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Abstract: Tibetan language has very limited resource for conventional automatic speech 
recognition so far. It lacks of enough data, sub-word unit, lexicons and word inventories 
for some dialects. And speech content recognition and dialect classification have been 
treated as two independent tasks and modeled respectively in most prior works. But the 
two tasks are highly correlated. In this paper, we present a multi-task WaveNet model to 
perform simultaneous Tibetan multi-dialect speech recognition and dialect identification. 
It avoids processing the pronunciation dictionary and word segmentation for new dialects, 
while, in the meantime, allows training speech recognition and dialect identification in a 
single model. The experimental results show our method can simultaneously recognize 
speech content for different Tibetan dialects and identify the dialect with high accuracy 
using a unified model. The dialect information used in output for training can improve 
multi-dialect speech recognition accuracy, and the low-resource dialects got higher 
speech content recognition rate and dialect classification accuracy by multi-dialect and 
multi-task recognition model than task-specific models.  
 
Keywords: Tibetan multi-dialect speech recognition, dialect identification, multi-task 
learning, wavenet model. 

1 Introduction 
Tibetan language is one of the most widely used minority languages in China. It is partly 
used in India, Bhutan and Nepal. The automatic speech recognition technology for 
Tibetan language has drawn more and more attention of researchers. It has shown that 
Tibetan speech recognition has a wide demand and immeasurable application prospects 
in many practical, real-life situations. 
During the long-term development of Tibetan language, different dialects have been 
formed. Tibetan language is divided into three major dialects in China, including Ü-
Tsang, Kham and Amdo dialect. Three dialects are divided into several local sub-dialects. 
Tibetan dialects pronounce very differently in different regions, such as Ü-Tsang and 
Kham dialects are tonal, but Amdo dialect is toneless. However, the written characters 
are unified for all Tibetan dialects. Since Lhasa of Ü-Tsang dialect is Tibetan standard 
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speech, there are much more research works than other dialects on linguistics, speech 
recognition and corpus [Zhang (2016); Yuan, Guo and Dai (2015); Pei (2009); Li and Meng 
(2012); Wang, Guo and  Xie (2017); Cai and Zhao (2008); Cai (2009); Han and Yu (2010)]. 
Dialect identification has recently gained substantial interest in the field of language 
identification. It is more challenging than a general language identification task, since the 
similarities among dialects of a language are much more in terms of their phoneme set, 
word pronunciation, and prosodic traits [Shon, Ali and Glass (2018)]. Traditionally, 
speech content recognition and dialect classification are treated as two independent tasks 
and modeled respectively. The work in [Shon, Ali and Glass (2018)] explored end-to-end 
model only for dialect recognition using both acoustic and linguistic feature on Arabic 
dialect speech data. However, the way humans process speech signals always decipher 
speech content and other meta information together and simultaneously, including 
languages, speaker characteristics, emotions, etc. [Tang, Li and Wang (2016)]. The recent 
works in Li et al. [Li, Sainath, Sim et al. (2018); Toshniwal, Sainath, Weiss et al. (2018); 
Watanabe, Hori and Hershey (2017)] discussed how to learn a single end-to-end model 
for joint speech and language recognition. The work in Li et al. [Li, Sainath, Sim et al. 
(2018)] adopted listen, attend and spell (LAS) model for 7 English dialects and it has 
shown good performance compared to other LAS models for single dialect tasks. Similar 
work in Toshniwal et al. [Toshniwal, Sainath, Weiss et al. (2018)] with multi-task end-to-
end learning for 9 Indian languages obtained the largest improvement by conditioning the 
encoder on the speech language identity. The work in Watanabe et al. [Watanabe, Hori 
and Hershey (2017)] was based on hybrid attention/connectionist temporal classification 
(CTC) architecture where the model used a deep convolutional neural networks (CNNs) 
followed by bidirectional long short-term memory (BLSTM) in encoder networks, and 
showed that it achieved the state-of-the-art performance in several ASR benchmarks 
including English, Japanese, Chinese mandarin, German etc. These works suggested that 
end-to-end model can contribute to handling the variations between different languages 
or between different tasks by learning and optimizing a single neural network. 
End-to-end model has more advantages for low-resource languages than conventional 
DNN/HMM systems because it avoids the need of linguistic resources such as 
dictionaries and phonetic knowledge [Li, Sainath, Sim et al. (2018)]. The work in [Sriram, 
Jun, Gaur et al. (2018)] proposed a general, scalable, end-to-end framework that uses the 
generative adversarial network (GAN) that was also used in many fields, including 
computer vision [Li, Jiang and Cheslyar (2018)], to enable robust speech recognition, 
which do not need domain expertise and simplifying assumptions. Considering limited 
linguistic resource for Kham dialect and Amdo dialect in Tibetan, our work tries to build 
an end-to-end model for Tibetan multi-task recognition. It can reduce the efforts of 
language-dependent processing including the use of pronunciation dictionary and word 
segmentation which are the big barriers when we build a conventional ASR for new 
Tibetan dialect. Meanwhile, we try to explore the capability of end-to-end model for 
capturing the variations between some small-data dialects and a big-data dialect.  
In this work, we utilize WaveNet-CTC model to train multi-task recognition on three 
Tibetan dialects speech data. Since WaveNet is a deep generative model with very large 
receptive fields, it can capture the characteristics of many different speakers with equal 
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fidelity and model the long-term dependency on speech data [Van Den Oord, Dieleman, 
Zen et al. (2016)]. It was efficiently applied for Multi-speaker speech generation and text-
to-speech. Generative model can capture the underlying data distribution as well as the 
mechanisms used to generate data, we believe that such ability is crucial for shared 
representation across speech data from different dialects in a language. WaveNet can also 
give the predict distribution for speech data conditioned on all previous input, so we use 
the dialect information as an additional label output during training in order to perform 
the joint speech and dialect recognition. Experimental results show the advantage of 
WaveNet-CTC for multi-task Tibetan speech recognition, and multi-dialect model can 
improve the speech content recognition accuracy for limited-resource dialects.  

2 Related works 
In Tibetan speech recognition, most of research works is about Lhasa of Ü-Tsang dialect. 
The recent work in Wang et al. [Wang, Guo and Xie (2017)] applies the end-to-end 
model based on CTC technology to Lhasa-Ü-Tsang continuous speech recognition, 
achieving better performance than the state-of-the-art bidirectional long short-term 
memory network. The work in  Huang et al. [Huang and Li (2018)] used end-to-end 
model training by applying the cyclical neural network and CTC algorithm to the 
acoustic modeling of Lhasa-Ü-Tsang speech recognition, and introduces time domain 
convolution operations on the output sequence of the hidden layer to reduce the time 
domain expansion of the network’s hidden layer which improve the training and 
decoding efficiency of the model. The works in Li et al. [Li, Wang, Wang et al. (2018)] 
introduces the tone information into Lhasa-Ü-Tsang continuous speech recognition, and 
designs a set of phonemes with tones, which shows that the tones plays an important role 
in speech recognition of Lhasa-Ü-Tsang recognition. 
 In the speech recognition task on Tibetan-Chinese bilingual language, the work in Wang 
et al. [Wang, Guo, Chen et al. (2017)] solved the problem of sparsity caused by 
characters as a modeling unit through selecting Tibetan characters and Mandarin 
nontonal syllables as modeling units and adding noise algorithms. As for the speech 
recognition for other Tibetan dialects, due to the resources of Kham and Amdo dialect are 
relatively scarce, a few of related studies are about the endpoint detection, speech feature 
extraction, and isolated word recognition [Cai and Zhao (2008); Cai (2009); Han and Yu 
(2010); Li, Yu, Zheng et al. (2017)]. 
As the topic of Tibetan dialect identity recognition, to our knowledge, there is almost no 
relevant research. Therefore, the open corpus provided in this paper can make up for this 
gap for relevant researchers.  
In the aspect of multi-task framework for speech recognition, many researchers have 
done some related works. The work in Ruder [Ruder (2017)] introduced the motivation, 
learning methods, working mechanism and important auxiliary task selection mechanism 
of multi-task framework, which provides guidance for applying multi-task framework to 
speech recognition. The work in Chen et al. [Chen and Mak (2015)] used multi-task 
framework to conduct joint training of multiple low-resource languages, exploring the 
universal phoneme set as a secondary task to improve the effect of the factor model of 
each language. The work in Siohan et al. [Siohan and Rybach (2015)] proposed two 
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methods, namely, early system fusion and multi-task system fusion strategy to reduce the 
computational complexity of running multiple recognizers in parallel to recognize the 
speech of adults and children. The work in Tang et al. [Tang, Li and Wang (2016)] 
integrated speaker recognition and speech recognition into a multi-task learning 
framework using a recursive structure which attempts to use a unified model to 
simultaneously identify the two work. The work in Qian et al. [Qian, Yin, You et al. 
(2015)] combined two different DNNs (one for feature denoising and one for acoustic 
modeling) into a complete multi-task framework, in which all parameters can be used in 
real multi-task mode with two criteria training from scratch. The work in [Thanda and 
Venkatesan (2017)] combined the speaker's lip visual information with the audio input 
for speech recognition to learn the mapping of an audio-visual fusion feature and the 
frame label obtained from the GMM/HMM acoustic model, in which the secondary task 
is mapping visual features to frame labels derived from another GMM/HMM model. The 
work in Krishna et al. [Krishna, Toshniwal and Livescu (2018)] proposed a hierarchical 
multi-task model which step further on standard multi-task framework, and the 
performance in high resource and low resource language recognition were compared. The 
work in Yang et al. [Yang, Audhkhasi, Rosenberg et al. (2018)] conducted joint learning 
of accent recognizers and multi-task acoustic models to improve the performance of 
acoustic models. The above works have one thing in common, that is, the transfer of 
knowledge between tasks, which is a part of reason why the multi-task framework works. 
All these works demonstrate the effectiveness of multi-task mechanism. 
So it is very significant to establish an accurate Tibetan multi-dialect recognition system 
using the existing Lhasa-Ü-Tsang speech recognition model and limited amount of other 
dialect data. It can not only relieve the burdensome data requirements, but also quickly 
expand the existing recognition model to other target language. It can accelerate the 
application of Tibetan speech recognition technology. 

3 WaveNet-CTC for Tibetan multi-task recognition model 
3.1 Wavenet 
WaveNet, a deep neural network, is used for generating raw audio waveforms in Van 
Den Oord et al. [Van Den Oord, Dieleman, Zen et al. (2016)]. The model is fully 
probabilistic and autoregressive, with the predictive distribution for each audio sample 
conditioned on all previous ones. It yielded state-of-the-art performance for text-to-
speech. A single WaveNet can capture the characteristics of many different speakers and 
model distributions over thousands of random variables. The work in Van et al. [Van Den 
Oord, Dieleman, Zen et al. (2016)] also shows that it can be used as a discriminative 
model, returning promising results for speech recognition. In our work, we employ it to 
model the distribution of speech data from different dialects and different speakers.  
WaveNet model is composed of stacked dilated causal convolutional layers. The network 
models the joint probability of a waveform as a product of conditional probabilities as Eq. (1). 
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The causal convolutions shown in Fig. 1. cannot make the prediction ),,|( 11 tt xxxp +  
of model at timestep t depend on any of the future timesteps Ttt xxx ,, 21 ++ . At training 
time, the conditional predictions for all timesteps can be made in parallel because all 
timesteps of ground truth x are known. When generating with the model, the predictions 
are sequential: after each sample is predicted, it is fed back into the network to predict the 
next sample. When modeling a long sequence, causal convolutions are faster to train than 
RNNs, since they do not have recurrent connections.  

 
Figure 1: A stack of causal convolutional layers [Van Den Oord, Dieleman, Zen et al. 
(2016)] 

A stack of dilated causal convolutional layers with dilation {1, 2, 4, 8} is shown in Fig. 2. 
It is more efficient than a causal convolution layers to increase the receptive field, since 
the filter is applied over an area larger than its length by skipping input values with a 
certain step.  
Stacking a few blocks of dilated causal convolutional layers has very large receptive 
fields size. For example, 3 blocks of dilated convolution with the dilation {1, 2, 4, 8} are 
stacked, where each {1, 2, 4, 8} block has receptive field of size 16, and then the dilation 
repeats as {1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8}. So the stacked dilated convolutions have 
receptive field of size 4096. 

 
Figure 2: A stack of dilated causal convolutional layers [Van Den Oord, Dieleman, Zen 
et al. (2016)] 

WaveNet uses the gated activation unit as same as the one used in the gated PixelCNN 
[Oord, Kalchbrenner and Kavukcuoglu (2016)]. Its activation function is as Eq. (2). 

)*tanh( iif,i xWh = ʘ )*, iig xW（σ                                                                                              (2) 

where * denotes a convolution operator, ʘ denotes an element-wise multiplication 
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operator, ）（⋅σ is a sigmoid function. i  is the layer index. f and g denote filter and gate, 
respectively, and W is learnable weight. 
WaveNet uses residual and parameterised skip connections to speed up convergence and 
enable training of much deeper models. The more details on WaveNet can be found in 
[Van Den Oord, Dieleman, Zen et al. (2016)].  

3.2 End-to-end Tibetan multi-task model 
We adopt the architecture of Speech-to-Text-WaveNet [Namju (2017)] for Tibetan multi-
task speech recognition. It uses a single CTC to sit on top of WaveNet and trains 
WaveNet with CTC loss. The forward-backward algorithm of CTC can map speech to 
text sequence. The architecture is shown as Fig. 3.  

 
Figure 3: The architecture of WaveNet-CTC [Huang and Li (2018)] 

The difference among Tibetan dialects is mainly expressed in phonetics, but minor in 
vocabulary and grammar. In the period of Tubo Dynasty, many works had been done for 
the determination in Tibetan language writing, which still kept the basic unity of Tibetan 
written language. So far, Tibetan people have no major obstacles in communication with 
written language. Even if there is a small amount of differences in vocabulary, it will tend 
to be unified. The rules of grammar have changed slightly. Tibetan characters are written 
in Tibetan letters from left to right, but there is a vertical superposition in syllables 
(syllables are separated by delimiter “་”.), which is a two-dimensional planar character 
shown as Fig. 4. A Tibetan sentence is shown in Fig. 5, where the sign “|” is used as the 
end sign of a Tibetan sentence. Tibetan letters are not suitable for the output symbols of 
end-to-end model, because the output is not a recognized Tibetan characters sequence. So 
a syllable of Tibetan characters is used as the CTC output unit.  
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Figure 4: The structure of a Tibetan syllable 

 
Figure 5: A Tibetan sentence (It means I have eight bucks) 

 
Figure 6: Our end-to-end model for Tibetan multi-task recognition 

In this paper, we explore to expand the Tibetan characters sequence with dialect symbols 
as output targets. For example, when including the Yushu-Kham dialect, we add the 
symbol ‘Y’ into the label inventory. We evaluate two ways to add the dialect information 
into label sequence. One is to add the symbol to the beginning of the target label 
sequence, like “Y �གས �ེ ཆེ” (“�གས་�ེ་ཆེ་།” means “Thanks” in English). The other is to add the 
symbol at the end of the label sequence, like “�གས �ེ ཆེ Y”.  
Meanwhile, we remove the sign “|” in Tibetan sentence and replace the delimiter “་” with 
the space. In this work, we do not combine a language model. Our end-to-end model for 
Tibetan multi-task speech and dialect recognition is shown as Fig. 6. 
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4 Experiments 
4.1 Data 
Our experimental data is from an open and free Tibetan multi-lingual speech data set 
TIBMD@MUC, which can be downloaded from 
https://pan.baidu.com/s/14CihgqjA4AFFH1QpSTjzZw. The text corpus consists of two 
parts. One is 1396 spoken language sentences selected from the book “Tibetan Spoken 
Language” [La (2005)] written by La Bazelen, and the other part is collected to 8,000 
sentences from online news, electronic novels and poetry of Tibetan on internet. All text 
corpuses include a total of 3497 Tibetan syllables.  
There are 114 recorders who were from Lhasa City in Tibet, Yushu City in Qinghai 
Province, Changdu City in Tibet and Tibetan Qiang Autonomous Prefecture of Ngawa. 
They used different dialects to speak out the same text for 1396 spoken sentences, and 
other 8000 sentences are read loudly in Lhasa dialect. Speech data files are converted to 
16K Hz sampling frequency, 16bit quantization accuracy, and wav format. 
Our experimental data for multi-task speech recognition is shown in Tab. 1, which 
consists of 20.73 hours Lhasa-Ü-Tsang, 2.82 hours Yushu-Kham, and 2.15 hours Amdo 
pastoral dialect, and their corresponding texts contain 3497 syllables for training. We 
collect 0.3 hours Lhasa-Ü-Tsang, 0.2 hours Yushu-Kham, and 0.2 hours Amdo pastoral 
dialect respectively to test. 
39 MFCC features of each observation frame are extracted from speech data using a 
25ms window with 10ms overlaps. 

Table 1: Tibetan multi-dialect dataset statistics 

Dialect 
Training 
data (hours) 

Training 
utterances 
(#) 

Test data 
(hours) 

Test 
 utterances 
(#) 

Lhasa-Ü-Tsang 20.73 15870 0.3 264 

Yushu-Kham 2.82 2203 0.2 137 

Amdo pastoral 
dialect  2.15 2671 0.2 111 

Total 25.7 20744 0.7 512 

 

4.2 Model details 
For multi-task speech recognition, the CTC output layer contains 3502 nodes (3497+1 
blank+1 space+3 dialect ID labels). The WaveNet network consists of 15 layers, grouped 
into 3 dilated residual block stacks of 5 layers. In every stack, the dilation rate increases 
by a factor of 2 in every layer, starting with rate 1 (no dilation) and reaching the 
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maximum dilation of 16 in the last layer. The filter size of causal dilated convolutions is 
7. The number of hidden units in the gating layers is 128. The number of hidden units in 
the residual connection is 128. The model was trained for 100 epochs with the ADAM 
optimizer with batch size of 10. The learning rate was held constant at. The models were 
trained on one Nvidia GTX1070Ti GPU. 
For dialect-specific model for small-data dialects, we first took the multi-dialect model 
without dialect ID, i.e., “Model”, as the starting point and retraining the same architecture 
for each dialect using a small amount of training data. We refer to this type of models as 
“Model-R” in Tab. 2. These models got acceptable recognition rates. We also build 
dialect-specific models on each dialect data, as “Dialect-specific model” in Tab. 2. The 
Model-R by retaining achieved better performance than Dialect-specific model for small-
data dialects for speech content recognition. 

Table 2: Syllable error rate (%) of dialect-specific models 

 Yushu-Kham Amdo pastoral dialect 

Model-R 45.91 49.74 

Dialect-specific 
model 52.46 53.47 

For dialect identity recognition model, we used a two-layer LSTM (300 hidden units in 
each layer) network followed by a softmax layer to classify the dialect identities, in 
which cross entropy was adopted as loss function. The model was trained for 500 epochs 
with the ADAM optimizer with batch size of 50. The learning rate was held constant at 
0.001. The weight parameters of the softmax layer were initialized with random uniform 
distribution of range [0, 1]. We also crop the gradient to within [-1, 1] to alleviate the 
gradient vanishing. 

4.3 Results 
The experimental results are shown in Tab. 3 and Tab. 4. We refer to the model 
integrated with dialect ID at the beginning of the output as “ID-Model”, the model with 
dialect ID at the end of the output as “Model-ID”, the model without dialect information 
in output as “Model” respectively, and compared them with the end-to-end Dialect-
specific model.  
From Tab. 3, we can see that all multi-dialect speech recognition models outperform 
dialect-specific models for low-resource dialects, including Yushu-kham dialect and 
Amdo pastoral dialect. WaveNet-CTC model can capture the shared speech features and 
linguistic features among different dialects of a language. The underlying shared 
knowledge in one language can transfer from one dialect to other dialects. For Lhasa-Ü-
Tsang, a big-data dialect, all multi-dialect speech recognition models performed worse 
than dialect-specific model. It shows that the added two small-data dialect does harm to 
big-data dialect for multi-dialect speech recognition. In spite of that, the ID-Model 
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trained with dialect information at the beginning of label sequence has closer recognition 
rate to dialect-specific model for Lhasa. 

Table 3: A comparison on syllable error rate (%) of multi-task models and task-specific 
models 

 Lhasa-Ü-Tsang Yushu-Kham Amdo pastoral dialect 

Model 50.45 46.08 49.84 

ID-Model 39.89 41.18 43.14 

Model-ID 48.26 45.65 49.01 

Dialect-specific 
model 35.46 52.46 53.47 

 
Inserting the dialect symbol into label sequence performed better than the model without 
dialect information for multi-dialect speech recognition. It shows that dialect information 
helps to improve the speech content recognition for multi-task models. 
From Tab. 4, we can observe that multi-task learning models have the very high accuracy 
for dialect identity recognition. ID-Model and Model-ID outperformed dialect ID 
recognition model. It presents that multi-task speech recognition models can decipher 
speech content and dialect information together and simultaneously, and perform both 
well. This is the same way that human process speech signals. 

Table 4: Dialect ID recognition accuracy (%) of multi-task models and task-specific 
model 

 Lhasa-Ü-Tsang Yushu-Kham Amdo pastoral dialect 

ID-Model 100 99.27 100 

Model-ID 100 97.81 100 

Dialect-specific 
model 99.1 73.3 85.2 

 
Besides, the ID-Model has higher accuracy than Model-ID for both speech recognition 
and dialect identification. Based on this observation, it shows that the speech content 
recognition depends upon the accuracy of dialect classification in this multi-dialect and 
multi-task recognition model.   
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5 Conclusion 
In this paper, we proposed to use the WaveNet-CTC model for Tibetan multi-dialect and 
multi-task recognition. It provides a simple and effective solution for building new 
Tibetan dialect model without the use of dialect-specific linguistic resource. It is 
optimized to predict the Tibetan character sequence appended with the dialect symbol as 
the output target, which effectively forces the model to learn shared hidden representation 
that are suitable for both character prediction and dialect prediction for different dialect 
of a language. In future work, we will improve the speech content recognition accuracy 
using a Tibetan language model. 
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