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Abstract: Quantum correlation which is different to the entanglement and classical 
correlation plays important role in quantum information field. In our setup, neural network 
method is adopted to simulate the link between the Rènyi discord (α = 2) and the geometric 
discord (Bures distance) for special canonical initial states in order to show the consistency 
of physical results for different quantification methods. Our results are useful for studying 
the differences and commonalities of different quantizing methods of quantum correlation.
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1 Introduction
As part of both artificial i ntelligence a nd s tatistics, m achine l earning c ome f rom the 
computer science field in which the goal is to learn the potential patterns from prior given 
data sets. It can make a decision or prediction for future unknown situation based on this 
learned patterns. Recently, some quantum problems has been study using machine learning 
method, such as quantum state tomography [Giacomo, Guglielmo, Juan et al. (2018)], and 
quantum many-body problem [Giuseppe and Matthias (2017)]. The results of these works 
suggest that machine learning can be a new platform for solving some problems of quantum 
physics.
Quantum correlation which plays important role in quantum information field i s firstly 
quantified by the concept of "quantum discord" which is introduced by Harold et al. [Harold 
and Wojciech (2001)] and Henderson et al. [Henderson and Vedral (2001)] in about ten 
years ago. It show us that there is an universal consensus that entanglement entirely captures
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quantum correlation only for a global pure state [Marco, Thomas, Rosario et al. (2015)],
namely the entanglement does not account for all nonclassical correlations and that even the
states with zero entanglement usually contain quantum correlations [Harold and Wojciech
(2001); Kavan, Aharon, Hu et al. (2012)]. So, many related works have been presented
[Xu, Xu, Li et al. (2010); Claudia, Fabrizio, Paolo et al. (2013); Zhu, Ding, Wu et al.
(2016); Zhu, Ding, Wu et al. (2015); Zhu, Fu and Lai (2013); Zhu, Ding, Wu et al. (2015);
Huang (2014); Li, Zhu, Zhu et al. (2018); Davide, Alexandre, Vittorio et al. (2014);
Manabendra (2014); Benjamin, Rosario, Giuseppe et al. (2013); Qu, Zhu, Wang et al.
(2018); Liu, Chen, Liu et al. (2018); Qu, Wu, Wang et al. (2017); Qu, Cheng, Liu et
al.(2018)]. In general, these works are classified two class for the different quantification
methods. One is the entropy style, such as, quantum discord and the Rènyi entropy discord
(RED) [Mario, Kaushik and Mark (2015); Kaushik, Mario and Mark (2015)]. The other is
geometric quantization methods, such as Hilber-Schmidt (DHS), Bures distance [Marco,
Thomas, Wojciech, Rosario et al. (2015); Davide, Alexandre, Vittorio et al. (2014);
Manabendra (2014)] (DBr), trace-norm and Hellinger [Marco, Thomas, Wojciech et al.
(2015); Benjamin, Rosario, Giuseppe et al. (2013)] (DHL).

From the point of view of invariance of physical laws, even for different methods, the
same physical problem should have the same result. So, finding the relation between
different quantification methods will help us better study the properties of quantum
correlation. Unfortunately, it need face the complex nonlinear mathematical forms of
different quantification methods when we wish to resolve this problem from physical view.
Looking at this problem from data processing perspective, this problem can be solved by
machine learning method. In this work, we extent our works [Zhu, Li, Zhu et al. (2018);
Ding, Zhu, Wu et al. (2017)] and further construct the link between DBr and the RED of
α = 2 by the use of machine learning method for special canonical initial states (SCI).

2 The link between the DBr and RED(α = 2) for SCI

2.1 The brief of DBr and RED

Cianciaruso et al. discussed the geometric measure of dicord-type correlations based on the
Bures distance (dBu) [Marco, Thomas, Rosario et al. (2015)], which is defined as follows:

DBr ≡ inf
χ′
d2
Bu(ρ, χ′) = inf

χ′
2(1− Tr([

√
χ′ρ

√
χ′]1/2)) (1)

where the set of classical-quantum states χ′ =
∑

i pi|i >< i|A ⊗ ωBi , pi is a probability
distribution, {|i >A} denotes an orthogonal basis for subsystem A, ωBi is an arbitrary
ensemble of states for subsystem B, and dBu(ρ, χ′) is the Bures distance.

Because it is difficult to obtain mathematically analytic form of Eq. (6) for general models,
some numerical calculation methods were proposed in Davide et al. [Davide, Alexandre,
Vittorio et al. (2014); Manabendra (2014)] which are also adopted in this work to study
DBr based on the relation between quantum Fisher information and the Bures distance.
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The Bures distance can be rewritten

PA(ρAB|Γ) =
1

4
min
HΓ
A

F (ρAB;HΓ
A) (2)

where F denotes the quantum Fisher information,

F (ρAB;HΓ
A) = 4

∑
i<k:qi+qk 6=0

(qi+qk)2

qi+qk
|〈ψi|(HΓ

A ⊗ IB)|ψk〉|2, with qi, |ψi〉 denoting
respectively the eigenvalues and eigenvectors of ρAB , and the minimum is taken over the
set of all local Hamiltonians HΓ

A.

The Rènyi quantum discord of ρAB is an extension of quantum discord and is defined for
α ∈ (0, 1)∪ (1, 2] as follows [Mario, Kaushik and Mark (2015); Kaushik, Mario and Mark
(2015)]:

Dα(ρAB) = inf
ΠAk

Iα(E;B | X)τXEB (3)

where the Rènyi conditional mutual information Iα(E;B | X)τXEB satisfies:

Iα(E;B | X)τXBE =
α

α− 1
log Tr{(ρ

α−1
2

X TrE{ρ
1−α

2
EX ραEBXρ

1−α
2

EX }ρ
α−1

2
X )

1
α } (4)

where the the classical output X denotes the measurement acting on system A and E is an
environment for the measurement map [Kaushik, Mario and Mark (2015)]. In this paper, we
choose the von Neumann measurement Πi′ = |i′〉〈i′|(i = 0, 1) with two angular parameters
θ and φ: |0′〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉 and |1′〉 = sin(θ/2)|0〉 − eiφ cos(θ/2)|1〉
(0 ≤ θ ≤ π/2; 0 ≤ φ ≤ π). The properties of the Rènyi quantum discord are shown in
Kaushik et al. [Kaushik, Mario and Mark (2015)].

2.2 The sample of SCI states

For the class of canonical initial (CI)states [Mazzola, Piilo and Maniscalco (2010)] of the
density matrix

ρs(0) =
1

4


1 + C33 C01 C10 C11 − C22

C∗01 1− C33 C11 + C22 C10

C∗10 C11 + C22 1− C33 C01

C11 − C22 C∗10 C∗01 1 + C33

 (5)

The SCI states needs to be satisfied further [Titas, Amit, Anindya et al. (2015)]:
C22/C33 = −C11

C10/C01 = C11

(C33)2 + (C01)2 ≤ 1
(6)
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In order to generate more SCI states, we consider the bit-flip (BF) noise channel [Titas,
Amit, Anindya et al. (2015)]. In this scenario, it is easy to show that during the
evolution of ρ(t) , c11, c10, and c01 remain unchanged, whereas the correlations caa and
the magnetization c0a and ca0(a = 2, 3) decay with γ as (1− γ)2 and (1− γ), respectively.
Here, γ = 1 − exp(−Γ) and Γ > 0. Simultaneously, it is also easy to check the ρs(t)
satisfy Eq. (2). Finally, for every sample of SCI states, the values of DBr and RED can be
obtained by the define of DBr and RED.

3 Neural network model
Considering the complex nonlinear mathematical forms ofDBr andRED, the link between
them maybe nonlinear function. So we need to find a method which simulates this nonlinear
function. Inspired by the biological neural network we build artificial neural network to
study the data. Artificial neural networks is a multi-layer perception model, for each layer
we have input data and output data which is the next layer’s input. The neural network is
used to construct the link between DBr and RED because the multi-layer neural network
can represent any function no matter how complex it is. We train the neural network to
adjusted the the weight and bias parameters and use the well-trained neural network to
predict the output according to the input we give [Simon (2008)]. Fig. 1 shows a structure
graph of our neural network. It has input data xi, hidden layer neural ali and output data y,
satisfying

zl = W (l)Al−1 + bl−1; ali = f(zli)

where the lth layer neural cells denote Al = [al1, a
l
2....a

l
n] and for l = 1, A1 = [xl1, x

l
2....x

l
n],

zl = [zl1, z
l
2....z

l
n].

The activation function f(z) is used to realize the nonlinear relation between input and
output of each neural node,

f(z) = tanh(z) =
ez − e−z

ez + e−z
(7)

We adjust the parameters of neural network to minimize the cost function by using
back-propagation algorithm and gradient descent method.

cost(x) =
∑

(y − y′)2 (8)

The summation for all the training data(training samples). y′ and y denote the predicted
value and real value of DBr.

For our problem, the 4 layer neural network is constructed. The number of neurons per
layer is 7, 8, 1, 1. The Tab. 1 shows the learning process of neural network.

In this paper, we generate 200193 samples under the bit-flip (BF) noise channel (Here,
C11 ∈ [−1, 1], C10, C01, C22 and C33 ∈ [−0.3, 0.3], t ∈ [0, 2], with step 0.1. Γ =
[1, 2, 3, 4, 5]). The total number of samples are more than one hundred and twenty thousand
with the repetition rate less than 1%. Considering the calculation process of entropy,
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Figure 1: The structure graph of our neural network. bl is the bias unit of lth layer, a(l)
i is

the ith neural node of l layer and the input layer satisfies l = 1. W (l) is the weight matrix,
the elements w(l)

ij is the weight of connection between a(l−1)
j and a(l)

i

Table 1: Learning process of neural network
Learning process
Input: matrix n ∗ 7 (n data samples with 7 features)
Output: matrix n ∗ 1, the predicted value y′ of DBr for each sample
1.Initial the parameters (W,b) in neural network.
2.Split the data set into training data and test data randomly with
proportion 90% and 10%.
for t=1:100000 do
Minimize the difference between predicted value y′ and real value y by updating the
parameters using gradient descent on training data
End for
3.use the validation data to choose the neural network with the minimal cost function.
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Figure 2: The figure of the mean-square error (MSE) which is equal to the expectations of
cost change with epoch. The solid(+) line shows the behavior of test(train) data

the important characteristic parameters of the density matrix are the eigenvalues and the
optimized selection of measurement in RED calculation, seven parameters, including the
four eigenvalues of ρs(t) and θ and φwhich are introduced in theRED calculation process,
and the value of RED, are chosen as the input features of neural network. In Fig. 2, the
+ line shows that at the end of training, the mean-square error (MSE)which is equal to the
expectations of cost rapidly decreases at first hundreds epochs and eventually converges
after hundred thousand epochs. The MSE is less than 0.0042. This means that a good link
is constructed based on our model.

3.1 Overfitting

As we apply the machine learning methods, the overfitting need to be carefully avoided
in the training process. A regularization technique named dropout is applied to reduce
overfitting in neural networks by preventing complex co-adaptations on training data.
Dropout can effectively prevent overfitting, which means that we temporarily and randomly
remove some units from the network, along with all its incoming and outgoing connections
[Nitish, Geoffrey, Alex et al. (2014)]. In Fig. 2, it is shown that after 10000 epoch of
training the MSE of training data has reduced to 0.0042 and the MSE of test data is close
to that (the magnitudes of the distance between two lines is 10−4). We can claim that the
neural network has constructed without overfitting. It also further demonstrates that we
obtain the link between RED(α = 2) and DBr for SCI states. Our results pave a way for
the further study of the physical nature of quantum correlation.
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Finally, as a conclusion of this section, our neural network model is appropriate and
successfully simulated the relationship between geometry and entropy style discord for
SCI.

4 Conclusion

In this paper, we calculate the values of DBr and RED which are used to quantify the
quantum correlation for SCI, and the link between geometric (DBr) and entropy (RED)
style discord is successfully constructed by our neural network model for SCI . From
the physical perspective, the quantum correlation shows the different characteristics of the
quantum states contrasting with the classical states or the changing degree of the quantum
states when it suffers the local disturb. So, the system information presented by different
discord like definitions will be different. Searching the link between these defines, it will
not only help us to understand the differences and commonalities of systematic information
obtained by different definitions, but also help us to understand the total properties of
quantum states, such as coherence, and the properties of entanglement.
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