
Computers, Materials & Continua CMC, vol.60, no.3, pp.1003-1013, 2019

CMC. doi:10.32604/cmc.2019.07704 www.techscience.com/cmc

A Recommendation System Based on Fusing Boosting Model and
DNN Model

Aziguli Wulam1, 2, Yingshuai Wang1, 2, Dezheng Zhang1, 2, *, Jingyue Sang3 and
Alan Yang4

Abstract: In recent years, the models combining traditional machine learning with the deep
learning are applied in many commodity recommendation practices. It has been proved
better performance by the means of the neural network. Feature engineering has been the
key to the success of many click rate estimation model. As we know, neural networks are
able to extract high-order features automatically, and traditional linear models are able to
extract low-order features. However, they are not necessarily efficient in learning all types
of features. In traditional machine learning, gradient boosting decision tree is a typical
representative of the tree model, which can construct new features related before and after
tree. Convolutional neural networks have a better perception of local features. In this paper,
we take advantage of convolutional networks to capture the local features. The features are
constructed by the node leaf of gradient boosting decision tree. This paper employs the tree
leaf node to mine the user behavior path features, and uses the deep model to extract the
user abstract features. Based on a Kaggle competition, our model performs better in the
test data than any other model.

Keywords: Deep tree joint network, gradient boosting decision tree, convolution neural
network, recommendation systems, attention network.

1 Introduction
In the field of e-commerce, the prediction of Click Though Rate (CTR) is an important part
of the recommendation engine. One CTR application is descripted as follows: The input
query is a set of user’s contextual information, and the output is a ranked list of items.
Another application is as follows: When a user enters the channel, the recommendation is
to find the relevant items in a database and then rank the items based on certain objects. It
is difficult to capture user’s diverse interests effectively from a variety of historical
behaviors. In order to tackle this challenge, deep interest network [Zhou, Zhu, Song et al.

1 School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing,
100083, China.

2 Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, 100083, China.
3 Industrial Engineering, Shanghai University, Shanghai, 200444, China.
4 Amphenol Assemble Tech, Houston, TX 77070, US.
* Corresponding Author: Dezheng Zhang. Email: zdzchina@126.com.

1004 CMC, vol.60, no.3, pp.1003-1013, 2019

(2017)] with a local activation unit is designed to learn the user interests, and applied to
the online display advertising system in Alibaba. Considering the changing of the
environment and users’ interests, a novel model named deep interest evolution network
[Zhou, Mou, Fan et al. (2018)] is proposed, and has been deployed in the display
advertisement system of Taobao. In the recent time, some researchers propose an FGCNN
model (Feature Generation by Convolutional Neural Network) [Liu, Tang, Chen et al.
(2019)], which includes feature generation and deep classifier. Another model named
xDeepFM [Lian, Zhou, Zhang et al. (2018)] aims to generate feature interactions in an
explicit fashion. xDeepFM contains a Compressed Interaction Network (CIN), which
shares some functionalities with convolutional neural network and recurrent neural
networks. Logistic regression [Peng, Lee and Ingersoll (2002)] is widely used because it is
simple, scalable and interpretable. Wide & Deep [Cheng, Koc, Harmsen et al. (2016)]
presents learning jointly trained by wide linear models and deep neural networks. Wide &
Deep combines the benefit of memory with the advance of generalization for recommender
systems. Deep & Cross network [Wang, Fu, Fu et al. (2017)] keeps the benefits of a DNN
model, and introduces a novel cross network that is more efficient in learning certain
bound-degree feature interactions. Factorization machine [Rendle (2010, 2012)] maps
sparse features into low dimensional dense vectors, and learns feature interactions from
vector inner products. Field-aware factorization machines [Zhang, Liu and Zhang (2018);
Juan, Zhuang, Chin et al. (2016)] set a field for each feature. Product-based neural networks
[Hsiao and Huang (2002)] with an embedding layer to capture interactive patterns between
categories, and further feed forward network to explore high-order feature interactions. All
models above, including linear logistic regression, non-linear gradient boosting decision
trees and factorization machines, have been proved better on low-order features, and deep
neural network [LeCun, Bengio and Hinton (2015)] performs better on high-order features.
However, these models mostly depend on feature engineering so as to capture feature
accurately. In this paper, it is possible to construct an end-to-end learning model, with no
need of feature engineering besides raw features.

2 Method
Feature interactions plays an important role in recommendation system. Some feature
interactions can be easily understood and engineered by experts, such as the product
recommendation scene: girls like to browse cosmetics while boys like to browse basketball.
However, other feature interactions is hidden in data, such as the classic association rule:
“diaper and beer” is mined from a large amount of data and difficult to discover. Even for
easily understanding feature interactions, it is unlikely to model them well, especially when
the raw feature is huge. In order to interpret feature visually, general linear model FTRL
[Mcmahan, Holt, Sculley et al. (2013)] is proposed, and has shown good performance in
some practice. However, a general linear model lacks the ability to learn feature
interactions better, feature interactions needs manual design. With the development of
artificial intelligence, the deep neural network has shown the potential ability to learn
sophisticated feature interactions automatically. Some ideas proposed CNN [Liu, Yu, Wu
et al. (2015)] and RNN [Zhang, Dai, Xu et al. (2014)] for CTR prediction [Akopyan and
Khashba (2017)], but the CNN model is biased to the interaction between neighbor locally
while RNN based on the sequential dependency. In recommendation business data, there

A Recommendation System Based on Fusing Boosting Model and DNN Model 1005

is no relationship between each column features. In this situation, our paper employs CNN
as wide part, which is based on the GBDT leaf nodes to construct local features. The main
neural network structure is as follows:

Figure1: GBDT_CNN_DNN rough structure
To reduce the feature dimension, we employ an embedding procedure to transform the
category feature into dense vector, then add the numeric feature together. Based on the
embedding, GBDT_CNN part extracts the low order feature and DNN part extracts the
high order feature, as shown in Fig. 1.
In deep learning, one of the most important things is to prevent over fitting. An overfit
model has poor performance since it overeats to the giving training data. We employ L2-
norm to regularize the objective function. On the other hand, deep neural network is also
easy to overfit. In this paper, we use a simple strategy to avoid neural network from over
fitting, which is known as dropout. We also early stopping to prevent the overfitting in
deep part. Therefore, in our GBDT_CNN_DNN framework as shown in Fig. 1, we adopt
L2-norm to regularize the generalize linear component and adopt dropout and early
stopping for the deep component.

3 Deep wide GBDT_CNN network
3.1 Model structure
Based on the above GBDT_CNN_DNN architecture, linear part, gradient boosting
decision tree part and deep network part are jointly trained in our model, the main network
structure as Fig. 2.

1006 CMC, vol.60, no.3, pp.1003-1013, 2019

Figure 2: Detail model architecture

Fig. 2 illustrates the detail neural network architecture of our proposed GBDT_CNN_DNN
model, which combines the low order feature with the high order feature in the area of
recommendation. In the pooling process, this paper employs the method of segmental flexible
pooling for the first time. Specially, the pooling window is acquired by neural network
learning. In the model, the convolution kernels are 1 by 1, 3 by 3, and 5 by 5, and the number
of convolution kernels is learned by neural network. It performs better than a manual setting.

3.2 Convolution on boosting features
Boosting algorithm [Chen and Guestrin (2016)] is consist of iteratively learning weak
classifiers with respect to a distribution. The significance of the model is that the latter tree
learns the residual of the previous tree. The leaf node of the latter tree is locally related to
the previous tree, and the convolutional neural network [Sutskever, Hinton and Krizhevsky
(2012)] is suitable for local relationship characteristics.

𝑓𝑓𝑀𝑀(𝑥𝑥) = � 𝑇𝑇𝑖𝑖
𝑀𝑀

𝑖𝑖−1
(𝑥𝑥;𝜃𝜃𝑚𝑚)

 (1)

where 𝑇𝑇(𝑥𝑥;𝜃𝜃𝑚𝑚) is m decision tree, 𝜃𝜃𝑚𝑚 represents the parameters of the decision tree, M is
the number of trees, and strong classifier 𝑓𝑓𝑀𝑀(𝑥𝑥) can be composed of multiple weak
classifiers 𝑇𝑇(𝑥𝑥;𝜃𝜃𝑚𝑚) linear added.
The m gradient boosting tree has a relationship with the m-1 tree, as follows:
𝑓𝑓𝑚𝑚(𝑥𝑥) = 𝑓𝑓𝑚𝑚−1(𝑥𝑥) + 𝑇𝑇(𝑥𝑥; 𝜃𝜃𝑚𝑚) (2)

Let 𝑦𝑦𝑖𝑖 is the real value, 𝑦𝑦𝑖𝑖 ≈ ∑ 𝑇𝑇(𝑥𝑥;𝜃𝜃𝑚𝑚)𝑀𝑀
𝑖𝑖=1 , furtherly we can calculate the following

formula:
𝑇𝑇𝑀𝑀−2(𝑥𝑥;𝜃𝜃𝑚𝑚−2) + 𝑇𝑇𝑀𝑀−1(𝑥𝑥;𝜃𝜃𝑚𝑚−1) + 𝑇𝑇𝑀𝑀(𝑥𝑥;𝜃𝜃𝑚𝑚) = 𝑦𝑦𝑖𝑖 − ∑ 𝑇𝑇𝑖𝑖𝑀𝑀−3

𝑖𝑖=1 (𝑥𝑥;𝜃𝜃𝑖𝑖) (3)
We can deduce the following formula:
𝑇𝑇𝑀𝑀−1(𝑥𝑥;𝜃𝜃𝑚𝑚−1) = 𝑦𝑦𝑖𝑖 − ∑ 𝑇𝑇𝑖𝑖𝑀𝑀−3

𝑖𝑖=1 (𝑥𝑥;𝜃𝜃𝑖𝑖) − 𝑇𝑇𝑀𝑀−2(𝑥𝑥;𝜃𝜃𝑚𝑚−2) − 𝑇𝑇𝑀𝑀(𝑥𝑥;𝜃𝜃𝑚𝑚) (4)

A Recommendation System Based on Fusing Boosting Model and DNN Model 1007

Considering that convolution neural network is good at capturing such local perceptual features
related before and after, we employ the convolution neural network on boosting features.

3.3 Deep neural network on original features
The deep neural network can extract abstract high-order features, and the network with
embeddings [Frome, Corrado, Shlens et al. (2013)] can generate unseen features better.
The deep component is a feed-forward neural network, as shown in Fig. 1, for the
categorical feature and numerical feature. The original inputs are converted into a low
dimensional dense vector, which also called the embedding vector. In this paper, the
embedding vectors are initialized with norm distribution, and then the values are trained to
minimize the total loss function. These dense embedding vectors are fed into the hidden
layers of a deep neural network in the forward progress. Each hidden layer is computed by
the following equations:
𝑦𝑦(𝑙𝑙+1) = 𝑓𝑓�𝑥𝑥 ∗ 𝑤𝑤(𝑙𝑙) + 𝑏𝑏(𝑙𝑙)� (5)
where 𝑙𝑙 is the number of the layer and 𝑓𝑓 is the activation function [Schmidt-Hieber (2017)].
In this paper, we employ the rectified linear units.
In the actual data set, some features fluctuate greatly, we try the following three feature
transformations:
(a) For each feature 𝑓𝑓𝑖𝑖, we design the following piecewise function. According to the range
of the feature variables, the feature should add one to handle features whose value is zero.
We also normalize the features to have mean value zero and standard deviation value one.
The mean and standard deviation value was measured to the train set, and then applied to
both train set and valid set. Some features have significant outliers, so any feature value
that is more five standard deviations than the mean is truncated to five. We find these
feature processing skills improve better in the test data.

⎩
⎪
⎨

⎪
⎧ log�𝑓𝑓𝑖𝑖2 + 1� , 0 ≤ 𝑓𝑓𝑖𝑖 < 1

log(𝑓𝑓𝑖𝑖 + 1) ,𝑓𝑓𝑖𝑖 > 1
− log�𝑓𝑓𝑖𝑖2 + 1� ,−1 ≤ 𝑓𝑓𝑖𝑖 < 0
− log(|𝑓𝑓𝑖𝑖| + 1) ,𝑓𝑓𝑖𝑖 < −1

 (6)

(b) In order to reduce the fluctuation of continuous features, we also try the binning and
bucket technology. The specific steps are as follows: Firstly, calculate the range of values
for each column feature. Secondly, design the number of buckets. Thirdly, according to the
equal frequency method, the data is placed in different buckets.
(c) For each feature, it needs to scan all the data instance to estimate the information gain
of all possible split points, which consume more time. Our method is Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). By the method of GOSS,
we exclude a significant proportion of data instances with small gradients, and use the rest
to estimate the information gain. GOSS can obtain quite an accurate estimation of the
information gain with a much smaller data size. By the means of EFB, we bind mutually
exclusive features to reduce the number of features. In our training data, the above three
feature transformation methods can reduce the fluctuation well as a configuration file. In
different data distribution, users can experiment each method and then choose the best one.

1008 CMC, vol.60, no.3, pp.1003-1013, 2019

We try two ways as the DNN input: The first way is entering hidden vector into DNN directly,
and the second way is applying second order feature result as DNN input. In large-scale data
samples, the second way can extract more abstract features and achieve better results.

Figure3: DNN part on Bi_Cross Feature

The Fig. 3. has five layers: input feature vector layer, embedding layer, bi-cross feature
layer, hidden layer and prediction score layer. The embedding layer projects each feature
to a dense vector representation. The 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅𝑘𝑘 is the i-th embedding feature, the math form
is as follows:
𝑉𝑉𝑥𝑥 = {𝑥𝑥1𝑣𝑣1, 𝑥𝑥2𝑣𝑣2, … … , 𝑥𝑥𝑖𝑖𝑣𝑣𝑖𝑖 , 𝑥𝑥𝑛𝑛𝑣𝑣𝑛𝑛} (7)
We then feed the embedding set 𝑉𝑉𝑥𝑥 into Bi-cross feature layer, which coverts embedding
vector into Bi-cross layer value:
𝑓𝑓(𝑉𝑉𝑥𝑥) = ∑ ∑ 𝑥𝑥𝑖𝑖𝑣𝑣𝑖𝑖𝑛𝑛

𝑗𝑗=𝑖𝑖+1
𝑛𝑛
𝑖𝑖=1 °𝑥𝑥𝑗𝑗𝑣𝑣𝑗𝑗 (8)

The Bi-cross feature layer is a stack of fully connected layers, which are capable of learning
higher order interactions between features. We put the result into the hidden layer.

3.4 Linear model on original features
Linear model can extract relatively low-order features, which can remember obvious
business rules with a few parameters. Its mathematical formula is as follows:
𝑦𝑦 = 𝑤𝑤𝑇𝑇𝑥𝑥 + ∑ ∑ 𝑥𝑥𝑖𝑖𝑣𝑣𝑖𝑖𝑛𝑛

𝑗𝑗=𝑖𝑖+1
𝑛𝑛
𝑖𝑖=1 °𝑥𝑥𝑗𝑗𝑣𝑣𝑗𝑗 + 𝑏𝑏 (9)

where y is the predicted value, x denotes the combination of the feature vectors, and w and
b are the model parameters. Some features are the original inputs and the rest are statistical
features [Han and Bhanu (2004)].
In practice, it is known that not all features are relevant to prediction, so we propose the
attention mechanism on feature interactions by performing a weighted sum on the
interacted vectors:
𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖(𝑣𝑣𝑖𝑖°𝑣𝑣𝑗𝑗(𝑖𝑖,𝑗𝑗)∈𝑅𝑅𝑥𝑥)𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 (10)

A Recommendation System Based on Fusing Boosting Model and DNN Model 1009

where 𝑎𝑎𝑖𝑖𝑖𝑖 is the attention score for cross feature 𝑤𝑤𝑖𝑖𝑖𝑖, and it shows the importance of 𝑤𝑤𝑖𝑖𝑖𝑖 in
predicting the target. We construct an attention network to estimate the 𝑎𝑎𝑖𝑖𝑖𝑖, and it is shown
in Fig. 4.

Figure4: Two_order feature interactions attention

Our attention network is defined as:
𝑎𝑎𝑖𝑖𝑖𝑖∗ = ℎ𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑊𝑊�𝑣𝑣𝑖𝑖°𝑣𝑣𝑗𝑗�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 + 𝑏𝑏� (11)

 𝑎𝑎𝑖𝑖𝑖𝑖 =
exp (𝑎𝑎𝑖𝑖𝑖𝑖

∗)
∑ exp (𝑎𝑎𝑖𝑖𝑗𝑗

∗)(𝑖𝑖,𝑗𝑗)∈𝑅𝑅𝑥𝑥
 (12)

The attention scores are normalized through the soft-max function. We use the leak rectifier
as the activation function, which empirically shows good performance. To summarize, we
give the improved formulation of generalize linear model as:
𝑦𝑦_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑤𝑤0 + ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 + ∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖(𝑣𝑣𝑖𝑖°𝑣𝑣𝑗𝑗𝑛𝑛
𝑗𝑗=𝑖𝑖+1

𝑛𝑛
𝑖𝑖=1)𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 (13)

where 𝑎𝑎𝑖𝑖𝑖𝑖 has been defined in Eq. (12). Compared with classic linear model, adding
attention mechanism improves 1.5 percent AUC score.

4 Experiments
4.1 Data analysis
We need an evaluation function for learning algorithm, and the dataset is divided into
training set, validation set, and test set. Training set is used to train models, validation set
is used to adjust hyper-parameters, and test set is used to test the final quality of the overall
model. Our model is 3 percent higher than the deep neural network model alone. We
experiment six models in the same data set. The first model only applies DNN part. The
second model only applies linear part. The third model uses both DNN part and linear part.

1010 CMC, vol.60, no.3, pp.1003-1013, 2019

The fourth model uses both GBDT_CNN part, linear part, and DNN part. The fifth model
adds attention based on the fourth model. The sixth model shares the embedding with first
order feature value and second order feature value. Our experiment shows that the sixth
model has better performance, and our empirical analysis is as follows:

Table 1: The AUC of model performance

Model AUC LogLoss MSE Accuracy

Logistic Regression 0.8320 0.15 0.63 0.8214

DNN 0.8351 0.14 0.62 0.8301

LR&DNN 0.8429 0.13 0.62 0.8534

LR_GBDT_CNN_DNN 0.8597 0.08 0.61 0.8567

LR_GBDT_CNN_DNN_v1 0.8599 0.08 0.58 0.8603

LR_GBDT_CNN_DNN_v2 0.8626 0.07 0.56 0.8762

Our proposed model contains convolution neural network based on gradient boosting
decision tree and deep neural network. We use decision tree as base machine learner, and
then employ convolutional neural network to mine the perception of local features. In this
paper, we make model fusion by the characteristics of these two algorithms for the first time.
In Fig. 5, back propagation implements an iterative process. At the beginning of each iteration,
we should select some train sample, which called batch data. By feed forward, the batch data
can get its prediction result. Because train data has label, the neural network compute the loss
between label and prediction result. Finally, back propagation updates the weights.

Figure 5: Neural network optimize process in our model

As the training process shown in Fig. 5, at the beginning we initialize the parameters to
start training, and then adjust parameter by the error, which is based on the objective
function, finally we obtain a better model to test performance. From a perspective of

A Recommendation System Based on Fusing Boosting Model and DNN Model 1011

serving, our model has fewer parameters than other models, which contain wide part using
factorization machine or using logistic regression.

4.2 Parameter skills and service performance
In order to make the loss function continue declining in the training set, we clip the gradient
[Bottou (2012)], and the mathematic formula is as follows:

𝑔𝑔𝑖𝑖 = 𝜕𝜕𝜕𝜕(𝑤𝑤)
𝑤𝑤𝑖𝑖

 (14)

We set clipped threshold c, and �|𝑔𝑔|� = �∑ 𝑔𝑔𝑖𝑖2𝑛𝑛
𝑖𝑖=1

2
, when the �|𝑔𝑔|� > 𝑐𝑐, we set 𝑔𝑔 = 𝑐𝑐

||𝑔𝑔||
.𝑔𝑔.

By this way our model avoids gradient disappearance or gradient explosion [Johnson and
Zhang (2013)]. In our model, generalized linear part shares the one order embedding and
two order embedding, which reduces the number of parameters and improves the service
prediction speed.
Tab. 2 shows the training time and evaluation index about different model. According to
Occam’s razor theory, when the model has a similar effect, fewer the parameters are, better
the performance is. In summary, the efficiency of our model is comparable to the most
efficient deep model in the state-of-the-art.

Table 2: FM part share embedding experiment

Experiment ID Training time AUC LogLoss Accuracy

Not share embedding 125 min 0.7152 0.08 0.8603

Sharing embedding 114 min 0.7274 0.07 0.8762

5 Conclusion
In this paper, we propose GBDT_CNN_DNN model, an end-to-end TREE&DEEP learning
framework for the recommendation system. In the data of Kaggle competition, our model
has the state-of-the-art performance. GBDT_CNN_DNN trains a deep component and tree
component jointly. It has the following advatages:1) it does not need any pre-training; 2) it
learns high-order, middle-order and low-order feature interactions. Linear part can learn the
low-order feature, gradient boosting decision tree part can learn the middle-order feature and
deep neural network can learn the high-order feature; 3) it introduces a sharing strategy of
feature embedding to reduce manual feature engineering. There are two directions for future
work. First, currently, we simply employ GBDT leaf node for embedding features. We can
explore the usage of the Gate Recurrent Unit (GRU) mechanism [Dey and Salemt (2017)] to
capture the related trees according to the candidate item. Second, in order to reduce the time
complexity, we are interested in developing a distributed version of GBDT_CNN_DNN
which can be trained efficiently on a GPU cluster.

1012 CMC, vol.60, no.3, pp.1003-1013, 2019

Acknowledgment: This work is supported by the National Key Research, Development
Program of China under Grant 2017YFB1002304 and the National Natural Science
Foundation of china (No. 61672178). The authors would like to thank the anonymous
reviewers for their insightful reviews, which are very helpful on the revision of this paper.

References
Akopyan, M.; Khashba, E. (2017): Large-scale YouTube-8M video understanding with
deep neural networks. arXiv:1706.04488v1.
Bottou, L. (2012): Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade,
pp. 421-436.
Chen, T.; Guestrin, C. (2016): Xgboost: a scalable tree boosting system. Proceedings of
the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining,
pp. 785-794.
Cheng, H. T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T. et al. (2016): Wide &
deep learning for recommender systems. Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems, pp. 7-10.
Dey, R.; Salemt, F. M. (2017): Gate-variants of gated recurrent unit (GRU) neural networks.
IEEE 60th International Midwest Symposium on Circuits and System, pp. 1597-1600.
Frome, A.; Corrado, G. S.; Shlens, J.; Bengio, S.; Dean, J. et al. (2013): Devise: a deep
visual-semantic embedding model. Advances in Neural Information Processing Systems,
pp. 2121-2129.
Han, J.; Bhanu, B. (2004): Statistical feature fusion for gait-based human recognition.
Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2, no. 2, pp. 842-847.
Hsiao, S. W.; Huang, H. C. (2002): A neural network based approach for product form
design. Design Studies, vol. 23, no. 1, pp. 67-84.
Johnson, R.; Zhang, T. (2013): Accelerating stochastic gradient descent using predictive
variance reduction. Advances in Neural Information Processing Systems, pp. 315-323.
Juan, Y.; Zhuang, Y.; Chin, W. S.; Lin, C. J. (2016): Field-aware factorization machines
for CTR prediction. Proceedings of the 10th ACM Conference on Recommender Systems,
pp. 43-50.
LeCun, Y.; Bengio, Y.; Hinton, G. (2015): Deep learning. Nature, vol. 521, no. 7553, pp.
436-444.
Lian, J.; Zhou, X.; Zhang, F.; Chen, Z.; Xie, X. et al. (2018): xDeepFM: combining
explicit and implicit feature interactions for recommender systems. Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1754-1763.
Liu, B.; Tang, R.; Chen, Y.; Yu, J.; Guo, H. et al. (2019): Feature generation by
convolutional neural network for click-through rate prediction. World Wide Web
Conference, pp. 1119-1129.

A Recommendation System Based on Fusing Boosting Model and DNN Model 1013

Liu, Q.; Yu, F.; Wu, S.; Wang, L. (2015): A convolutional click prediction model.
Proceedings of the 24th ACM International on Conference on Information and Knowledge
Management, pp. 1743-1746.
McMahan, H. B.; Holt, G.; Sculley, D.; Young, M.; Ebner, D. et al. (2013): Ad click
prediction: a view from the trenches. Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1222-1230.
Peng, C. Y. J.; Lee, K. L.; Ingersoll, G. M. (2002): An introduction to logistic regression
analysis and reporting. Journal of Educational Research, vol. 96, no. 1, pp. 3-14.
Rendle, S. (2010): Factorization machines. IEEE International Conference on Data
Mining, pp. 995-1000.
Rendle, S. (2012): Factorization machines with LIBFM. ACM Transactions on Intelligent
Systems and Technology, vol. 3, no. 57, pp. 1-22.
Schmidt-Hieber, J. (2017): Nonparametric regression using deep neural networks with
ReLU activation function. arXiv:1708.06633v4.
Sutskever, I.; Hinton, G. E.; Krizhevsky, A. (2012): ImageNet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems, pp.
1097-1105.
Wang, R.; Fu, B.; Fu, G.; Wang, M. (2017): Deep & cross network for ad click
predictions. Proceedings of the ADKDD'17, pp. 1-7.
Zhang, Y.; Dai, H.; Xu, C.; Feng, J.; Wang, T. et al. (2014): Sequential click prediction
for sponsored search with recurrent neural networks. Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, pp. 1369-1375.
Zhang, Z.; Liu, Y.; Zhang, Z. (2018): Field-aware matrix factorization for recommender
systems. IEEE Access, vol. 6, no. 45, pp. 690-698.
Zhou, G.; Mou, N.; Fan, Y.; Pi, Q.; Bian, W. et al. (2018): Deep interest evolution
network for click-through rate prediction. arXiv:1809.03672v5.
Zhou, G.; Zhu, X.; Song, C.; Fan, Y.; Zhu, H. et al. (2018): Deep interest network for
click-through rate prediction. Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1059-1068.

	A Recommendation System Based on Fusing Boosting Model and DNN Model
	Aziguli Wulam0F , 1F , YingShuai Wang1, 2, Dezheng Zhang1, 2, *, Jingyue Sang3 and
	Alan Yang4

