroF1 scores of compared methods vs. percents of selected features
on NUS data set
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Figure 2: ACs and macroF1 scores of compared methods vs. percents of selected features
on mfeat data set
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Figure 3: ACs and macroF1 scores of compared methods vs. percents of selected features
on Ads data set
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learning, while RFS is a robust feature selection method that is not specially designed for
multi-view learning. This means that it is necessary to build a robust method since data
may be corrupted with noise. Along with the number of selected features increasing, the
ACs and macroF1 scores of the multi-view feature selection methods WMCFS, SMML,
and the proposed RRMVFS are greatly improved. Moreover, RRMVFS achieves the best
results in most cases. This phenomenon might be attributed to the robust penalty which
may help RRMVFS select more representative features.
From Fig. 2, we can see that RFS, SSMVFS, and DSML-FS show the comparable
performance on mfeat data set. Along with the number of selected features increasing, the
ACs and macroF1 scores of SMML and WMCFS are increased except at a few percentages,
especially for WMCFS. The proposed RRMVFS can achieve the best performance when
only a small number of features (the percent of selected features is 10) are selected.
From Fig. 3, we can see that four feature selection methods including RFS, SSMVFS,
SMML, and DSML-FS obtain comparable performance on Ads data set. They achieve
their best performance at 10%, and when the percentages of selected features change from
20% to 90%, their ACs and macroF1 scores are substantially unchanged and comparable to
those of CAT. Just like the performance on the other two data sets, the proposed RRMVFS
still achieves the best performance on Ads data set.

3.3 Evaluation of views

In order to evaluate the effect of views, we test ACs and macroF1 scores of the compared
methods in terms of views on NUS, mfeat, and Ads data sets, respectively. The experiments
are conducted on the subsets that contains 12 samples of each class. For each data sets, we
conduct two kinds of experiments. Firstly, we randomly choose two views for experiments.
Secondly, we randomly choose two views from the remaining views, and combine them
with the previous two views to form the subsets for experiments.

Table 1: ACs and macroF1 scores with standard deviation of the compared methods in
terms of views on NUS data set

AC macroF1
method V3&V5 V1&V2 &V3&V5 all views V3&V5 V1&V2 &V3&V5 all views

CAT 0.1932±0.0130 0.2003±0.0140 0.2049±0.0101 0.1956±0.0107 0.2065±0.0132 0.2171±0.0096
RFS 0.1949±0.0123 0.2012±0.0138 0.2051±0.0104 0.1979±0.0130 0.2079±0.0164 0.2167±0.0097

SSMVFS 0.1997±0.0148 0.2031±0.0136 0.2051±0.0106 0.2002±0.0137 0.2119±0.0129 0.2164±0.0098
SMML 0.2083±0.0107 0.2092±0.0118 0.2118±0.0125 0.2104±0.0095 0.2143±0.0114 0.2256±0.0240

DSML-FS 0.2019±0.0120 0.2009±0.0143 0.2052±0.0118 0.2045±0.0101 0.2116±0.0155 0.2164±0.0116
WMCFS 0.1917±0.0121 0.2019±0.0141 0.2029±0.0103 0.1962±0.0090 0.2079±0.0128 0.2125±0.0094
RRMVFS 0.2072±0.0135 0.2102±0.0132 0.2130±0.0137 0.2076±0.0102 0.2150±0.0103 0.2290±0.0156

The experimental results on these three data sets are shown in Tabs. 1-3, respectively. It can
be seen that with the increase of views, generally speaking, the performance of all compared
methods gets better. On the subsets which consist of two views, our method RRMVFS does
not show the best performance, but on the subsets formed by four views and the whole sets,
our method is superior to others significantly. This phenomenon might be attributed to the
learning of view weights which may help RRMVFS select more relevant views.
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Table 2: ACs and macroF1 scores with standard deviation of the compared methods in
terms of views on mfeat data set

AC macroF1
method V1&V6 V1&V2 &V3&V6 all views V1&V6 V1&V2 &V3&V6 all views

CAT 0.8915±0.0111 0.9226±0.0109 0.9311±0.0107 0.8913±0.0111 0.9226±0.0106 0.9312±0.0105
RFS 0.8939±0.0118 0.9243±0.0133 0.9328±0.0108 0.8948±0.0112 0.9258±0.0090 0.9325±0.0109

SSMVFS 0.8950±0.0117 0.9243±0.0155 0.9331±0.0072 0.8956±0.0123 0.9245±0.0100 0.9321±0.0076
SMML 0.8899±0.0104 0.9210±0.0130 0.9318±0.0088 0.8904±0.0107 0.9209±0.0127 0.9318±0.0088

DSML-FS 0.8955±0.0114 0.9251±0.0130 0.9339±0.0075 0.8941±0.0175 0.9251±0.0128 0.9349±0.0094
WMCFS 0.9094±0.0112 0.9310±0.0106 0.9341±0.0106 0.9101±0.0107 0.9314±0.0103 0.9361±0.0130
RRMVFS 0.8964±0.0162 0.9397±0.0092 0.9591±0.0089 0.8970±0.0144 0.9400±0.0129 0.9592±0.0089

Table 3: ACs and macroF1 scores with standard deviation of the compared methods in
terms of views on Ads data set

AC macroF1
method V1&V3 V1&V3 &V4&V5 all views V1&V3 V1&V3 &V4&V5 all views

CAT 0.6520±0.0767 0.6807±0.0651 0.6888±0.0545 0.6228±0.0941 0.6572±0.0730 0.6639±0.0585
RFS 0.6932±0.0926 0.7351±0.0738 0.7398±0.0630 0.6745±0.1089 0.7233±0.0811 0.7274±0.0658

SSMVFS 0.7510±0.0803 0.7482±0.0941 0.7417±0.0913 0.7472±0.0867 0.7319±0.1256 0.7283±0.1280
SMML 0.7253±0.0830 0.7466±0.0657 0.7548±0.0394 0.7087±0.0964 0.7307±0.0823 0.7414±0.0447

DSML-FS 0.7335±0.0917 0.7316±0.1046 0.7330±0.0860 0.7283±0.1046 0.7129±0.1300 0.7126±0.1237
WMCFS 0.5809±0.0644 0.6496±0.0928 0.6856±0.0849 0.5140±0.0753 0.6119±0.1230 0.6705±0.0745
RRMVFS 0.7144±0.0905 0.7485±0.0809 0.7627±0.0523 0.7043±0.0890 0.7434±0.0772 0.7519±0.0588

4 Conclusion
In this paper, we have proposed a robust re-weighted multi-view feature selection method
by assigning all views of each sample to the same class while imposing penalty based
on latent subspaces of each view through least-absolute criterion, which can take both
the complementary property of different views and the specificity of each view into
consideration and induce the robustness. The proposed model can be efficiently solved
by decomposing it into several small scale optimization subproblems, and the convergence
of the proposed iterative algorithm is presented. The comparison experiments with several
state-of-the-art feature selection methods verify the effectiveness of the proposed method.

Many real-world applications, such as text categorization, are multi-label problems. The
future work is to develop the proposed method for multi-label multi-view feature selection.
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