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Abstract: In recent years, the models combining traditional machine learning with the deep 
learning are applied in many commodity recommendation practices. It has been proved 
better performance by the means of the neural network. Feature engineering has been the 
key to the success of many click rate estimation model. As we know, neural networks are 
able to extract high-order features automatically, and traditional linear models are able to 
extract low-order features. However, they are not necessarily efficient in learning all types 
of features. In traditional machine learning, gradient boosting decision tree is a typical 
representative of the tree model, which can construct new features related before and after 
tree. Convolutional neural networks have a better perception of local features. In this paper, 
we take advantage of convolutional networks to capture the local features. The features are 
constructed by the node leaf of gradient boosting decision tree. This paper employs the tree 
leaf node to mine the user behavior path features, and uses the deep model to extract the 
user abstract features. Based on a Kaggle competition, our model performs better in the 
test data than any other model. 

Keywords: Deep tree joint network, gradient boosting decision tree, convolution neural 
network, recommendation systems, attention network. 

1 Introduction 
In the field of e-commerce, the prediction of Click Though Rate (CTR) is an important part 
of the recommendation engine. One CTR application is descripted as follows: The input 
query is a set of user’s contextual information, and the output is a ranked list of items. 
Another application is as follows: When a user enters the channel, the recommendation is 
to find the relevant items in a database and then rank the items based on certain objects. It 
is difficult to capture user’s diverse interests effectively from a variety of historical 
behaviors. In order to tackle this challenge, deep interest network [Zhou, Zhu, Song et al. 
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(2017)] with a local activation unit is designed to learn the user interests, and applied to 
the online display advertising system in Alibaba. Considering the changing of the 
environment and users’ interests, a novel model named deep interest evolution network 
[Zhou, Mou, Fan et al. (2018)] is proposed, and has been deployed in the display 
advertisement system of Taobao. In the recent time, some researchers propose an FGCNN 
model (Feature Generation by Convolutional Neural Network) [Liu, Tang, Chen et al. 
(2019)], which includes feature generation and deep classifier. Another model named 
xDeepFM [Lian, Zhou, Zhang et al. (2018)] aims to generate feature interactions in an 
explicit fashion. xDeepFM contains a Compressed Interaction Network (CIN), which 
shares some functionalities with convolutional neural network and recurrent neural 
networks. Logistic regression [Peng, Lee and Ingersoll (2002)] is widely used because it is 
simple, scalable and interpretable. Wide & Deep [Cheng, Koc, Harmsen et al. (2016)] 
presents learning jointly trained by wide linear models and deep neural networks. Wide & 
Deep combines the benefit of memory with the advance of generalization for recommender 
systems. Deep & Cross network [Wang, Fu, Fu et al. (2017)] keeps the benefits of a DNN 
model, and introduces a novel cross network that is more efficient in learning certain 
bound-degree feature interactions. Factorization machine [Rendle (2010, 2012)] maps 
sparse features into low dimensional dense vectors, and learns feature interactions from 
vector inner products. Field-aware factorization machines [Zhang, Liu and Zhang (2018); 
Juan, Zhuang, Chin et al. (2016)] set a field for each feature. Product-based neural networks 
[Hsiao and Huang (2002)] with an embedding layer to capture interactive patterns between 
categories, and further feed forward network to explore high-order feature interactions. All 
models above, including linear logistic regression, non-linear gradient boosting decision 
trees and factorization machines, have been proved better on low-order features, and deep 
neural network [LeCun, Bengio and Hinton (2015)] performs better on high-order features. 
However, these models mostly depend on feature engineering so as to capture feature 
accurately. In this paper, it is possible to construct an end-to-end learning model, with no 
need of feature engineering besides raw features. 

2 Method 
Feature interactions plays an important role in recommendation system. Some feature 
interactions can be easily understood and engineered by experts, such as the product 
recommendation scene: girls like to browse cosmetics while boys like to browse basketball. 
However, other feature interactions is hidden in data, such as the classic association rule: 
“diaper and beer” is mined from a large amount of data and difficult to discover. Even for 
easily understanding feature interactions, it is unlikely to model them well, especially when 
the raw feature is huge. In order to interpret feature visually, general linear model FTRL 
[Mcmahan, Holt, Sculley et al. (2013)] is proposed, and has shown good performance in 
some practice. However, a general linear model lacks the ability to learn feature 
interactions better, feature interactions needs manual design. With the development of 
artificial intelligence, the deep neural network has shown the potential ability to learn 
sophisticated feature interactions automatically. Some ideas proposed CNN [Liu, Yu, Wu 
et al. (2015)] and RNN [Zhang, Dai, Xu et al. (2014)] for CTR prediction [Akopyan and 
Khashba (2017)], but the CNN model is biased to the interaction between neighbor locally 
while RNN based on the sequential dependency. In recommendation business data, there 
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is no relationship between each column features. In this situation, our paper employs CNN 
as wide part, which is based on the GBDT leaf nodes to construct local features. The main 
neural network structure is as follows: 

 

Figure1: GBDT_CNN_DNN rough structure  
To reduce the feature dimension, we employ an embedding procedure to transform the 
category feature into dense vector, then add the numeric feature together. Based on the 
embedding, GBDT_CNN part extracts the low order feature and DNN part extracts the 
high order feature, as shown in Fig. 1. 
In deep learning, one of the most important things is to prevent over fitting. An overfit 
model has poor performance since it overeats to the giving training data. We employ L2-
norm to regularize the objective function. On the other hand, deep neural network is also 
easy to overfit. In this paper, we use a simple strategy to avoid neural network from over 
fitting, which is known as dropout. We also early stopping to prevent the overfitting in 
deep part. Therefore, in our GBDT_CNN_DNN framework as shown in Fig. 1, we adopt 
L2-norm to regularize the generalize linear component and adopt dropout and early 
stopping for the deep component. 

3 Deep wide GBDT_CNN network 
3.1 Model structure 
Based on the above GBDT_CNN_DNN architecture, linear part, gradient boosting 
decision tree part and deep network part are jointly trained in our model, the main network 
structure as Fig. 2. 
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Figure 2: Detail model architecture   

Fig. 2 illustrates the detail neural network architecture of our proposed GBDT_CNN_DNN 
model, which combines the low order feature with the high order feature in the area of 
recommendation. In the pooling process, this paper employs the method of segmental flexible 
pooling for the first time. Specially, the pooling window is acquired by neural network 
learning. In the model, the convolution kernels are 1 by 1, 3 by 3, and 5 by 5, and the number 
of convolution kernels is learned by neural network. It performs better than a manual setting. 

3.2 Convolution on boosting features 
Boosting algorithm [Chen and Guestrin (2016)] is consist of iteratively learning weak 
classifiers with respect to a distribution. The significance of the model is that the latter tree 
learns the residual of the previous tree. The leaf node of the latter tree is locally related to 
the previous tree, and the convolutional neural network [Sutskever, Hinton and Krizhevsky 
(2012)] is suitable for local relationship characteristics.  

𝑓𝑓𝑀𝑀(𝑥𝑥) = � 𝑇𝑇𝑖𝑖
𝑀𝑀

𝑖𝑖−1
(𝑥𝑥;𝜃𝜃𝑚𝑚) 

   (1) 

where 𝑇𝑇(𝑥𝑥;𝜃𝜃𝑚𝑚) is m decision tree, 𝜃𝜃𝑚𝑚 represents the parameters of the decision tree, M is 
the number of trees, and strong classifier 𝑓𝑓𝑀𝑀(𝑥𝑥)  can be composed of multiple weak 
classifiers 𝑇𝑇(𝑥𝑥;𝜃𝜃𝑚𝑚) linear added. 
The m gradient boosting tree has a relationship with the m-1 tree, as follows: 
𝑓𝑓𝑚𝑚(𝑥𝑥) = 𝑓𝑓𝑚𝑚−1(𝑥𝑥) + 𝑇𝑇(𝑥𝑥; 𝜃𝜃𝑚𝑚)  (2) 

Let 𝑦𝑦𝑖𝑖  is the real value, 𝑦𝑦𝑖𝑖 ≈ ∑ 𝑇𝑇(𝑥𝑥;𝜃𝜃𝑚𝑚)𝑀𝑀
𝑖𝑖=1 , furtherly we can calculate the following 

formula: 
𝑇𝑇𝑀𝑀−2(𝑥𝑥;𝜃𝜃𝑚𝑚−2) + 𝑇𝑇𝑀𝑀−1(𝑥𝑥;𝜃𝜃𝑚𝑚−1) + 𝑇𝑇𝑀𝑀(𝑥𝑥;𝜃𝜃𝑚𝑚) = 𝑦𝑦𝑖𝑖 − ∑ 𝑇𝑇𝑖𝑖𝑀𝑀−3

𝑖𝑖=1 (𝑥𝑥;𝜃𝜃𝑖𝑖)                  (3) 
We can deduce the following formula: 
𝑇𝑇𝑀𝑀−1(𝑥𝑥;𝜃𝜃𝑚𝑚−1) = 𝑦𝑦𝑖𝑖 − ∑ 𝑇𝑇𝑖𝑖𝑀𝑀−3

𝑖𝑖=1 (𝑥𝑥;𝜃𝜃𝑖𝑖) − 𝑇𝑇𝑀𝑀−2(𝑥𝑥;𝜃𝜃𝑚𝑚−2) − 𝑇𝑇𝑀𝑀(𝑥𝑥;𝜃𝜃𝑚𝑚)                 (4) 
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Considering that convolution neural network is good at capturing such local perceptual features 
related before and after, we employ the convolution neural network on boosting features. 

3.3 Deep neural network on original features 
The deep neural network can extract abstract high-order features, and the network with 
embeddings [Frome, Corrado, Shlens et al. (2013)] can generate unseen features better. 
The deep component is a feed-forward neural network, as shown in Fig. 1, for the 
categorical feature and numerical feature. The original inputs are converted into a low 
dimensional dense vector, which also called the embedding vector. In this paper, the 
embedding vectors are initialized with norm distribution, and then the values are trained to 
minimize the total loss function. These dense embedding vectors are fed into the hidden 
layers of a deep neural network in the forward progress. Each hidden layer is computed by 
the following equations: 
𝑦𝑦(𝑙𝑙+1) =  𝑓𝑓�𝑥𝑥 ∗ 𝑤𝑤(𝑙𝑙) + 𝑏𝑏(𝑙𝑙)�                                                                                              (5) 
where 𝑙𝑙 is the number of the layer and 𝑓𝑓 is the activation function [Schmidt-Hieber (2017)]. 
In this paper, we employ the rectified linear units.  
In the actual data set, some features fluctuate greatly, we try the following three feature 
transformations: 
(a) For each feature 𝑓𝑓𝑖𝑖, we design the following piecewise function. According to the range 
of the feature variables, the feature should add one to handle features whose value is zero. 
We also normalize the features to have mean value zero and standard deviation value one. 
The mean and standard deviation value was measured to the train set, and then applied to 
both train set and valid set. Some features have significant outliers, so any feature value 
that is more five standard deviations than the mean is truncated to five. We find these 
feature processing skills improve better in the test data. 

⎩
⎪
⎨

⎪
⎧ log�𝑓𝑓𝑖𝑖2 + 1� , 0 ≤ 𝑓𝑓𝑖𝑖 < 1

log(𝑓𝑓𝑖𝑖 + 1) ,𝑓𝑓𝑖𝑖 > 1
− log�𝑓𝑓𝑖𝑖2 + 1� ,−1 ≤ 𝑓𝑓𝑖𝑖 < 0
− log(|𝑓𝑓𝑖𝑖| + 1) ,𝑓𝑓𝑖𝑖 < −1

                                                                                          (6) 

(b) In order to reduce the fluctuation of continuous features, we also try the binning and 
bucket technology. The specific steps are as follows: Firstly, calculate the range of values 
for each column feature. Secondly, design the number of buckets. Thirdly, according to the 
equal frequency method, the data is placed in different buckets. 
(c) For each feature, it needs to scan all the data instance to estimate the information gain 
of all possible split points, which consume more time. Our method is Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). By the method of GOSS, 
we exclude a significant proportion of data instances with small gradients, and use the rest 
to estimate the information gain. GOSS can obtain quite an accurate estimation of the 
information gain with a much smaller data size. By the means of EFB, we bind mutually 
exclusive features to reduce the number of features. In our training data, the above three 
feature transformation methods can reduce the fluctuation well as a configuration file. In 
different data distribution, users can experiment each method and then choose the best one.  
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We try two ways as the DNN input: The first way is entering hidden vector into DNN directly, 
and the second way is applying second order feature result as DNN input. In large-scale data 
samples, the second way can extract more abstract features and achieve better results. 

 
Figure3: DNN part on Bi_Cross Feature 

The Fig. 3. has five layers: input feature vector layer, embedding layer, bi-cross feature 
layer, hidden layer and prediction score layer. The embedding layer projects each feature 
to a dense vector representation. The 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅𝑘𝑘 is the i-th embedding feature, the math form 
is as follows: 
𝑉𝑉𝑥𝑥 = {𝑥𝑥1𝑣𝑣1, 𝑥𝑥2𝑣𝑣2, … … , 𝑥𝑥𝑖𝑖𝑣𝑣𝑖𝑖 , 𝑥𝑥𝑛𝑛𝑣𝑣𝑛𝑛}                                                                                 (7) 
We then feed the embedding set 𝑉𝑉𝑥𝑥 into Bi-cross feature layer, which coverts embedding 
vector into Bi-cross layer value: 
𝑓𝑓(𝑉𝑉𝑥𝑥) = ∑ ∑ 𝑥𝑥𝑖𝑖𝑣𝑣𝑖𝑖𝑛𝑛

𝑗𝑗=𝑖𝑖+1
𝑛𝑛
𝑖𝑖=1 °𝑥𝑥𝑗𝑗𝑣𝑣𝑗𝑗                                                                                               (8) 

The Bi-cross feature layer is a stack of fully connected layers, which are capable of learning 
higher order interactions between features. We put the result into the hidden layer.  

3.4 Linear model on original features 
Linear model can extract relatively low-order features, which can remember obvious 
business rules with a few parameters. Its mathematical formula is as follows:  
𝑦𝑦 = 𝑤𝑤𝑇𝑇𝑥𝑥 + ∑ ∑ 𝑥𝑥𝑖𝑖𝑣𝑣𝑖𝑖𝑛𝑛

𝑗𝑗=𝑖𝑖+1
𝑛𝑛
𝑖𝑖=1 °𝑥𝑥𝑗𝑗𝑣𝑣𝑗𝑗 + 𝑏𝑏                                                                             (9) 

where y is the predicted value, x denotes the combination of the feature vectors, and w and 
b are the model parameters. Some features are the original inputs and the rest are statistical 
features [Han and Bhanu (2004)]. 
In practice, it is known that not all features are relevant to prediction, so we propose the 
attention mechanism on feature interactions by performing a weighted sum on the 
interacted vectors: 
𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖(𝑣𝑣𝑖𝑖°𝑣𝑣𝑗𝑗(𝑖𝑖,𝑗𝑗)∈𝑅𝑅𝑥𝑥 )𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗                                                                                        (10) 
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where 𝑎𝑎𝑖𝑖𝑖𝑖 is the attention score for cross feature 𝑤𝑤𝑖𝑖𝑖𝑖, and it shows the importance of 𝑤𝑤𝑖𝑖𝑖𝑖 in 
predicting the target. We construct an attention network to estimate the 𝑎𝑎𝑖𝑖𝑖𝑖, and it is shown 
in Fig. 4. 

 
Figure4: Two_order feature interactions attention 

Our attention network is defined as: 
𝑎𝑎𝑖𝑖𝑖𝑖∗ = ℎ𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑊𝑊�𝑣𝑣𝑖𝑖°𝑣𝑣𝑗𝑗�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 + 𝑏𝑏�                                                                       (11) 

 𝑎𝑎𝑖𝑖𝑖𝑖 =
exp (𝑎𝑎𝑖𝑖𝑖𝑖

∗ )
∑ exp (𝑎𝑎𝑖𝑖𝑗𝑗

∗ )(𝑖𝑖,𝑗𝑗)∈𝑅𝑅𝑥𝑥
                                                                                                       (12) 

The attention scores are normalized through the soft-max function. We use the leak rectifier 
as the activation function, which empirically shows good performance. To summarize, we 
give the improved formulation of generalize linear model as: 
𝑦𝑦_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑤𝑤0 + ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 + ∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖(𝑣𝑣𝑖𝑖°𝑣𝑣𝑗𝑗𝑛𝑛
𝑗𝑗=𝑖𝑖+1

𝑛𝑛
𝑖𝑖=1 )𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗                                            (13) 

where 𝑎𝑎𝑖𝑖𝑖𝑖  has been defined in Eq. (12). Compared with classic linear model, adding 
attention mechanism improves 1.5 percent AUC score.  

4 Experiments 
4.1 Data analysis 
We need an evaluation function for learning algorithm, and the dataset is divided into 
training set, validation set, and test set. Training set is used to train models, validation set 
is used to adjust hyper-parameters, and test set is used to test the final quality of the overall 
model. Our model is 3 percent higher than the deep neural network model alone. We 
experiment six models in the same data set. The first model only applies DNN part. The 
second model only applies linear part. The third model uses both DNN part and linear part. 
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The fourth model uses both GBDT_CNN part, linear part, and DNN part. The fifth model 
adds attention based on the fourth model. The sixth model shares the embedding with first 
order feature value and second order feature value. Our experiment shows that the sixth 
model has better performance, and our empirical analysis is as follows: 

Table 1: The AUC of model performance 

Model AUC LogLoss MSE Accuracy 

Logistic Regression 0.8320 0.15 0.63 0.8214 

DNN 0.8351 0.14 0.62 0.8301 

LR&DNN 0.8429 0.13 0.62 0.8534 

LR_GBDT_CNN_DNN 0.8597 0.08 0.61 0.8567 

LR_GBDT_CNN_DNN_v1 0.8599 0.08 0.58 0.8603 

LR_GBDT_CNN_DNN_v2 0.8626 0.07 0.56 0.8762 

Our proposed model contains convolution neural network based on gradient boosting 
decision tree and deep neural network. We use decision tree as base machine learner, and 
then employ convolutional neural network to mine the perception of local features. In this 
paper, we make model fusion by the characteristics of these two algorithms for the first time.  
In Fig. 5, back propagation implements an iterative process. At the beginning of each iteration, 
we should select some train sample, which called batch data. By feed forward, the batch data 
can get its prediction result. Because train data has label, the neural network compute the loss 
between label and prediction result. Finally, back propagation updates the weights. 

 

Figure 5: Neural network optimize process in our model 

As the training process shown in Fig. 5, at the beginning we initialize the parameters to 
start training, and then adjust parameter by the error, which is based on the objective 
function, finally we obtain a better model to test performance. From a perspective of 
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serving, our model has fewer parameters than other models, which contain wide part using 
factorization machine or using logistic regression. 

4.2 Parameter skills and service performance 
In order to make the loss function continue declining in the training set, we clip the gradient 
[Bottou (2012)], and the mathematic formula is as follows: 

𝑔𝑔𝑖𝑖 = 𝜕𝜕𝜕𝜕(𝑤𝑤)
𝑤𝑤𝑖𝑖

                                                                                                                         (14) 

We set clipped threshold c, and �|𝑔𝑔|� = �∑ 𝑔𝑔𝑖𝑖2𝑛𝑛
𝑖𝑖=1

2
, when the �|𝑔𝑔|� > 𝑐𝑐, we set 𝑔𝑔 = 𝑐𝑐

||𝑔𝑔||
.𝑔𝑔. 

By this way our model avoids gradient disappearance or gradient explosion [Johnson and 
Zhang (2013)]. In our model, generalized linear part shares the one order embedding and 
two order embedding, which reduces the number of parameters and improves the service 
prediction speed. 
Tab. 2 shows the training time and evaluation index about different model. According to 
Occam’s razor theory, when the model has a similar effect, fewer the parameters are, better 
the performance is. In summary, the efficiency of our model is comparable to the most 
efficient deep model in the state-of-the-art. 

Table 2: FM part share embedding experiment 

Experiment ID Training time AUC LogLoss Accuracy 

Not share embedding 125 min 0.7152 0.08 0.8603 

Sharing embedding 114 min 0.7274 0.07 0.8762 

5 Conclusion 
In this paper, we propose GBDT_CNN_DNN model, an end-to-end TREE&DEEP learning 
framework for the recommendation system. In the data of Kaggle competition, our model 
has the state-of-the-art performance. GBDT_CNN_DNN trains a deep component and tree 
component jointly. It has the following advatages:1) it does not need any pre-training; 2) it 
learns high-order, middle-order and low-order feature interactions. Linear part can learn the 
low-order feature, gradient boosting decision tree part can learn the middle-order feature and 
deep neural network can learn the high-order feature; 3) it introduces a sharing strategy of 
feature embedding to reduce manual feature engineering. There are two directions for future 
work. First, currently, we simply employ GBDT leaf node for embedding features. We can 
explore the usage of the Gate Recurrent Unit (GRU) mechanism [Dey and Salemt (2017)] to 
capture the related trees according to the candidate item. Second, in order to reduce the time 
complexity, we are interested in developing a distributed version of GBDT_CNN_DNN 
which can be trained efficiently on a GPU cluster. 
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