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Abstract: In recent years, Parkinson’s Disease (PD) as a progressive syndrome of the 

nervous system has become highly prevalent worldwide. In this study, a novel hybrid 

technique established by integrating a Multi-layer Perceptron Neural Network (MLP) 

with the Biogeography-based Optimization (BBO) to classify PD based on a series of 

biomedical voice measurements. BBO is employed to determine the optimal MLP 

parameters and boost prediction accuracy. The inputs comprised of 22 biomedical voice 

measurements. The proposed approach detects two PD statuses: 0-disease status and 1- 

good control status. The performance of proposed methods compared with PSO, GA, 

ACO and ES method. The outcomes affirm that the MLP-BBO model exhibits higher 

precision and suitability for PD detection. The proposed diagnosis system as a type of 

speech algorithm detects early Parkinson’s symptoms, and consequently, it served as a 

promising new robust tool with excellent PD diagnosis performance. 
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1 Introduction 

Parkinson’s disease (PD) is a type of neurological disorder initiating by the death of cells 

in the midbrain. There is a lack of a specific method to diagnose PD, but this disease 

could be typically diagnosed through the medical history, evaluating the signs and 

symptoms, and neurological and physical analysis of the patient. At present, there is no 
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definite treatment for this health problem, but it is feasible to alleviate the symptoms and 

slow down its progress remarkably. Investigations have proven that there are around 

ninety percent of the individuals with PD exhibit vocal impairment [Ho, Iansek, 

Marigliani et al. (1999)]. Subjects with PD frequently suffer from different vocal 

impairment symptoms recognized as dysphonia. The symphonic signs of PD are 

significant diagnosis measures. Therefore, dysphonic assessments have been considered 

as the reliable tools for monitoring and detection of PD over the past years [Rahn, Chou, 

Jiang et al. (2007) ; Little, McSharry, Hunter et al. (2009)].  

PD diagnosed by clinical features. However, several brain imaging methods comprising 

positron emission tomography (PET), single photon emission computed tomography 

(SPECT) and magnetic resonance imaging (MRI) are widely used for PD diagnosis 

[Pyatigorskaya, Gallea, Garcia-Lorenzo et al. (2014)]. Mainly, implications of MRI, 

which provides numerous applicant biomarkers and have the possibility of notifying 

about the disease process, have primarily been investigated. Zeng et al. [Zeng, Xie, Shen 

et al. (2017)] have used an MVPA (Multivariate pattern analysis) method for 45 potential 

PD patients and 40 healthy subjects as the control group, to investigate the probable 

alterations in cerebellar gray matter. Based on structural MRI scans, this method 

combines SVM with voxel-based morphometry to detect morphological abnormalities in 

the Cerebellum. Cherubini et al. [Cherubini, Morelli, Nisticó et al. (2014)] utilized SVMs 

to distinguish 57 probable PD patients from 21 PSP (Progressive Supranuclear Palsy) 

patients based on their MRI scans.  

Apart from analyzing these conventional biomarkers for PD diagnosis, several studies 

have explored that speech and gait disorders associated with the PD. Besides, several 

algorithms and techniques have applied for PD detection. These techniques are mainly 

classified as gait-based and speech-based methods [Shrivastava, Shukla, Vepakomma et 

al. (2017)]. Speech and gait disorders are characterized as Axial parkinsonian symptoms 

[Ricciardi, Ebreo, Graziosi et al. (2016)]. Gait is signaled as a sensitive indicator for PD 

progression as PD patients exhibit altered patterns of gait with increased cadence and 

reduced stride lengths. The specific gait patterns, gait initiation and freezing gait (FOG) 

characterized as indicators of PD. Gait-based PD detection methods utilize different 

image and video processing methods for PD detection through the subject’s gait 

assessment. Speech disorders in PD patients are dissimilar and heterogeneous, 

comprising hypo-, hyperkinetic and repetitive abnormalities. Recent studies have 

revealed that some form of vocal impairment detected in more than 90% of PD patients. 

In general, there are two ways to analyze the speech status: (1) subjective: by speech 

therapist (perceptive analysis) and (2) objective: by analyzing speech signals through 

acoustic analysis [Brabenec, Mekyska, Galaz et al. (2017)]. Speech-based PD detection 

methods mainly use the Unified Parkinson’s Disease Rating Scale (UPDRS). Several 

machine learning models have established for predicting the UPDRS score of the subject 

by using speech signals. These techniques can provide non-intrusive means of monitoring 

the onset and development of the PD conditions. 

Several researchers have applied computational techniques for detection of PD. Little et 

al. [Little, McSharry, Hunter et al. (2009)] employed a support vector machine (SVM) 

classifier with Gaussian radial basis kernel functions for PD detection. They also 
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attempted to choose the optimum subset of features. Das [Das (2010)] compared various 

types of classification approaches for effective PD diagnosis, with the prime objective 

being to discern healthy people. According to the results, the neural network classifier 

produces the most accurate outcomes. Guo et al. [Guo, Bhattacharya and Kharma (2010)] 

hybridized genetic programming with the expectation-maximization algorithm to develop 

the GP-EM approach for detecting healthy individuals and those with PD. The 

researchers found that GP-EM is highly effective. Hossen et al. [Hossen, Muthuraman, 

Raethjen et al. (2010)] employed wavelet-decomposition with a soft-decision algorithm 

to diagnose the Parkinson tremor from essential tremor. [Luukka (2011)] applied a 

feature selection approach based on fuzzy entropy measures together with the similarity 

classifier for predicting PD and the results indicated a notable prediction enhancement by 

using the proposed method. Åström et al. [Åström and Koker (2011)] utilized a parallel 

neural network technique to increase the precision of PD predictions. Based on their 

results, substantial prediction improvements achieved by using the proposed model. Chen 

et al. [Chen, Huang, Yu et al. (2013)] applied the fuzzy k-nearest neighbor (FKNN) 

technique to develop an efficient model for PD diagnosis. By making a comparison, the 

researchers demonstrated that FKNN outperforms SVM in PD prediction. Daliri [Daliri 

(2013)] proposed a chi-square distance kernel-based SVM approach to diagnosing PD 

using gait signals. Based on the assessments of 93 individuals with PD and 73 healthy 

people, they concluded that the technique could be used successfully for PD diagnosis. 

Hariharan et al. [Hariharan, Polat and Sindhu (2014)] acquired a hybrid intelligent 

approach comprising feature pre-processing, feature reduction/selection and classification. 

Their results signified that the proposed scheme is capable of precise classification for 

PD detection. 

Lahmiri [Lahmiri (2017)] have also investigated the statistical characteristics and 

effectiveness of diverse types of dysphonia assessments in PD detection. Results of the 

statistical tests concluded that all dysphonia assessments usually show diverse variability 

among PD patients and healthy candidates. The results of classification acquired through 

SVM classifier, indicated that in contrast to the other dysphonia measures, SVM trained 

with VFFS produced the maximum accurateness of 88%, while SVM trained with 

NLDCM resulted in the minimum precision of 80.82%. A three-phase methodology by 

Travieso et al. [Travieso, Alonso, Orozco-Arroyave et al. (2017)] aimed at automatic 

detection of voice disease. This study advocates the transformation of the feature space 

by a Discrete Hidden Markov Model (DHMM) first and then application of RBF-SVM 

classifier. Wu et al. [Wu, Chen, Yao et al. (2017)] proposed to use an interclass 

probability risk (ICPR) technique for the vocal parameter selection. Subsequently, they 

have compared three different non-linear classifiers, including SVM, GLRA (generalized 

logistic regression analysis) and Bagging ensemble algorithms, to distinguish the voice 

patterns of PD patients and healthy subjects. The experimental results demonstrated 

better classification accuracy by SVM and Bagging ensemble classifiers (90.77%) with 

ICPR. Yang et al. [Yang, Zheng, Luo et al. (2014)] used two feature dimensionality 

reduction methods, including kernel principal component analysis (KPCA) and sequential 

forward selection (SFS). They selected four vocal measures including MDVP: F0, 

MDVP: Jitter (%), DFA, spread2 and employed MAP (Maximum A Posteriori) for 

classification. In contrary to Little et al. [Little, McSharry, Hunter et al. (2009)], who 
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executed rescaling of feature values from -1 to 1, authors have argued that for such data 

set, input data normalization is not required. In their opinion, normalization or rescaling 

may not be robust for the minor data set, as the full vocal records are less than 200. 

Additional recruited voice records may require another rescaling session, and 

consequently, consuming more computation time. 

Moreover, physical magnitude information regarding voice measurements is suspected to be 

lost after data normalization. Problems of small data set mainly revolve around high 

variance where overfitting, outliers, and noise emerge considered as significant concerns. To 

avoid overfitting, Tsanas et al. [Tsanas, Little, McSharry et al. (2012)] suggested using 

cross-validation for an approximation of the true generalization performance on the 

unknown cases. 

Most of the existing researches on PD detection, primarily focus on the accuracy of 

prediction and reliability of the diagnosis. However, up to this time, too little attention has 

been paid to investigate the time efficiency and computational complexity of different 

classification mechanisms for PD detection. Islam et al. [Islam, Parvez, Deng et al. (2014)] 

investigated Feed forward backpropagation based on ANN (FBANN), SVM and Random 

tree classifiers for PD detection using dysphonia measures. Their results signify that 

FBANN demonstrates higher sensitivity with relatively less execution time. Generally, an 

appropriate feature selection method can effectively tackle both computation times and 

cure-of-dimension problems. In the context of Firefly-SVM, Chao et al. [Chao and Horng 

(2015)] advocated that convergence with the most optimal solution within a limited time is 

possible when firefly-SVM associated with the feature selection.  

SVM is known as a machine learning system which has attained considerable 

significance in applications linked to the environment [Jain, Garibaldi and Hirst (2009) ; 

Ornella and Tapia (2010)]. SVM is a learning algorithm that applies high-dimensional 

features. SVM model precision depends on parameter determination [Chapelle, Vapnik, 

Bousquet et al. (2002)]. Although structured strategies for parameter selection are vital, 

model parameter alignment is also required. To choose the SVM model parameters, 

scientists have utilized several common optimization algorithms. However, the outcomes 

are not very efficient due to parameter complexity [Lee and Verri (2003); Friedrichs and 

Igel (2005); Bao, Hu and Xiong (2013)]. The grid search algorithm [Lorena and De 

Carvalho (2008)] and decent gradient algorithm [Chung, Kao, Sun et al. (2003); Hsu, 

Chang and Lin (2003)] are two algorithms which are applied before. The computational 

complication is a main disadvantage of the grid search algorithm; therefore, it can merely 

be utilized for selecting a few parameters. Moreover, the grid search algorithm is 

commonly disposed to the local minima. Most of the optimization complications have 

various local solutions, but advanced algorithms appear to be the optimum means of 

solving these as they offer global solutions. Recently, the optimization techniques applied 

for classification [Mosavi and Vaezipour (2012)] and [Brunato and Battiti (2013)].  

The Multi-Layer Perceptron (MLP) applied for numerous practical complications. The 

training on applications required for using MLP, which usually might encounter different 

complications such as entrapment in local minima, convergence speed, and sensitivity to 

initialization. In this study, authors propose the Biogeography-Based Optimization (BBO) 

algorithm for training MLPs to diminish such complications. Their experimental results 
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on several classification datasets such as balloon, iris, breast cancer, heart problems, and 

several approximating datasets such as sigmoid, cosine, sine, sphere, Griewank, and 

Rosenbrock demonstrate that BBO has much more ability to escape local minima in 

comparison with PSO, GA, ACO, ES, and PBIL [Mirjalili, Mirjalili and Lewis (2014)].  

In one of the most recent studies [Pham, Nguyen, Bui et al. (2019)], the researchers 

proposed a hybrid machine learning method known as MLP-BBO for estimating the 

coefficient of consolidation as an essential parameter of soft soil. This technique is 

according to the Multi-layer Perceptron Neural Network (MLP) and Biogeography-based 

Optimization (BBO). For comparing the performance of the models applied in their study, 

standard machine learning methods applied including Backpropagation Multi-layer 

Perceptron Neural Networks, Radial Basis Functions Neural Networks, Gaussian Process, 

M5 Tree, and Support Vector Regression. The outcomes of that research model indicated 

that the recommended MLP-BBO technique has the maximum predictive competency. 

In another study by Das et al. [Das, Pattnaik and Padhy (2014)], the researchers have 

applied Artificial Neural Network (ANN) trained with Particle Swarm Optimization 

(PSO) for solving the channel equalization problems. According to the proposed method, 

they used PSO on Artificial Neural Networks (ANN) to find optimal weights of the 

network on training step, and they tried to consider a suitable network topology and 

transfer performance of the neuron. The PSO algorithm can optimize the variables, 

weights and network parameters. Hence, this study emphases on improving the weights, 

transfer function, and topology of an ANN which made for channel equalization. In the 

current study, it demonstrated that the equalizer performs better than other ANN 

equalizer in all noise conditions. 

Blum et al. [Blum and Socha (2005)] proposed an ACO algorithm for the training of 

feed-forward neural networks. The algorithm function evaluated by pattern classification 

complications related to the medical field. They compared their algorithms to several 

feed-forward neural network training, called BP, LM and genetic algorithm. The 

functionality of the ACO was as good as the performance of other NN training algorithms. 

Although the ACO_NN method was initially presented to solve the distinct optimization 

issues, in recent times, it applied for the improvement of algorithms used for the endless 

optimization issues. 

Moreover, Chandwani et al. [Chandwani, Agrawal and Nagar (2015)] applied hybrid model 

of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) for modelling slump of 

Ready Mix Concrete (RMC) related to its design mix constituents viz., cement, fly ash, 

sand, coarse aggregates, admixture and water-binder proportion. The recommended hybrid 

approach joined GA to develop the optimum set of first neural network weights and 

predispositions that were later fine-tuned utilizing Lavenberg Marquardt back-propagation 

training algorithm. Their research indicated that the hybridizing ANN with GA, the 

convergence rate of ANN and its estimating accurateness upgraded.  

In the current study, the MLP is combined with BBO into a hybrid method (MLP-BBO) to 

detect PD from 22 biomedical voice assessments. BBO is employed to find out the optimal 

MLP parameters. The primary objective of this research is to examine the appropriateness 

of the suggested MLP-BBO approach for PD detection. To verify the MLP-PSO method’s 

precision its capability compared with existing optimization methods.  
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2 Materials and methods 

2.1 Data description 

For the present research, an investigation was carried out using a PD dataset obtained from 

the UCI machine learning repository (http://archive.ics.uci.edu/ml/datasets/Parkinsons, last 

accessed: August 2014). The objective of the data is to diagnose healthy individuals and 

people suffering from PD, providing the outcomes of several medical examinations 

performed on the patients. The utilized data includes a collection of biomedical voice 

assessments related to 31 individuals in which 23 of them suffer from PD. The period 

from PD diagnosis varies between 0 and 28 years. The subjects are in the 46-85 years old 

range, with an average of 65.8. Each candidate delivered a middling of six vowel 

phonations (yielding 195 testers entirely), and the duration of each phonation was 36 

seconds. Further information on this dataset presented in the paper published by Little et 

al. [Little, McSharry, Hunter et al. (2009)]. Remarkably, all features are real and no 

missing and unreliable values exist in the used dataset. The brief explanations about 

dataset can be found from the Little et al. [Little, McSharry, Hunter et al. (2009)]. 

2.2 Biogeography-based optimization_ multi-layer perceptron (BBO_MLP) 

The basic idea of Biogeography-Based Optimization algorithm was motivated by 

biogeography, referring to the science of biological creatures related to the geographical 

spreading over time and space [Simon (2008)] . The development of ecosystems to get to 

a steady condition while making an allowance for diverse species (including predator, 

prey, etc.), and the influence of migration and mutation was the leading motivation for 

the BBO algorithm. BBO algorithm uses several search agents known as habitats as 

chromosomes in Gas, and a Habitat Suitability Index (HSI) states the general fitness of a 

habitat. The greater the HSI, the higher fit the habitat. The habitats develop over time 

according to the three principles as below [Ma, Simon, Fei et al. (2013)].  

⚫ Habitants living in environments with more HSI are more probable to immigrate to 

territories with less HSI. 

⚫ Environments with less HSI are more likely to be fascinating for new immigrant 

habitats from those with more HSI. 

⚫ Random alterations may take place in the habitats irrespective to their HSI values. 

The BBO algorithm begins with a random set of habitats. Every habitat has dissimilar 

habitats that represent the number of variables of a particular issue. Emigration ( k), 

immigration ( k) and mutation (mn) for each habitat expressed as functions of the number 

of habitats as below: 

                                                                                                                           (1) 

                                                                                                                     (2) 

                                                                                                      (3) 

where n is the existing number of habitats, N is the acceptable maximum number of 

habitats which is raised by HSI (the more appropriate the habitat, the greater number of 

habitats), E is the maximum emigration rate, and I indicates the maximum immigration 

http://archive.ics.uci.edu/ml/datasets/Parkinsons
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rate. M is an original value for mutation described by the user, pn is the mutation 

possibility of the nth habitat, and pmax=argmax(pn), n=1,2,. . .,N. 

The overall stages of the BBO algorithm is: 

1. Initializing step: a random set of habitats 

2. do{ 

3.        calculating HIS of each habitat 

4.        updating the rate of Emigration ( k), immigration ( k) and mutation (mn) for each 

habitat 

5.        the non_elite habitats are migrated and mutated based on the updated rates 

6.        selecting the best habitats as elites for next generation} 

7. While (non_satisfying the terminated criterion) 

8. Returning the best solution (habitats) 

For further details about the algorithm refer to Simon [Simon (2008)]. 

2.3 BBO for MLP 

The BBO algorithm used for an MLP with two main phases [Mirjalili, Mirjalili and 

Lewis (2014)] : 

1. Demonstration strategy: The weights and biases must be expressed in the proper 

format (habitats) for BBO. 

For demonstrating the MLP training problem for BBO, the vector used as habitat 

formation. This vector contains weights and biases in MLP network. For instance, the 

last vector of the MLP shown in Fig. 1 as below is a sample of this encoding strategy: 

Habitat=[w13 w23 w14 w24 …. w22 44 w22 44 …]) wij: NN weight between 

neuron I and j and  bias for neuron i 

 

Figure 1: MLP with three layers [3] 
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2. HSI: A fitness function using the error of the MLP would be described to estimate 

habitats. 

After demonstrating MLPs in the form of habitat vectors, an HSI formulation (fitness 

function) is prerequisite for calculating each of them. The Mean Square Error (MSE) 

for all training models used as a fitness function (MSE (habitat)=HIS(habitat)):  

                                                                                                (4) 

where q is the number of training samples, m is the number of outputs,  is the 

desired output of the ith input unit when the kth training sample used and   is the 

actual output of the ith input unit when the kth training sample appears in the input. 

The BBO_MLP algorithm explained in Fig. 2: 

 

Figure 2: Flow chart of BBO_MLP Method 

MLP-BBO is made in six phases as follow:  

⚫ Initial step: making a random set of MLPs according to the outlined number of habitats 

⚫ Calculating MSE for each MLP 

⚫ Update emigration , immigration , and mutation 

rates                                   
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⚫ The MLP are united based on emigration and immigration (create vector [w13 w23 w14 

w24 …. w22 44 w22 44 …]) wij: NN weight between neuron I and j and  

bias for neuron i 

⚫ Each MLP mutated based on its habitat mutation rate 

⚫ Elitism step: Select the best MLPs with low MSE as elites for next generation 

⚫ Satisfaction of a termination criterion (if no satisfaction algorithm repeated as 

flowchart)  

⚫ Return best MLP with minimum MSE(HSI) 

2.4 Input parameters 

The aptitude of BBO-MLP to produce reliable predictions is reliant on input parameter 

selection. In the current research, 22 biomedical voice measurements were used to 

produce the BBO-MLP model. The descriptive statistics including minimum, maximum 

and mean values, standard deviation and the range of values of the datasets applied in this 

research presented in Tab. 1.  

Table 1: Descriptive statistics for the data sets used 

Variable   Statistics   

 Min Max Mean Standard deviation Range 

In1 88.333 260.105 154.2286 41.3901 171.772 

In2 102.145 592.03 197.1049 91.4915 489.885 

In3 65.476 239.17 116.3246 43.5214 173.694 

In4 0.0017 0.0332 0.0062 0.0048 0.0315 

In5 0.000007 0.00026 0.000044 0.0000348 0.000253 

In6 0.0007 0.0214 0.0033 0.003 0.0207 

In7 0.0009 0.0196 0.0034 0.0028 0.0187 

In8 0.002 0.0643 0.0099 0.0089 0.0623 

In9 0.0095 0.1191 0.0297 0.0189 0.1096 

In10 0.085 1.302 0.2823 0.1949 1.217 

In11  0.0046 0.0565 0.0157 0.0102 0.0519 

In12  0.0057 0.0794 0.0179 0.012 0.0737 

In13 0.0072 0.1378 0.0241 0.0169 0.1306 

In14 0.0136 0.1694 0.047 0.0305 0.1558 

In15 0.0006 0.3148 0.0248 0.0404 0.3142 

In16 8.441 33.047 21.886 4.4258 24.606 

In17 0.2566 0.6852 0.4985 0.1039 0.4286 

In18 0.5743 0.8253 0.7181 0.0553 0.251 

In19 -7.965 -2.434 -5.6844 1.0902 5.531 

In20 0.0063 0.4505 0.2265 0.0834 0.4442 

In21 1.4233 3.6712 2.3818 0.3828 2.2479 

In22 0.0445 0.5274      0.2066            0.0901      0.4829 

Tab. 2 shows the user-defined parameters for MLP-BBO and PSO, ACO, GA and ES for 

PD detection.  
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Table 2: Parameter regularization 

Population Size 
Maximum number 

of Generations 

Mutation  

probability 

Habitat modification 

probability [0 1] 

Percentage of cross-

validation for Train/Test 

Parameter 

value 
Accuracy 

Parameter 

value 
Accuracy 

Parameter 

value 
Accuracy 

Parameter 

value 
Accuracy 

Parameter 

value 
Accuracy 

20 

50 

150 

200 

300 

82% 

84% 

82% 

86% 

76% 

50 

150 

250 

350 

500 

1000 

82% 

84% 

86% 

84% 

84% 

84% 

0.001 

0.005 

0.008 

0.01 

0.05 

68% 

84% 

86% 

82% 

82% 

0.6 

0.8 

1 

74 % 

78 % 

86 % 

50-50 

70-30 

80-20 

90-10 

76.84% 

86% 

80% 

84% 

 

Tab. 2 shows that the best experimental result achieved with the parameters value 200 for 

population size, 250 for the maximum number of generation, 0.008 for mutation 

probability, 1 for habitat modification probability and splitting 70-30 percentage of cross-

validation for Train/Test. As seen in Tab. 2, these set of parameters regularization leads 

to the accuracy of 86 percentage. 

Therefore, the best result on multi-layer perceptron based on BBO algorithm was 

obtained according to the regularization of MLP_BBO parameters.  

3 Results and discussion 

3.1 Statistical performance analysis  

The accuracy formula is served as the reliable statistical parameters to appraise the 

capability of the MLP-PSO model on a more noticeable and individual basis. Tab. 4 

offers the values achieved for accuracy during training and testing. It is evident that the 

models’ performance reduced from training to testing. According to the statistical results 

presented in Tab. 4, the proposed hybrid MLP-PSO model naturally exhibits greater PD 

detection capability and precision compared to the existing optimization model. 

The BBO algorithm is equated with PSO, GA, ACO, ES, and PBIL over these benchmark 

datasets to verify its performance. It is expected that every habitat was randomly adjusted 

in the range. The population size is 50 for Parkinson dataset. Tab. 3 shows how the 

datasets are allocated in terms of training and test sets. 

Table 3: Dataset in terms of training and testing 

Classification 

Dataset 

Number 

of feature 

Number of 

training samples 

Number of 

testing samples 

Number of 

classes 

Parkinson 22 

50% 

70% 

80% 

90% 

98 

136 

156 

175 

50% 

30% 

20% 

10% 

97 

59 

39 

20 

2 

In this study, the researchers have chosen the paramount trained MLP among 10 runs, 

and then they applied it to categorize or estimate the test set. To deliver an unbiased 
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association, the whole algorithms ended when a maximum amount of iterations (250) 

achieved. Lastly, the merging actions are correspondingly considered in the outcomes to 

deliver a complete assessment. It reminded that min-max standardization applied for the 

datasets comprising data with diverse ranges. Finally, the result of MLP_BBO in terms of 

accuracy rate illustrated in Tab. 4.  

 Table 4: Comparable algorithms 

Method BBO_MLP PSO_MLP GA_MLP ACO_MLP ES_MLP SVM_MLP 

Accuracy 86 84 82 82 82 81 

 

Tab. 4 compares the six-optimization algorithm in terms of accuracy of the multi-layer 

perceptron (MLP). The above table indicates that the accuracy of BBO_MLP is more 

than the other five optimization MLP algorithm. The accuracy calculated as follow: 

Accuracy =                                                                                      (5) 

where TP, TN, FP, and FN are true positive, true negative, false positive and false 

negative respectively. 

Fig. 3(a) shows the MSE for each method of BBO, PSO, GA, ACO, and ES based on 

MLP. As it is evident in the figure, BBO method significantly decreases errors in 

comparison with other approaches. Also, the bar chart of the above figure (Fig. 3(b)) 

indicates that the MLP-BBO technique with an accuracy rate of 86% has offered better 

results compared with other developing methods. According to Fig. 3(b), the MLP-ACO, 

MLP-GA, and MLP-ES with the 82% had the same percentage of accuracy. Furthermore, 

in this study the recommended approach is examined on different activation functions 

such as sigmoid, linear, tanh, sin and Gaussian and the results are observed in Fig. 4.  

   

(a)                                                               (b) 

Figure 3: a: The rate of error (RMSE) convergence and b: The rate of accuracy for 

several MLP based algorithm  
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(a) (b) 

Figure 4: a: The rate of error (RMSE) convergence and b: The rate of accuracy for 

several activation functions on BBO_MLP algorithm  

Fig. 4 shows that which activation functions have a better result in terms of high accuracy 

and low rate of RMSE error in BBO-MLP classification method. As it is evident in the 

Fig. 4(a), sigmoid method significantly decreases errors in comparison with other 

activation functions in MLP. As it observed from the Fig. 4(b), sigmoid activation 

functions with the 86% have better performance in comparison with other activation 

functions (Tanh: 58%, Linear: 56%, Gaussian: 76% and Sin: 56%). 

4 Conclusion 

In this study, a hybrid approach proposed for the detection of Parkinson’s disease (PD) 

determined from biomedical voice measurements. To achieve this purpose, the MLP was 

combined with the BBO to develop the hybrid MLP-BBO method. MLP essentially 

achieves structural minimization, whereas other traditional optimization approaches focus 

on error minimization and are much less efficient. 

As mentioned above, due to the lack of performance in MLP, a set of processes known as 

“Meta-heuristic algorithms” could reach to a solution by frequently bringing up to date 

the applicant solution and assessing to an optimal result to a problematic issue, through 

improving the objective function. In this research, the MLP parameters are optimized 

utilizing BBO that through calculating its performance, it is inferred to outperform the 

MLP performance. 

Through the method of merging BBO with MLP, the flashing actions of the fireflies 

could be conveyed to form an objective function that could be useful to adjust the 

parameters of MLP. By BBO, it recognized that the higher frequency of comparisons 
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between the BBO to find the optimum location in the swarm, the superior the outcomes 

would be.  

The principal aim was to identify the suitability of the MLP-BBO method developed for 

detecting two PD statuses: 0-disease status and 1-good control status. The accuracy of 

MLP-BBO with 86 percentage verified against the lower accuracy of PSO, GA, ACO and 

ES method. Accuracy was served to assess the MLP-BBO models’ PD detection 

performance statistically. The findings indicate that the MLP-BBO model developed in 

this study is more precise than PSO, ACO, GA, and ES in PD detection. Consequently, 

the proposed diagnosis system exhibits favorable precision and is supposed as a 

promising and appealing tool for detecting PD.  
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