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Abstract: Hard Disk drives (HDDs) are an essential component of cloud computing and 
big data, responsible for storing humongous volumes of collected data. However, HDD 
failures pose a huge challenge to big data servers and cloud service providers. Every year, 
about 10% disk drives used in servers crash at least twice, lead to data loss, recovery cost 
and lower reliability. Recently, the researchers have used SMART parameters to develop 
various prediction techniques, however, these methods need to be improved for reliability 
and real-world usage due to the following factors: they lack the ability to consider the 
gradual change/deterioration of HDDs; they have failed to handle data unbalancing and 
biases problem; they don’t have adequate mechanisms for health status prediction of 
HDDs.  This paper introduces a novel voting-based decision tree classifier to cater failure 
prediction, a balance splitting algorithm for the data unbalancing problem, an advanced 
procedure for lead time estimation and R-CNN based approach for health status 
estimation. Our system works robustly by considering a gradual change in SMART 
parameters. The system is rigorously tested on 3 datasets and it delivered benchmarks 
results as compared to the state of the art. 
 
Keywords: Hard disk drive, lead time, health status, N-splitting algorithm, machine 
learning, deep learning, data storage, unbalancing problem. 

1 Introduction 
The 21st century is the era of big data, cloud computing, and distributed networks. Either 
the case is, data storage, data reliability, and data accessibility are becoming big 
challenge day by day. Tremendous upsurge in data exchange and resources has led to 
compensate the need for sophisticated, reliable and affordable storage systems. A 
formidable technique that has been used for storage is the Hard Disk Drives (HDDs). 
This raises a concern to ensure that these HDDs are at optimal functionality and high 
operation level to enable the smooth running of processes at data centers.  
Bulky storage devices (HDDs) are extensively exploited in high-performance computers, 
cloud data centers, back-up storage, extra storage memory, Internet Service Providers 
(ISPs) and data synchronization. The enormous volume of data, present in these settings, 
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enlarges the chances of failures in hard drives. Vishwanath and Nagappan described that 
HDDs are amongst the top reasons for the failure of data centers [Vishwanath and 
Nagappan (2010)]. Which translates that in big datacenters, hard drives fail once per day 
[Xin, Miller, Schwarz et al. (2003)]. According to Schroeder and Gibson, the failure rate 
of HDDs has been exceeded by10% annually [Schroeder and Gibson (2007)]. 
HDDs failure can lead to catastrophic consequences which can be unrecoverable and 
permanent. This can cost in the form of server down, erased backup, lower reliability, 
unavailability of Internet and fiasco to fetch the latest data and compromised data storage 
in the data centers. To minimize the problem, HDDs conditions are monitored which 
helps in the detection of soon to fail drives [Strom, Lee, Tyndall et al. (2007); Ma, 
Traylor, Douglis et al. (2015); Yang, Hu, Liu et al. (2015)]. The conditions of HDDs are 
supervised using sensors like acoustic emission, accelerometers, counters and thermal 
sensors. However, the results provided by these techniques are not accurate enough in 
real time [Pecht, Tuchband, Vichare et al. (2007)]. Moreover, many algorithms have 
proposed efficient prediction and inspection of the health degree of HDDs. In most cases, 
various approaches involving artificial intelligence (AI) and mathematical computations 
have been applied. However, these methods have three types of shortcomings. 
First, the problem that arises due to uniform classification [Mak, Phongtharapat and 
Suchatpong (2014)]. There are several categories of failure that can be experienced by an 
HDD. This occurrence is attributed to the sophisticated structure of the disk drives. 
Frequent failure is therefore easily determined as opposed to failure that occurs less often 
-Thus, making the uniform classification method less efficient. Secondly, there is a 
problem brought about by data unbalance, as a result of a huge difference between failed 
drives and good drives [Longadge and Dongre (2013)]. Unbalanced data can reduce the 
efficiency of HDD failure assessment and lead time prediction. The third problem is that 
only a few researchers have worked on lead time prediction method for HDD health 
assessment [Salfner, Lenk and Malek (2010)]. 
Few researchers tried to resolve these problems using proactive approaches, where the 
failure of HDDs can be predicted before it really occurs. To gain efficient results, 
numerous machine learning, statistical and data science approaches have been employed. 
These methods work on the principle of SMART (Self-Monitoring Analysis and 
Reporting Technology) features. Despite the fact that these methods are extremely 
effective, they have limitations as well. For example, these approaches only produce a 
binary classification about the health of HDDs i.e. whether good or bad. Similarly, they 
cannot differentiate if HDDs are close to failure or have some time before failure. 
Furthermore, these methods rely on straightforward SMART features without considering 
the different health statuses in multiple time zones [Zhu, Wang, Liu et al. (2013)]. The 
mentioned shortcomings have led us to design a robust methodology by the application of 
SMART attributes to get the concise synopsis of the health statuses of various hard drives. 
Our main objective is to provide an efficient technique to predict failure of HDDs by 
using the voting-based decision tree model. This model functions by establishing a 
number of decision trees for classification. The various combinations of decision trees 
provide the advantage of being able to differentiate between good drives and faulty drives. 
Each tree focuses on classifying a section of health parts rather than all of them. The issue 
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of data unbalancing is solved by partitioning the dataset into n-splits. While decision trees 
are used on each sub-group in a parallel manner. For training purpose total n-classifications 
(Binary) are done by n-decision trees, on the results of n-classifications, voting is applied. If 
more than N/2 voters have predicted the negative result, then HDD is classified to be failed. 
This concept of N/2 voters is derived from Li et al. [Li, Ji, Jia et al. (2014)]. When the HDD 
is predicted to be failed, its lead time (Time Before Failure) is predicted and health degree 
is examined. So, our proposed work can help engineers to save huge volumes of data and 
provide lead time to perform data transfers before HDDs actually fail.  
This article focuses on the following important issues: 
• We have proposed a novel failure prediction technique for HDDs. It lays a basis on 

voting-based decision tree model; 
• Dealing with the problem of data unbalancing by grouping data into n-subsets – Thus, 

enhancing the quality of training data set; 
• Lead-time prediction and health degree assessment of HDDs; 
• Detailed analysis using data from production centers, which indicate that prediction 

models can obtain an FDR above 99.99% and an FAR of 0.001%; 
The remaining sections of the paper are organized in the following manner. Section II 
focuses on recent works on HDD and its failure prediction by utilizing SMART 
technology. Section III defines the prediction models and associated step by step 
procedures. Section IV talks on for failure prediction estimation. Section V lays the basis 
of the experiments and related findings. Section VI summarizes the entire article with 
some discussions. 

2 Background and recent works  
2.1 Hard disk drive failure 
Due to the powerful mechanism, extensive usage and complex structure of the drives, 
HDD failures can be differentiated into different categories [Huang, Fu, Zhang et al. 
(2015)]. The structure of HDD can be divided into various components: platters, the 
substrate material, read & write heads, the spindle motor, HDDs internal logic board and 
drive bay [Wang, Miao and Pecht (2011)]. The working of each component is unique, 
which is why the trigger factors for component failure are distinct. For instance, the 
mechanical parts like read/write heads, spindle motor and drive bay often writhe from 
mechanical failure. Whereas, logic board and substrate material often disturbed by short 
circuits. Mechanical failure of components is easier to identify and predict long before 
while, the short circuits are complex to identify and hard to predict. 
There is relatively less published literature on the failure patterns of hard disk drives. A 
variety of failure prevailing stresses is humidity, temperature, CSS (contact-start-stop) 
frequency, altitude and duty cycles [Xu, Wang, Liu et al. (2016)]. Due to increase in the 
temperature that may be caused by an increase in the workload of the hard disk drive or 
of the whole system, may corrupt some sectors of the drive, labeled as latent sector errors 
[Bairavasundaram, Goodson, Pasupathy et al. (2007)] and silent data corruption 
[Bairavasundaram, Arpaci-Dusseau, Arpaci-Dusseau et al. (2008)]. 
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A plethora of research has been conducted on HDD failure classification. Identification 
of the HDD failure with respect to the mechanism, mode, and cause is given by Wang et 
al. [Wang, Miao and Pecht (2011)]. Similarly, the classification of HDD failure into three 
subclasses (bad sector; logical; read/write head) is provided by Huang et al. [Huang, Fu, 
Zhang et al. (2015)]. Moreover, they proposed that the classification of HDD failure can 
help to make the HDDs failure prediction mechanism robust. After extensive experiments, 
it is found that the straightforward classification is not accurate enough for failure 
prediction. To enhance the power of failure prediction systems, usage of SMART 
parameters has become state of the art recently [Zimmer and Rothman (2007)]. 

2.2 SMART (Self-monitoring analysis and reporting technology) 
SMART is an in-built HDD function, that works by calculating attribute’s values, used to 
evaluate the performance of HDDs [Murray, Hughes and Kreutz (2005); Wang, Miao and 
Pecht (2011)]. This is achieved by a series of record counts by sensors and counters. The 
forthcoming data from SMART attributes is very detailed as it contains more than 30 
drive features. These include temperature Celsius (TC), reallocated sector count (RSC), 
power-on-hours (POH), seek error rate (SER), and the spin-up time (SUT). The purpose 
of these variant attributes is to show the health status of HDDs. 
Each of these attributes is composed of five fields. These include raw data, threshold, 
value, worst case, and the status. Raw data values are recorded by the sensor. Value is the 
standardized measure of raw data. The threshold is essential in failure detection. The 
status is responsible for giving a warning any time; the standardized value exceeds the 
value of raw data. The value of the threshold is vendor specific and usually fixed by the 
HDD manufacturers. When the threshold value exceeds the normalized value, a warning 
is triggered. However, HDD manufacturers have analyzed that threshold-based methods 
can detect failure-rate of 3-10% only [Murray, Org, Hughes et al. (2005)]. 
SMART attributes are strongly correlated with HDD failure. The implication of 3-
SMART parameters and all-SMART parameters for the prediction of HDD failure is 
tested and concluded with the results that all-SMART parameters give significant failure 
detection rate [Hamerly, Elkan, Diego et al. (2001)]. The RSC (reported scan error) is 
tested and strongly correlated with the HDDs failure [Pinheiro, Weber and Barroso 
(2007)]. Various studies and research work have shown that these attributes are in close 
relation to the failure of HDDs. There are various categories for the SMART-based 
failure prediction methods which exist today. These include threshold-based methods, 
statistical methods, binary status prediction of hard drives and the lead time prediction. 
It was suggested that the threshold-based technique is ineffective when employed to enlarge 
an HDD’s mean time to data loss (MTTDL) [Eckart, Chen, He et al. (2008)]. 
Experimentally, when thresholds were kept low, this method provided low accuracy in 
prediction rate which is unacceptable. Well, when the thresholds were kept high, SMART 
produced extreme false positives. They have argued that reactive failure prediction methods 
are helpful in extension of overall MTTDL. They achieved a 50% sensitivity on the dataset 
(consists of a time series of SMART attributes of a single drive model) [Murray, Hughes 
and Kreutz (2005)], by combining SVM with proactive fault tolerance approaches. 
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It has been identified that, numerous parameters from SMART are highly correlated with 
HDDs failure. They conducted vast experiments and concluded that only SMART 
attributes are not enough for failure prediction. Moreover, the usage of HDDs and room 
temperature are least correlated factors in HDDs failure cases [Pinheiro, Weber and 
Barroso (2007)]. 
In Hughes et al. [Hughes, Murray, Kreutz et al. (2002)], improved SMART algorithms 
were proposed. They exploited the maximum error threshold warning-algorithm by 
replacing it with statistical hypothesis assessments (distribution-free). These warning 
algorithms can be easily replaced and implemented in HDDs because of low computation 
cost. A total of 3744 drives of 2 models were tested by these algorithms. They achieved 3 
times better prediction accuracy with only 0.2% false-alarm rate. These algorithms are 
not highly employed because they require a high level of care and only provide 40% 
accuracy [Hughes, Murray, Kreutz et al. (2002)]. 
In Li et al. [Li, Ji, Jia et al. (2014)], a novel HDDs failure prediction model is implemented. 
Their methodology is based on regression trees and classification trees which is robust in 
the prediction performance, interpretability and stability while comparing with state-of-the-
art models. Experiments validated that their model predicts more than 95% of accuracy and 
under 0.1% false detection on a real-world dataset of HDDs. 
In Murray et al. [Murray, Hughes and Kreutz (2005)], an efficient comparison of 
prediction algorithms are provided. They have proposed two major contributions: First, 
they divided the prediction problem into a multilevel classification problem and 
implemented a novel algorithm by combing multiple instances with naive Bayes (mi-NB); 
Secondly, they highlighted computational efficiency, usage, and effectiveness of non-
parametric statistical methods while comparing them to state of the art learning methods. 
The performance of the total 21 machine learning techniques was evaluated for HDDs 
failure prediction problem. They exploited the power of WEKA for experimentation and 
test all the publicly available benchmarks that were used for HDDs failure prediction. 
They stated the results in terms of different constraints and explained that each ML 
technique has significant advantages with few limitations [Pitakrat, Van Hoorn and 
Grunske (2013)]. 
The paradigm of anomaly detection for the failure forecasting of HDDs was exploited. 
Their system uses non-parametric and semi-parametric techniques. Primarily, SMART 
attributes are collected from safe HDDs and a Gaussian mixture model (GMM) is 
designed. Furthermore, the SMART attributes are compared with the GMM model’ 
output and dissimilarity vector are generated in a time interval T. Finally, the anomaly is 
perceived if the threshold of Kullback-Leibler divergence (KLD) surpasses a limit 
[Queiroz, Rodrigues, Gomes et al. (2016)]. 
The task of discarding the SMART attributes was performed which were not present in 
90% of disks and choose 21 contributing SMART attributes. The reverse Arrangement 
test was applied to get the attributes which are more likely to be used as disk failure 
parameters. They trained a decision tree that recognized true parameters which are 
responsible for HDDs failure. They employed Backblaze data to assess the correctness of 
method and stated 52% accuracy [Rincon, Paris, Vilalta et al. (2017)]. 
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The capabilities of different Bayesian techniques were investigated based on HDDs 
internal conditions. This is helpful in the prediction task of HDDs failure. Moreover, they 
introduced a novel model which is trained by exploiting the power of expectation-
maximization. They also introduced a naive Bayes based classifier. Experiments have 
been conducted on real-world data containing a total of 1936 drives. The accuracy of 
both techniques is comparable with state-of-the-art methods [Hamerly and Elkan (2001)]. 
Part-voting random forest technique was proposed for the HDDs failure prediction. Their 
methodology is novel and has a less false detection rate. They have conducted a vast 
amount of validation experiments on real-world datasets having the 64,193 HDDs data 
(SMART parameters). They have achieved a 5% better prediction accuracy than already 
present methods [Shen, Wan, Lim et al.  (2018)]. 
A novel method for HDDs failure prediction was developed by using Mahalanobis distance 
(MD). They selected parameters which were highly reasonable for failure in different 
settings. Testing is employed on the SMART data set. The method provided 67% detection 
rate with zero false alarm generation.  It can provide more than 20 hours prediction time, 
which can be useful to generate backup [Wang, Miao, Ma et al.  (2013)]. 
The best detection rate was reported by the implication of anomaly detection principle 
with zero false alarm rate. The method used Mahalanobis distance and Box-Cox 
transformation to model the statistical behaviour of healthy or good HDDs for estimating 
the deterioration process of an HDD. They have used the GLR test rather than dissimilar 
vector approach for the detection of faults. A cost function has also been implemented for 
the reduction of false alarms to 0% [Wang, Ma, Chow et al. (2013)]. 
A novel method inspired by Recurrent Neural Networks (RNN) was introduced to examine 
the health condition of HDDs. They altered the consecutive attributes of SMART steadily. 
Having the knowledge of HDD’s health condition pays a lot in contrast to simple prediction. 
Health condition can provide the level of urgency so that engineers can schedule the 
recovery process. They conducted experiments on real datasets and demonstrated 
comparable results in health status measuring [Xu, Wang, Liu et al.  (2016)]. 
Despite the fact that a lot of research contribution is present for HDDs failure predictions, 
the results are not up to the mark. Due to high false detection rate, these methods are not 
deployable in the real-world environment. Some methods only provide a review of HDDs 
failure classifications which is not useful for implementation in real-world data centers, 
other methods use highly unbalanced data, which is small, old and biased. The accuracy 
is not good enough and the false detection rate is high. To solve these issues, we have 
proposed a state-of-the-art method, using data balancing techniques to avoid model 
overfitting and false detection issues. This can be achieved by using our proposed voting 
based decision tree method. Once the HDDs are predicted to be failed, we have analyzed 
its lead time (the time we have before it actually fails). Moreover, the health degree of the 
HDD is predicted. Finally, testing is conducted on the real-world data set, having more 
than 75 thousand HDDs data and achieved comparable results. The details of the 
implementation of the proposed methodology are provided in the following section.  
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3 Proposed methodology  
3.1 HDDs data normalization 
Data normalization is a fair way to compare different features by reducing the scaling 
effects. Normalization techniques are widely exploited in machine learning, data 
processing, and statistical analysis. The SMRR dataset was already normalized, while 
Backblaze dataset is normalized using flowing formula: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                  (1) 

where a feature is an original value from the dataset, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 are 
minimum and maximum values of this feature. 

3.2 Feature selection based on RF-RFE 
For feature selection, a robust features elimination technique is adopted from Granitto et al. 
[Granitto, Furlanello, Biasioli et al. (2006)]. This is a recursive technique which provides 
the ranks of a feature by measuring its importance. Algorithm 1 illustrates the pseudo-code 
for RFE.  Technically, multiple iterations are performed and the importance is ranked at the 
end of each iteration while the irrelevant features are eliminated. Usage of recursion here is 
necessary because the comparative rank of a feature may get altered if evaluated with a 
different subclass in the stepwise exclusion procedure. The features are eliminated in a 
reverse manner (recursion) and the final ranking is generated. Finally, a feature selection 
method provides the n features having K ranking with respect to their importance. 
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟏𝟏: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑢𝑢𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛 𝑅𝑅𝑅𝑅𝑅𝑅. 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇𝑠𝑠 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐹𝐹𝑠𝑠  =  {𝑓𝑓1,  𝑓𝑓2,𝑓𝑓3, . . . . ,𝑓𝑓𝑛𝑛} 
𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐹𝐹𝑟𝑟 (𝑇𝑇𝑠𝑠,𝐹𝐹𝑠𝑠) 

𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶: 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐾𝐾 

𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩: 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑚𝑚 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠 𝐾𝐾 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐹𝐹𝑟𝑟 (𝑇𝑇𝑠𝑠,𝐹𝐹𝑠𝑠) 
𝑓𝑓 ∗ ← 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝐹𝐹 
𝑅𝑅 (𝑚𝑚 –  𝑖𝑖 +  1)  ← 𝑓𝑓 ∗ 
𝐹𝐹 ← 𝐹𝐹 –  𝑓𝑓 ∗ 

𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹𝐹𝐹𝐹𝐹 
𝑬𝑬𝑬𝑬𝑬𝑬.  
The recursive feature elimination (RFE) is further combined with random forest (RF). 
Due to the fact that tree can be grown only on bootstrap, each tree of RF has out-of-bag 
(OOB) subset taken from learning set. The OOB set never got exploited during a training 
session. The measurement of unbiased classification error can be computed by using 
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OOB. When a feature enters to the model, its relevance can be measured in the following 
manners: Each feature got shuffled (one at a time) and its prediction error is computed 
using OOB set, for the ‘shuffled’ data set. Naturally, the prediction error for irrelevant 
features will remain the same using this method, while the relevant feature’s prediction 
error will keep minimizing at each iteration. Technically, RF-RFE method efficiently 
measures the importance of each feature without employing extra computation cost. 
Furthermore, we employed a nonparametric method of Kruskal Wallis Statistic (KWS) 
for the computation of generalized ranking. Because of the fact that KWS is a single 
variable measurement, its rank does not get altered for every individual feature, while 
evaluating the different subsets. Which means that recursion turns out to be irrelevant, 
and univariate calculation is required. So, we have straightforwardly computed the KWS 
for every feature and produced ranks. The following Tab. 1 provides the ranks of 
Backblaze dataset and Tab. 2 illustrates the ranks for Z family data set. 

Table 1: Feature importance along with their ranks for backblaze dataset [Beach (2014)] 

SMART Attribute Description Rank 
smart_9_raw Power-On Hours Count 53.0001392097 
smart_7_raw Seek Error Rate 12.9280721442 

smart_189_raw High Fly Writes 10.4504652433 
smart_194_raw Temperature 9.53915152317 

smart_1_raw Read Error Rate 6.65939348074 
smart_1_raw_diff Read Error Rate 3.74839267095 

smart_187_raw Reported Incorrect able Errors 3.40816126783 
smart_197_raw Current Pending Sectors 2.09317627002 

smart_194_raw_diff Temperature 1.62027737629 
smart_5_raw Reallocated Sectors Count 0.898169866234 

smart_198_raw Off-line Incorrect able 0.759965782582 
smart_9_raw_diff Power-On Hours Count 0.583214055371 

smart_188_raw Command Timeout 0.263305212294 
smart_7_raw_diff Seek Error Rate 0.0133497558702 

smart_187_raw_diff Reported Incorrect able Errors 0.0075442541443 
smart_189_raw_diff High Fly Writes 0.00444313837005 

As we can see from the Tab. 1, in Blackblaze data set; “smart_9_raw” attribute, got the 
highest rank (it is the most correlated with failure prediction), while 
“smart_187_raw_diff”, have the lowest rank in the given set of highly-correlated 
SMART attributes. Similarly, from Z family dataset; attribute “Servo5” got the highest 
rank and attribute “Reads” got the lowest rank in top correlated SMART features. 
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Table 2: Feature importance along with their ranks for Z family dataset [Murray, Hughes 
and Kreutz (2005)] 

SMART ID Feature Rank 
Servo5 14.4943469318 
Temp4 13.2249458146 
Temp1 11.0276073094 

CSS 9.63347255597 
Servo10 7.98472891709 
Writes 6.51517745317 
Temp3 5.87563577037 

FlyHeight11 3.09877286055 
Servo9 2.54603177138 
Servo6 2.18108705889 

FlyHeight6 1.99930382918 
Reads 1.884123018 

 

3.3 Balanced splitter algorithm (BSA) for unbalancing problem 
As we have already described in the previous section, that the available data for HDDs 
failure is either too much normalized or highly unbalanced. The problem with these 
methods relying heavily on normalized data is that they provide efficient training 
accuracy, but in real time these methods failed to provide reliable results. So, using 
normalized data sets for training is inefficient and promotes the wastage of resources. 
Similarly, the usage of the unbalanced dataset is ineffective. Unbalanced means, there is 
fewer number of bad samples as compared to good samples. If the HDD is kept plugged 
in the storage and still working it is considered as a good SMART sample, on the other 
hand, if an HDD is supplanted due to the occurrence of any failure, it is considered as a 
bad SMART sample. 
The good samples can be recorded any time, but samples of bad drives are quite less. So, 
unbalancing of data can cause biases and the resultant model will have compromised 
accuracy. The most utilized method for this unbalancing problem of data is under-
sampling [Yen and Lee (2009)], which works by randomly choosing a data sample from 
the healthy set and merging it with the corrupt HDDs for training purpose only. But there 
are a number of problems with the under-sampling method as follows: 
• The data can be highly biased because of random selection, (i.e. only one type of 

HDDs got selected); 
• Thus, reduced the amount of training data; lesser the training data lower the accuracy 

of model [Khan, Farooq, Hussain et al.  (2019)]; 
• Few random samples are chosen from good HDDs, what is the goodness factor of 

those samples; 
• Random selection of good samples for training may cause over-fitting of the model; 



 
 
 
922                                                                              CMC, vol.60, no.3, pp.913-946, 2019 

To resolve these issues, we have proposed a novel algorithm, called Balanced Splitter 
Algorithm (BSA), which divide all the good samples into n-subsets (based on the number 
of bad samples). BSA helps to train the model by utilizing each combination of the good 
sample with the available bad samples. Algorithm 2 explains the detailed procedure of BSA. 
Algorithm 2: Creating balanced data for Training 
Input∶  

Dataset having SMART samples of the HDDs; 
Output: 

n-splits of SMART samples for each HDD; 
Begin: 

For each hard disk drive in Dataset Do 
Identify no. of good samples 

                 Identify no. of bad samples 
n= good samples’ ratio with respect to bad samples 
balance the data by dividing all samples into n-sub-groups of the same 
size by using a combination of all the good samples and bad samples.  

 End For 
End 
This algorithm provides the resourceful combinations of the complete dataset without 
missing any good samples. It also enhances the efficiency of the model because of using 
a large volume of data for training the model. After successfully solving data unbalancing 
problem, the next step is to build a model for failure prediction. The following section 
will elaborate on the failure prediction mechanism of HDDs. 

3.4 Decision tree model for classification based on GINI index 
The measurement of inequality of distribution (the ratio of value from 0-1) is called the 
Gini coefficient (𝐺𝐺𝑖𝑖𝐶𝐶) [Gastwirth (1972)] Technically, it is the ratio of following measures: 
the area (Lorenz curve to the uniform line of distribution); the area of the uniform line of 
distribution. If the 𝐺𝐺𝑖𝑖𝐶𝐶 is articulated as a percentage it is called Gini index. This calculation 
and relation of 𝐺𝐺𝑖𝑖𝐶𝐶 and Gini index can be derived from as Eqs. (2) and (3) 

𝐺𝐺𝑖𝑖𝐶𝐶 =
∑ ∑ |𝑥𝑥𝑗𝑗−𝑥𝑥𝑘𝑘|𝑛𝑛

𝑘𝑘=1
𝑛𝑛
𝑗𝑗=1

2∑ ∑ 𝑥𝑥𝑘𝑘𝑛𝑛
𝑘𝑘=1

𝑛𝑛
𝑗𝑗=1

                                                                                                       (2) 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝐺𝐺𝑖𝑖𝐶𝐶 × 100                                                                                               (3) 
where 𝑥𝑥𝑗𝑗  here is Lorenz curve of the distribution, while 𝑥𝑥𝑘𝑘  is a uniform line of 
distribution. Decision trees are built by exploiting GINI index-based splitting, which 
employs a combination of tree structure and voting mechanism to build the classification 
model. It divides SMART attributes to make small subsets by using GINI index based 
splitting function. The final outcome is the decision tree with a classification output. 
To generate classification trees recursive technique is exploited for partitioning. The 
nodes are split until the split criteria, max depth, or max leaf nodes are completed. It can 
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also stop when it has only a single class. After the generation of classification trees for n 
subsets of all samples, a voting-based method is used for final prediction. If more than 
N/2 voters have positive classification, HDD will be predicted as failed. The explanation 
of voting method is provided in Algorithm 3. While the complete architecture diagram of 
HDDs failure prediction is explained in Fig. 1. 

 
Figure 1: Detailed architecture of the proposed methodology 

Algorithm 3: Voting based decision tree model for failure prediction. 
Input: 

n-sub-group of SMART samples for training the model, n- decision tree classifier, 
Split criterion, max-depth, max-features, max-leaf-nodes, splitter. 

Output: 
The prediction results. 

Begin: 
For each sub-group of SMART samples. 

Call decision tree classifier, apply voting on classification results of all 
decision trees.  
If more than n/2 voters vote failure prediction 

       Then HDD is about to fail 
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       Else HDD is good 
      End if 
End for 
End.  

3.5 Lead time prediction 
The failure prediction of HDDs is not enough, as engineers required the time before it 
actually fails (lead time). So, they can initiate the backup of data in a timely manner. The 
lead time of HDDs is predicted using some relevant parameters. These parameters are used 
by Algorithm 4 for accurate lead time prediction. The parameters are described below:  
• First day: The initial day of disk monitoring by utilizing SMART parameters; 
• Length: The total time from the first day till the last day when the disk kept working;  
• Predicted day: The day when the drive is predicted to be failed;  
 
Algorithm 4: Lead Time prediction using hyperparameters. 
Input: 
  First day, Length, Predicted day/hour 
Output: 

The Predicted Lead time for HDD. 
Begin: 

For each disk drive in D Do 
IF HDD is predicted to be failed by algorithm 3 
 Predicted day = day of the year 
Or 
 Predicted hour = hour of the day 
Lead time= length - predicted day 
Or  
Lead time = length - predicted hour  
End IF 

End for 
End.  
By exploiting the above-mentioned algorithm, we have predicted lead time starting with 
10 days till more than 90 days for Backblaze dataset. According to testing, after 
prediction of failure more than half of the HDDs may survive up to 90 days. A small 
portion of HDDs showed a critical condition (about to fail in 10 or fewer days). Similarly, 
we predicted the lead time for hourly dataset ranging from 24 hours to 500 hours.  In this 
regard, our system can timely alarm for data backup and other precautionary 
measurements. The algorithm4 is exploited for the prediction of lead time by utilizing the 
mentioned parameters. 
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3.6 Health status prediction 
Apart from lead time prediction, we have also examined the health status of HDDs and 
further subdivided this status into six sub-classes with respect to their health status. The 
health status forecasting technique can significantly expand the reliability of HDDs. In the 
way, Engineers could easily schedule the backup procedure and effectively manage the 
priorities of backup according to HDD’s health status. Conclusively, the probability of data 
crashing can be reduced in an effective manner and resource allocation can be maintained 
accordingly, which can save huge data loss and increase resource optimization.  
Fig. 2 Explains the possible 6 classes for the hourly dataset (SMRR). Level 6 here is a safe 
zone, while level 1 means that the drive is in critical condition and its data needed to be 
backed up. The reason to choose 6 classes for health status prediction is borrowed from Xu 
et al. [Xu, Wang, Liu et al. (2016)].  Experiments have proven that the health status of HDDs 
changes slowly in a monotonic way, which can be observed by constantly monitoring 
SMART attributes for a long time period. For example, if the disk is used frequently in the 
shorter period the attribute, Temperature Celsius (TC) can change in an enormous way. This 
kind of change in an attribute can confuse the prediction method. These kinds of confusing 
attributes should be measured over a long specific period of time.  
This dependency can be measured as the high-degree property of Markov: which means that 
the current state has a stronger correlation than previous states. To measure Markov value the 
key is to evaluate the conditional entropy of features. Let 𝑇𝑇 be the time series data of smart 
attributes ranging from 1 to n,{𝑇𝑇1,𝑇𝑇2,𝑇𝑇3, … ,𝑇𝑇𝑛𝑛}, the entropy can be defined as (4). 

𝐻𝐻(𝑌𝑌|𝑍𝑍) = −�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞) �   𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜 �ℎ𝑙𝑙𝑙𝑙𝑗𝑗�𝑞𝑞� log𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑦𝑦𝑗𝑗�𝑞𝑞�
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙

𝑗𝑗=0

                                          
𝑞𝑞∈𝑋𝑋

(4) 

where ℎ𝑙𝑙𝑙𝑙 is health degree, 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙  are the total number for health labels, for order n-1 
feature representation, 𝑞𝑞 = {𝑇𝑇𝑡𝑡 𝑇𝑇𝑡𝑡−1, … . ,𝑇𝑇𝑡𝑡−𝑛𝑛+1}. Extensive experiments have 
discovered that keeping the value of 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 = 6, provide the optimal status of health degree 
[Xu, Wang, Liu et al. (2016)]. That is why we have kept 6 health levels.  

 
Figure 2: Health status classes of the hourly dataset (SMRR) 

Similarly, Fig. 3 illustrates the possible classes for health degree prediction. In this setting, 
6 possible classes of health degree are proposed as follows: 
• Level 6 specifies that HDD is working accurately; 
• Level 5 explains that HDD has fair health status, but it needed to be monitored and 

rechecked again after some time; 
• Levels 1-4 signifies that HDD will fail; 
• Level 1 provides alert that HDD has less than 10 days;  

7/1-7/7
Level 6

7/7-7/13
Level 5

7/13-7/18
Level 4

7/18-7/22
Level 3

7/22-7/25
Level 2

7/25-7/28
Level 1
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Figure 3: Health status classes or yearly dataset (Backblaze) 

For the implementation of HDDs health degree measurement setup, we borrowed a concept 
from Xu et al. [Xu, Wang, Liu et al.  (2016)]. The training setup uses a convolution neural 
network (CNN) with hidden layers.  The recurrent weights R are shared between all the 
hidden layers. The benefit of using a recurrent weight is that the hidden layers have local 
information alongside with global information by keeping the sequential information of 
previous weights. Moreover, there are a few chances of vanishing gradient problem in the 
recurrent neural network. Stochastic Gradient Descent (SGD) is exploited for optimization 
of RCNN. The gradient can be calculated as (5) 
 𝐸𝐸𝐸𝐸𝐸𝐸0(𝑇𝑇) =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇) − ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ(𝑇𝑇)                                                                            (5) 
where ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ(𝑇𝑇) is predicted health degree, and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇) is the actual health degree. 
The weights 𝛿𝛿, from hidden layers ℎ𝑖𝑖𝑖𝑖(𝑇𝑇) to output unit health(T) are regularized as (6) 
𝛿𝛿(𝑇𝑇 + 1) = 𝛿𝛿(𝑇𝑇) + ℎ𝑖𝑖𝑖𝑖(𝑇𝑇)𝐸𝐸𝐸𝐸𝐸𝐸0(𝑇𝑇)𝑇𝑇𝛼𝛼 − 𝛿𝛿(𝑇𝑇)𝜆𝜆                                                             (6) 
α here is used as hyperparameter for learning rate while λ is weight decay parameter. 
Similarly,  𝐸𝐸𝐸𝐸𝐸𝐸0(𝑇𝑇)𝑇𝑇  is the resultant of transposition of SGD function. The recurrent 
weight R updated as (5) 
𝑅𝑅(𝑇𝑇 +  1) =  𝑅𝑅(𝑇𝑇) +  ℎ𝑖𝑖𝑖𝑖(𝑇𝑇 − 1)𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑖𝑖𝑖𝑖(𝑇𝑇)𝑇𝑇𝛼𝛼 −  𝑅𝑅(𝑇𝑇)𝜆𝜆             (7) 
where 𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑖𝑖𝑖𝑖 is loss of hidden layer and 𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑖𝑖𝑖𝑖(𝑘𝑘)𝑇𝑇 is the transpose of 𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑖𝑖𝑖𝑖 . 

4 Dataset 
The dataset we have used for failure prediction is gathered from two sources as follows:  
the first main source of the dataset is Backblaze data center [Beach (2014)] and the 
second source is Center for Magnetic Recording Research [Murray, Hughes and Kreutz 
(2005)]. The first part of the dataset is collected in 2 years’ time period, it has total 
75,428 HDDs from 80 different manufacturers. For training purpose only, we choose to 
move forward by 2 models (ST3000DM001, ST4000DM000), having a larger count of 
HDDs than others.  For the rest of the paper, we will describe these models as X and Y 
(for simplicity purpose), the dataset from the second part will be referred to as Z.  
“X” family have total 2892 HDDs in good health and 1344 failed HDDs. Similarly, “Y” 
family have total 35,521 HDDs in good health and 1041 failed HDDs. For “X” family, 
there are 75,987 available samples for failed HDDs and 175,671 available samples for 
healthy HDDs. Similarly, for “Y” family, total 59,709 available samples are there for 
failed HDDs and 1,992,511 available samples for healthy HDDs. Each sample consists of 
24 SMART attributes (having a value and raw data). After applying feature selection 
(Section III-A), 16 attributes are selected as follows: 
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days

Level 6

71-90 days
Level 5

51-70 days
Level 4

31-50 days
Level 3

10-30 days
Level 2

10 days
Level 1
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Table 3: Selected Features for the X and Y Family (Backblaze Dataset) 
SMART Attribute SMART Attribute SMART Attribute 

smart_9_raw smart_187_raw smart_9_raw_diff 
smart_7_raw smart_197_raw smart_188_raw 

smart_189_raw smart_194_raw_diff smart_7_raw_diff 
smart_194_raw smart_5_raw smart_194_raw 

smart_1_raw_diff smart_198_raw smart_187_raw_diff 
smart_189_raw_diff   

 
The second data set has time series data composed of SMART attributes. This data set 
has a total of 369 HDDs, having 68411 usable samples. All the drives are from the same 
manufacturer. From 369 HDDs, 178 HDDs in good health and 191 failed HDDs. In a 
semi-controlled environment, good samples of HDDs have successfully completed 
reliability test. While bad samples are the collection of returned HDDs. After applying 
feature selection, we have used the following 12 attributes of SMART, among 16 
attributes, from “Z” family dataset. 

Table 4: Selected Features for the Z Family (SMRR Dataset) 

SMART 
Attribute 

SMART 
Attribute 

SMART 
Attribute 

Servo10 Servo9 Servo5 

Writes Servo6 Temp4 

Temp3 FlyHeight6 Temp1 

FlyHeight11 Reads CSS 

5 Evaluation metrics  
The performance of different failure prediction methods is usually evaluated by FDR, 
FAR, lead time, health status and accuracy. FDR can be calculated by dividing predicted 
near-to-fail HDDs with a total of near-to-fail HDDs as follows: 

 𝐹𝐹𝐹𝐹𝐹𝐹 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
                                                                                                      (8) 

As HDDs’ failure prediction models consider near-to-fail drives as positive drives and 
good drives as negative drives. The FAR can be obtained by dividing the number of false 
positive with the number of negative drives (good health drives). 

 𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
                                                                                                      (9) 

The highest value of FDR and the lowest value of FAR makes a prediction method more 
reliable but this is not achievable at the same time by employing ML techniques. 
Therefore, the other useful method to check the correctness of a failure prediction system 
is accuracy evaluation. The accuracy can be derived as: 
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 Accuracy = 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+ 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
                                                                   (10) 

Additionally, lead time and health status are also measured for evaluation. These metrics 
provide effective analytics of time period we have, before an HDD fails, to perform 
precautionary measures. This can help with data integrity and better resource 
management.  
For the measurement of health degree 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑙𝑙 is 𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 of health as calculated as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑙𝑙 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

                                                                                   (11) 

𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑙𝑙 ∓ 1_ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                                                                                  (12) 
𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎provides the approximation of health status of hard drives. This is also useful in 
real-time scenario.  

6 Experiments and results 
This section will provide the details of the experimental setup that is used for the analysis 
of results such as Failure detection rate, false alarm rate, ROC-curve (considering various 
parameters- voters, time-window), lead-time, health-status, execution-time for all three 
families of the dataset. The final results of the evaluation are compared with the existing 
state-of-art methods.  

6.1 Experimental setup 
All the drive samples are divided into three sets, 70% Training, 15% Testing, and 15% 
validation. Training data is balanced by using BSA algorithm (see Section 3.3 for details). 
With the help of BSA, the problem of the unbalanced data is solved completely. 
Afterward, the model is trained to predict the failure on real-world data center, using 
voting-based decision tree classifier (details in Section 3.4). If a drive is predicted to be 
failed, its lead time is predicted using our proposed algorithm (Section 3.5). Finally, the 
health status of soon to failed HDD is measured in six classes by utilizing R-CNN 
(Section 3.6). The model is tested on random 15% data and it outperforms the state of the 
art. Furthermore, to ensure the performance on unseen data, the model is tested on 
validation data using 10-fold cross-validation and results are outstanding.  

6.2 Results and evaluation 
Fig. 4 shows the results of FDR and FAR of our model, when tested using a random 
combination of data samples and balanced samples of n-sub-groups for families X, Y and Z. 
Fig. 4(a) shows that, for X family, FDR ranges between 71% to 76% only, but the value of 
FAR varies a lot, ranges between 0.39 to 0.47. It is clearly observed that, with N splits, the 
value of FDR is 99.99% with very low FAR of 0.001%. Similar trends have been observed 
for Y family as shown in Fig. 4(b). As Z dataset is highly normalized. Here, the FDR value 
of random samples varies from 90% to 94% with a quite low value of FAR i. e., 0.18% 
only. The trend is observed, as the data unbalancing problem is less in this dataset as 
compared to the Back blaze dataset. Here, good samples are three times more than bad 
samples and for N splits; it shows the best results with 99.99% FDR and 0.001% FAR. 
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Figure 4(a):  FDR and FAR of different random combinations of the training set for the 
X family 

 
Figure 4(b): FDR and FAR of different random combinations of the training set for the Y family 
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Figure 4(c): FDR and FAR of different random combinations of the training set for the Z family 

As it has been explained earlier that the least important features are extracted using RFE 
method, as a pre-processing step before testing our model for failure predictions. Figs. 
5(a), 5(b), 5(c) shows the impact of SMART features’ importance on failure prediction 
for family ‘X’, ‘Y’ and ‘Z’. It shows the near to linear relationship between extracted 
features and accuracy of our model. As unimportant features are eliminated, FDR 
increases from 86.5% to 96% with the low FAR of 0.1% for X family. Similar trends 
have been observed for ‘Y’ and ‘Z’ family. 

 
Figure 5(a): FDR and FAR of different features combinations excluded using RF-RFE 
for the X family 

0

0.05

0.1

0.15

0.2

0.25

0.3

84
86
88
90
92
94
96
98

100
102

FDR(%) FAR(%)

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

80
82
84
86
88
90
92
94
96
98

24 22 20 19 18 17 16

FDR(%) FAR(%)



 
 
 
Failure Prediction, Lead Time Estimation and Health Degree Assessment                  931 

 
Figure 5(b): FDR and FAR of different features combinations excluded using RF-RFE 
for the Y family 

 
Figure 5(c): FDR and FAR of different features combinations excluded using RF-RFE 
for the Z family 

As a constant change of SMART parameters is helpful for the health status prediction of 
hard drives. Fig. 6, provides the details of FDR and FAR for multiple arrangements of basic 
features along with their change rates. Fig. 6(a) illustrates the detection rate and false alarms 
generated by our model with basic features along with a 1-day, 2-day change rates for X 
family. Here FDR changes slowly, performs great. FAR follows similar trends as well. So, it 
is clear that FDR is good with basic features as 99.0% but FAR is high. But with 7-day 
change rate, FAR is low as 0.09% with FDR of 93%. The same trend follows with “Y” 
family. Therefore, we have included a 7-day change rate as a parameter in the dataset. 
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Figure 6(a): FDR and FAR of different arrangements of basic features along with their 
change rates for the X family 

 
Figure 6(b): FDR and FAR of different arrangements of basic features along with their 
change rates for the Y family 

Fig. 6(c) illustrates the detection rate and false alarms generated by our model with basic 
features along with 3-hour, 6-hour, 12-, 24-, 48 and 56-hours change rates for Z family. 
Basic features along with 56-hour change-rate have accomplished with a highest 
detection rate of 99%, but with high false alarms. 24-h and 48-h change rates are giving a 
good detection rate with low false alarms. Therefore, we have included a 24-hour change 
rate as a parameter in the dataset. 
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Figure 6(c): FDR and FAR of different arrangements of basic features along with their 
change rates for the Z family 

Fig. 7, shows the ROC curve plotted between FDR vs FAR for performance optimization. 
It can be clearly visualized that when the number of voters has increased, FDR increases 
while FAR decreases monotonically. For votes less the n/2, FDR is quite low and FAR is 
high. When the number of voters has increased to n/2 or more than n/2, FDR increases 
with the reduction of FAR gradually.  For X family, when voters are less than 51, there is 
more change in the value of FDR and FAR. Afterward, FDR increased much than FAR, 
false alarm value reduces from 0.12 to 0.90 with FDR value of 93% to 97.5%. A similar 
trend has been observed in family Y and Z. FAR decreases with more leap than FDR, 
with an increasing number of voters. Best results when a number of voters are 51 with 
FDR=99.99% and FAR 0.01%. Due to lack of space, explanation of results for Y family 
is not elaborated.  
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Figure 7(a): Comparison of ROC curve for different Voters for the X family 

 
Figure 7(b): Comparison of ROC curve for different Voters for the Y family 

27
33

41

45
47

51
54

60
63

65
7071

70

72.5

75

77.5

80

82.5

85

87.5

90

92.5

95

97.5

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

FD
R(

%
)

FAR(%)

27

33

41

45

47

51
54

60
6365

70

71

70

72.5

75

77.5

80

82.5

85

87.5

90

92.5

95

97.5

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

FD
R(

%
)

FAR(%)



 
 
 
Failure Prediction, Lead Time Estimation and Health Degree Assessment                  935 

 
Figure 7(c): Comparison of ROC curve for different Voters for the Z family 

Fig. 8 shows that the impact of time window on the failure detection rate. We have tested 7-
days, 30-days, 240-days and 365-days time window for ‘X’ and ‘Y’ family and 12-hours, 
24-h, 96-h, 240-h and 312-h time window for ‘Z’ family. The ROC- curve shows that 
results are better for a large time window. As time window increases, a number of samples 
for training the model increases. Thus, our model learns from every possible sample of a 
hard disk drive. For the short window interval, fewer samples are provided for training, 
generating more false alarms. As it can be observed that for 7-days’ time window, FDR is 
90% and FAR is 0.35%. But with 15-days time window, FDR increases to 95%, but FAR 
remains almost the same. Results are constant when time window of 120-days or more is 
taken for X family. However, Z family shows quite different results, with just 24-hour time 
window its shows best results with 97.5% FDR and 0.1% FAR. By increasing the time 
window in the Z family, FDR is increasing, but FAR is increasing as well. 
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Figure 8(a): Comparison of ROC curve for different Time Window for the X family 

 
Figure 8(b): Comparison of ROC curve for different Time Window for the Y family 
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Figure 8(c): Comparison of ROC curve for different Time Window for the Z family 

Fig. 9 shows the lead time of HDDs when it is predicted to fail using our model. As it can 
be clearly observed that more than 900 HDD are predicted at lead 10 days before failure 
or 30 days before failure. This time allows the backup or data migration process to be 
triggered in a timely manner.  

 
Figure 9(a): Lead Time Prediction on X and Y family 
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Figure 9(b): Lead Time Prediction on Z family 

6.3 Comparison with state of the art 
This section compares the prediction performance for HDDs by using our method with 
the present state of the art methods (details of these methods in Section 2).  Due to space 
limitation, we have compared our method with basic random forest, part voting based 
random forest and recurrent neural network.  
In Fig. 10 part-voting RF and RNN results are compared by using ROC curve obtained 
for all family of X, Y, and Z dataset. On family X the basic Random Forest is giving low 
FAR but corresponding FDR is also low as shown in Fig. 10(a). However, we have 
achieved FDR up to 99.9% with a minimal FAR value of 0.01% only with the application 
of our model (voting-based decision tree). Similarly, RF-part voting method has not 
performed up to the mark. FDR value ranges from 72-74%, which is quite low with a 
high FAR rate (due to data unbalancing problem). Thus, we can say that part-voting RF 
outperforms basic RF but it is quite lower than our approach. A similar result has been 
obtained for the ‘Y’ family shown in Fig. 10(b).  
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Figure 10(a): Comparison of ROC-Curve for the X family 

 
Figure 10(b): Comparison of ROC-Curve for the Y family 

Fig. 10(c) compares the results of the balance data set and normalized features. So, for 
this dataset, almost every other method performs well, having high-value FDR but FAR 
is also high. In that case, our method outperforms all the previous literature. 

70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

0 0.5 1 1.5 2 2.5

FD
R 

(%
)

FAR (%)

Voting-based
Decision Tree

RF

RNN

Part Voting
Random
Forest

70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

0 0.5 1 1.5 2 2.5

FD
R 

(%
)

FAR (%)

Voting-based
Decision Tree

RF

RNN

Part Voting
Random
Forest



 
 
 
940                                                                              CMC, vol.60, no.3, pp.913-946, 2019 

 
Figure 10(c): Comparison of ROC-Curve for the Z family 

Fig. 11 shows the 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑙𝑙  and  𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎   evaluation for X family. We have selected random 
samples of failed or predicted to be failed drives and provide inputs to R-CNN. Health 
degree is predicted into 6 classes (the reason behind selected 6 classes can be seen in 
Section 3.6). Fig. 11(a) shows the results of health degree prediction for R-CNN. As 
maximum HDDs are predicted with exact health degree, the results are clustered around 
ground realities. Fig. 11(b) and Fig. 11(c) shows that RNN and Multi-NN are not able to 
provide reasonable results in health degree prediction. The results are much scattered 
with respect to ground reality, tolerance accuracy 𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 is low here, as the some of the 
HDDs are predicted in level 2 instead of level 1. But it is still acceptable.  

 
Figure 11(a): Health Degree assessment by using CNN on the X family 
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Figure 11(b): Health Degree assessment by using RNN on the X family 

 
Figure 11(c): Health Degree assessment by using Multi-NN on the X family 

 
Figure 12(a): Health Degree assessment by using CNN on the Z family 
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Figure 12(b): Health Degree assessment by using RNN on the Z family 

 
Figure 12(c): Health Degree assessment by using Multi-NN on the Z family 

Similar results for the Z family has been observed in Figs. 12(a), 12(b), 12(c). R-CNN 
provides the maximum accuracy for the prediction of the health status of hard drives in 
comparison to the RNN and multi-NN. 
Fig. 13. Comparison of execution time for prediction of HDD failure of the Voting based 
decision tree, RNN, Random forest and part-voting random forest for family “X”, family 
“Y” and family “Z”. This shows the time efficacy of our model; it outperformed the state-
of-the-art methods in terms of time complexity also. 
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Figure 13: Comparison of execution time for prediction of HDD failure of Voting based 
decision tree, RNN, Random forest and part-voting random forest for family “X”, family 
“Y” and family “Z” 

7 Conclusion 
This paper described a novel homogeneous method for failure prediction, Lead time 
estimation and Health degree examination of Hard disks. We have utilized the 
combination of Machine learning and deep learning approach for the prescribed tasks. 
Moreover, a unique algorithm for data unbalancing problem has been proposed. The 
model is trained on two publicly available datasets. The mythology is based on voting-
based decision trees, BSA algorithm, and Recurrent neural network. We have tested our 
method by using a dataset of real-life. The exhaustive experimental results are provided 
which shows that our method outperforms the state-of-the-art techniques. We have 
achieved an FDR value of 99.99% with a quite low FAR value of 0.01%. After the failure 
prediction, we have estimated its lead time. Afterward, the power of deep learning is 
exploited and the health status of soon to fail drives is examined, in 6 classes, ranging 
from safe to in- danger drives. During the testing, we have observed that for the yearly 
dataset at least 7 days data is required for achieving the best results. Our future work will 
be focused on the development of a method that uses robustness of pure, dense deep 
learning to minimize the time window problem, stated above.  
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