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Improved Logistic Regression Algorithm Based on Kernel Density
Estimation for Multi-Classification with Non-Equilibrium Samples

Yang Yu1, Zeyu Xiong1, ∗, Yueshan Xiong1 and Weizi Li2

Abstract: Logistic regression is often used to solve linear binary classification problems
such as machine vision, speech recognition, and handwriting recognition. However, it
usually fails to solve certain nonlinear multi-classification problem, such as problem with
non-equilibrium samples. Many scholars have proposed some methods, such as neural
network, least square support vector machine, AdaBoost meta-algorithm, etc. These
methods essentially belong to machine learning categories. In this work, based on the
probability theory and statistical principle, we propose an improved logistic regression
algorithm based on kernel density estimation for solving nonlinear multi-classification. We
have compared our approach with other methods using non-equilibrium samples, the results
show that our approach guarantees sample integrity and achieves superior classification.

Keywords: Logistic regression, multi-classification, kernel function, density estimation,
non-equilibrium.

1 Introduction
Machine Learning has become one of the most popular fields in recent years. There are two
main tasks of Machine Learning: 1) classification, which goal is to divide instances into
the appropriate categories, and 2) regression, which goal is to study relationship between
samples. The most basic classification problem is binary classification. which can be solved
using algorithms such as Naive Bayes (NB), support vector machine (SVM), decision
tree, logistic regression, KNN, neural network, etc. More generally, multi-classification
problems such as identifying handwritten digits 0 ∼ 9, and and labeling document topics
have gained much attention recently. To provide few examples, Liu et al. [Liu, Liang
and Xue (2008)] proposed a multi-classification algorithm based on fuzzy support vector
machines, which provides better classification accuracy and generalization ability compared
with traditional One-vs.-Rest methods. Tang et al. [Tang, Wang and Chen (2005)] proposed
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a new multi-classification algorithm based on support vector machine and binary tree
structure to solve the problem of non-separable regions.

In the existing regression algorithm, support vector machines are mostly used for
multi-classification problem, but there are some limitations in algorithm. The logistic
regression algorithm can only solve the problem of dichotomy and linear classification.
Support vector machines typically support only small training samples and are equally
difficult to deal with multiple classification problems. Naive Bayes is based on the
assumption that the characteristic conditions are independent. Once the dataset does not
satisfy this assumption, its classification accuracy will be greatly affected.

In order to solve the problem above, towards difficult for implement large scale samples,
not applicable to multi-classification and uncertainty to constraint conditions, Chen et
al. [Chen, Chen, Mao et al. (2013)] proposed a model of Density-based Logistic
Regression (DLR), which has a good result in practical application. Our model is based
on kernel density-based logistic regression and we construct a new kernel function for
multi-classification problems. This has three advantages: 1) It makes better improvements
to classification effect. 2) It is an extension of DLR model to multi-classification problems.
3) It shows good generalization performance on nonlinear and unbalanced data. We will
describe the theoretical rationality and check classifying quality according to practical
application for our new model.

The rest of the paper is organized as the following. In Section 2, we explain background
knowledge including logistic regression binary classification, multi-classification, SoftMax
and DLR model. In Section 3, we introduce several solutions for multi-classification
problems with imbalanced samples. In Section 4, we explain our approach in details.
In Section 5, we compare our approach to other methods and analyze the performances.
Finally, we conclude in Section 6.

2 Logistic regression and related knowledge
2.1 Logistic regression

Logistic regression is based on linear regression, and a sigmoid logic function is applied,
which is a logarithmic probability function. Logistic regression is represented as follows,

y =
1

1 + e−z
. (1)

In the model of sigmoid function, z values are distributed within the range of [0,1]. When
the independent variable is taken near 0, the z-value change curve is very steep, while the
z value is relatively stable at other values. Therefore, the binary classification tasks can be
handled well if taking 0 as the boundary. However, it is sometimes difficult to make the
representation model approximate to the expected model. By adding a constant term b to
the function,
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z = wTx+ b. (2)

By substituting Eq. (2) into Eq. (1), we have

y =
1

1 + e−(wT x+b)
. (3)

Based on these formulae, assuming a given dataset D = {xi, yi} , i = 1, · · · , N , xi ∈ RD,
D is the dimension of samples, and yi ∈ {0, 1}, logistic regression is described as follows:

p(y = 1|x) = 1

1 + e−wTφ
, (4)

wherew stands for feature weight, which is a parameter to be learned. φ is the characteristic
transformation function.

In LR model φ is usually defined to be equal to x. The key step is to learn unknown
parameters w and b. If y in Eq. (3) is regarded as posterior probability estimation p(y =
1|x), Eq. (4) can be rewritten as:

ln
p(y = 1|x)
p(y = 0|x)

= wTx+ b, (5)

p(y = 1|x) = ew
T x+b

1 + ewT x+b
, (6)

p(y = 0|x) = 1

1 + ewT x+b
. (7)

Then w can be obtained by the maximum likelihood estimate. With the definition of bi =
p(yi = 1|xi), y=0 or 1, for a single sample, the posterior probability is,

p(y|x,w) = (bi(x))
y(1− bi(x))1−y. (8)

Then, the maximum likelihood function is represented as follows,

L(w|x, y) =
∏m
i=1 p(yi|xi, w)

=
∏m
i=1(bi(x))

yi(1− bi(x))1−yi .
(9)

For the convenience of calculation, the negative log of the maximum likelihood function is
used as the objective function to be optimized,

E(w) = − ln(L(w|x, y))
= −

∏m
i=1(yi ln(bi(x)) + (1− yi) ln(1− bi(x))).

(10)
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Since the maximizing likelihood probability is equivalent to minimizing negative likelihood
probability, the last step is to minimize the Loss function.

2.2 Density-based logistic regression

In the DLR model, φ is a function that maps x to the eigenspace,

φd(x) = ln
p(y = 1|xd)
p(y = 0|xd)

− D − 1

D
ln
p(y = 1)

p(y = 0)
, (11)

where D is the dimension of the input data, ln p(y=1|xd)
p(y=0|xd) measures the contribution of xd to

the probability of y = 1, and D−1
D ln p(y=1)

p(y=0) measures the degree of imbalance for datasets.
p(y = 1) is the proportion of data in the training set, whose label is y = 1.

Nadaraya-Watson is usually used to estimate p(y = k|xd) where k = 0, 1.

p(y = k|xd) =
∑

i∈Dk K(xd, xid)∑N
i=1K(xd, xid)

. (12)

where Dk ⊆ D is the subset of data in class k, and K(x, y) is a Gaussian kernel function
defined as follows,

K(x, y) =
1√
2π
e
− (x−y)2

2h2
d , (13)

where hd is the bandwidth of the kernel density function. The hd is usually set using the
Silverman’s rule of thumb [Silverman and Green (1986)],

hd = 1.06σN−
1
5 , (14)

where N is the total number of samples and σ is the standard deviation of xd.

Next we need to train w through the learning algorithm until w converges. Given bi =
p(yi = 1|xi), the loss function based on likelihood probability is calculated as follows,

E(w, h) = − ln(p(y|w, h))
= −

∑N
i=1(yi ln bi + (1− yi) ln(1− bi)).

(15)

2.3 Extension of logistic regression to multiple classification

Since the logistic classification is a binary classification model, it is necessary to extend
it for multiple classification, common extensions include multiple binary classification
models or SoftMax models.
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2.3.1 N-logistic model

The N-logistic model generally adopts One-vs-Rest or One-vs.-One. When classifying a
sample, we first classify the two classifiers, then vote, and select the category with the
highest score. At the same time, to prevent the same vote, we also add the probability of
the class to each classifier in the voting. The predictive accuracy of these two approaches is
usually very similar, so unless there is a specific need for data characteristics, it is generally
arbitrary to choose one approach to calculate.

2.3.2 SoftMax model

SoftMax regression is a generalization of logistic regression to multiple classification
problems. Its basic form is described as follows,

p(y = c|x) = ew
T
c x∑C

i=1(e
wTi x)

. (16)

When in the test, to sample x, if there is a category c, for all the other category c∗(c∗ 6= c)
meet the p(y = c|x) > p(y = c∗|x), then x belongs to the category c.

On the question of choosing N-logistic model or SoftMax model, many scholars have
conducted in-depth exploration. Currently, it is accepted that it is necessary to investigate
whether the various categories are mutually exclusive. If there is a mutual exclusion
relationship between the categories to be classified, we’d better choose SoftMax classifier.
While if there is no mutual exclusion between categories, and the categories are intersecting,
it is best suited to the N-logistic classifier. We verify this conclusion according to
corresponding datasets in Section 5.

3 Analysis of the classification results with unbalanced sample proportion
In our actual classification tasks, there are often needs to deal with problems with
unbalanced data sample proportions. For example, the ratio of positive and negative
samples in a dataset is 10:1, including 100 positive classes and 10 negative classes. If
using this kind of data to train a classifier, it is very likely that the test data will be divided
into positive classes. Obviously, this classifier is invalid.

For this kind of data, traditional logistic regression method usually fails to work. In recent
years, studies on the problem of unbalanced classification have been very active [Ye, Wen
and Lv (2009)]. In this section we introduce several common approaches to solve the
problem of sample imbalance classification.

3.1 Obtain more samples

For unbalanced classification, the first solution is to obtain more samples and expand a few
samples to balance the sample proportion. However, in most cases, the sampling procedure
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needs specific conditions. Thus, it is generally difficult to obtain more samples under the
same conditions.

3.2 Sampling methods

The general sampling method is mainly based on modifying the number of unbalanced
samples. The research of Estabrooks et al. [Estabrooks, Jo and Japkowicz (2004)] show
that the general sampling method has a better effect on solving unbalanced classification
problems.

3.2.1 Under-sampling method

Under-sampling method is also called down-sampling [Gao, Ding and Han (2008)],
which is to eliminate some samples from majority class samples, so that the number of
samples in the whole group tends to be balanced. The commonly used method is random
under-sampling downward method. The method is based on Nmin, the number of minority
class samples. We randomly sample from the majority class samples and eliminate N
samples, and then Nmax −N = Nmin, so the samples are balanced.

3.2.2 Over-sampling method

Over-sampling method is also called up-sampling, which refers to increase the number of
minority class samples. The method of adding a small number of minority class samples
(random over-sampling method) or re-fitting some new data in accordance with some law
can be used to make the number of samples balanced. One commonly used method
is Synthetic Minority Over-sampling Technique (SMOTE) [Chawla, Bowyer, Hall et al.
(2002)]. The method analyzes the distribution of the characteristic space of a few samples
and proposes new samples. Compared to the random over-sampling method, the data added
by SMOTE sampling method is completely new, which can follow the regular pattern in the
original sample. The main idea of SMOTE is shown in Fig. 1.

For each sample x in a minority class, the Euclidean distance of each sample point of a
minority sample is calculated, and its k neighbors are obtained. A suitable sampling ratio
is set according to the sample proportion to determine the sampling rate N . For each of the
minority sample x, select several samples randomly from its k neighbors. For each random
nearest neighbor xn, a new sample is constructed with the original sample according to the
following equation,

xnew = x+ rand(0, 1) ∗ (x∗ − x). (17)

3.3 Modify evaluation index

For unbalanced classification, using accuracy to evaluate classifiers may biases. For
example, assuming ratio of positive and negative samples in a dataset is 9:1, and all samples
are labelled be positive. Although the accuracy rate is up to 90%, the classifier is useless.
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Figure 1: The main idea of SMOTE method

Table 1: A hybrid matrix of binary classification

GT category GT category
Positive Negative

Pred.category Positive TP(True Positives) FP(False Positives)
Pred.category Negative FN(False Negatives) TN(True Negatives)

Therefore, accuracy can serve as a biased indicator. Davis et al. [Davis and Goadrich
(2006)] proposed a new evaluation index named Precision and Recall, some factors are
listed in Tab. 1.

Accuracy = (TP + TN)/(P +N). (18)

Error = 1−Accuracy. (19)

Precision = TP/(TP + FP ). (20)

Recall = TP/(TP + FP ). (21)

Precision refers to the proportion of positive samples in all predicted positive samples,
and Recall refers to the proportion of all actual positive samples that are being correctly
predicted.

3.4 Use penalty items to modify the weights

If samples are difficult to sample directly, the method of modifying sample weights can
be used. It increases the weight of minority class samples and reduces the weight of the
majority class samples. Because the weights of minority class samples are high, they can



110 CMC, vol.61, no.1, pp.103-117, 2019

lead to better classification results. The commonly used method is to add a penalty item to
the majority class samples each time when training the sample weight. In general, we use
the regularization method to add a penalty parameter to a objective function, this reduces
the chance of the overfitting [Goodfellow, Bengio and Courville (2017)]. The regularized
objective function is shown below,

J∗(θ;X, y) = J(θ;X, y) + αω(θ), (22)

where α is a parameter which represents the contribution of the penalty item and the
objective function. The penalty can be adjusted by controlling α. If α = 0, there is no
penalty, otherwise the larger the α, the greater the penalty.

After we chose an appropriate penalty, the training regularize the objective function. In
this way, the data error and the parameter scale can be reduced, the computation efficiency
can be improved. But in practice, how to select the optimal penalty item is a complicated
problem, which needs more tests.

3.5 Kernel-based methods

Towards general classification problem, we can assume that the sample data can be
classified directly by linear model. In other words, there is a hyperplane that can separate the
samples and ensure that the classification is correct. However, in practice, there is usually
no such a hyperplane to partition the original data correctly, which means that the data are
not linearly separable. For such a problem, we can consider preprocessing data. Using the
principle of support vector machine, data in the low-dimensional space are transformed into
the high dimensional space through nonlinear transformation, so that they can be linearly
separable [Zhou (2016)]. Using this method, the relationship between data samples can
be written as dot product. For example, the linear regression function can be rewritten as
follows,

wTx+ b = b+
∑m

i=1(αix
Tx(i)), (23)

where x(i) is the training data. α is the coefficient vector. Replacing the dot product with a
function of the kernel k(x, x(i)) = φ(x) · φ(x(i)), we can get,

f(x) = b+
∑

i(αik(x, x
(i))). (24)

This function is nonlinear with respect to x, while it is linear with respect to φ(x).

Kernel function can deal with nonlinear unbalanced classification well. It uses a convex
optimization technique to address nonlinear problems in a linear manner. At the same
time, this method can guarantee convergence and improve the accuracy of classification.
And there is some simplification in parameter determination. In addition, it is much
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more efficient to use the kernel function to transform data into a transformation function
[Goodfellow, Bengio and Courville (2017)].

SVM can convert sample data into high dimensional feature space through a kernel
function. According to the principle of maximum spacing of SVM, the hyperplane of the
optimal classification can be constructed in the characteristic space of high dimension to
realize the classification. If the interval of classification can be extended, especially between
minority class samples and the optimal classification hyperplane, the generalization
performance of the classifier and the accuracy of classes with small samples can be
effectively improved. This enables the correct classification of unbalanced data [Liu,
Huang, Zhu et al. (2009)].

4 Improved method of kernel density estimation model for multi-classification
We extend the DLR model to solve the multi-classification problem and design an improved
multi-classification algorithm. Assuming there are C classes, for k = 1, 2, . . . , C, the DLR
model is defined as follows,

p(y = k|x) = ew
T
k φk(x)∑C

j=1(e
wTj φj(x))

, (25)

where wk = (wk1, wk2, . . . , wkD) is the feature weighting parameter of class k, and φk =
(φk1, φk2, . . . , φkD) is the characteristic transformation function of class k.

φkd(x) = ln p(y = k|xd)−
D − 1

D
ln p(y = k). (26)

According to the Nadaraya-Watson estimator, the probability formula of class k is obtained
as follows:

p(y = k|xd) = ln

∑
i∈Dk e

− (xd−xid)
2

h2
d

∑N
i=1 e

− (xd−xid)
2

h2
d

. (27)

Finally, we need to minimize the loss function,

E(w, h) = −
∑N

i=1

∑C
k=1(1yi=k ln p(yi = k|xi))

= −
∑N

i=1

∑C
k=1(1yi=k ln

ew
T
k φk(xi)∑C

j=1(e
wTj φj(xi))

)

= −
∑N

i=1

∑C
k=1(1yi=k(w

T
k φk(xi)− ln

∑C
j=1(e

wTj φj(xi)))),

(28)

where, 1yi=k is 1 if and only if yi = k, otherwise it takes value 0.
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Now we present the process of evaluating the gradient of the Loss function with respect to
wk,

5wE = −
∑N

i=1

∑C
k=1(1yi=k(xi −

ew
T
k φk(xi)∑C

j=1(e
wTj φj(xi))

xi))

= −
∑N

i=1

∑C
k=1(xi(1yi=k −

ew
T
k φk(xi)∑C

j=1(e
wTj φj(xi))

))

= −
∑N

i=1

∑C
k=1(xi(1yi=k − p(yi = k|xi))).

(29)

We adjust the weight wk according to the direction of the gradient descent, until the wk
converges and wk in the model is well trained. During the testing, the same kernel function
transformation is performed on the testing data. The transformed φ(x) and trained wk
are substituted into Eq. (25). Then we compare the probability of the different classes
and choose the class with the largest probability as the result category. At this point, we
have completed the generalization of the logistic regression to multi-classification based on
kernel density function.

To show the difference between kernel density estimation logistic regression and classical
logistic regression, we will compare the corresponding algorithms later.

In the DLR algorithm, the input x is given a feature transformation to get φ before
calculating the probability in Eq. (25). And then substitute φ for x as the input to the
probability formula. At the same time, the probability formula is changed from the Sigmoid
function to the SoftMax function.

After conducting experiments, we have found that the differences of φ among different
labels obtained using the DLR algorithm are small. There is a large error in the final
classification result. And the minority class samples cannot be discriminated at all. And the
value of loss function is not reduced by training. Therefore, in the process of constructing
the bandwidth of kernel function and preprocessing the data, we improve it by the following
scheme.
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Figure 2: The process of searching for the optimal coefficient

First, We try to train the parameters of the kernel function by modifying the weight values
on the basis of Eq. (14). We conducted 16 groups of experiments, as shown in Fig. 2. In
the previous experiment, since the value of w was too large, the characteristics of the input
data X itself were difficult to distinguish. Properly reducing

∥∥w∥∥ can limit the complexity
of the model, thereby improving the generalization performance of the model. Through
comparison experiments, we found that changing 1.06 in Eq. (14) to 0.02 can significantly
improve the accuracy of the model. According to Fig. 2, we reduce the bandwidth of kernel
function in Eq. (14).

hd = 0.02σN−
1
5 . (30)

In this way, the difference of hd has been improved. However, it may cause the value of y 
become too large and overflow in subsequent calculations. Feature scaling is a crucial step 
in the data preprocessing process. For most machine learning and optimization algorithms, 
scaling the values of features to the same interval can make their performance even better. 
In order to accelerate loss function convergence rate, we normalize φ using the min-max 
method.
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x(i)norm =
x(i) − xmin
xmax − xmin

. (31)

The training process of the improved model is established in Algorithm 3.

In the next section, we will conduct a comparative test to analyze the relationship between
test results and training results after using Algorithm 3.

5 Application of improved algorithm: datasets and verification analysis
In particular, we have implemented the following methods for testing.

1) N-logistic model, One-vs-Rest methods, abbreviated as NLR.

2) N-logistic model, One-vs-Rest methods, combined with the oversampling method,
abbreviated as NLR_Sample.

3) N-logistic model, One-vs-Rest methods, combined with the Smote method, abbreviated
as NLR_Smote.

4) SoftMax model.

5) SoftMax model combined with Algorithm 3, abbreviated as DLR++.

We choose three datasets for testing. The first one is the fitting dataset Numb constructed
by us. In this dataset, each data element contains 10 floating point values, ranging from
0 to 5. The data distribution is divided into three categories: GroupA, GroupB and
GroupC. The second dataset is the Iris from UCI. There are four features, including calyx
length, calyx width and petal width, and the eigenvalue is floating-point number. The target
value is the classification result of irises, including virginica, versicolor, and setosa.
The third dataset is the Wine from UCI, which uses the various parameters of the Wine
to predict the quality of the Wine. There are 11 characteristic values, including volatile
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Table 2: Accuracy (%) of different methods on three datasets

Dataset NLR NLRSample NLRSmote SoftMax DLR++

Numb 91.58 92.63 97.24 96.84 98.95
Iris 93.33 94.44 95.73 95.56 99.47
Wine 90.74 92.59 94.44 83.33 98.36

Table 3: Time(s) for different methods on three datasets

Dataset NLR NLRSample NLRSmote SoftMax DLR++

Numb 0.63 0.58 0.69 24.76 5.12
Iris 0.57 0.56 0.59 6.66 3.39
Wine 1.81 1.69 1.81 23.75 3.41

Table 4: The number of iterations of training Loss convergence on three datasets

Dataset NLR NLRSample NLRSmote SoftMax DLR++

Numb 1000 1000 1000 1000 40
Iris 1000 1000 1000 500 200
Wine 5000 5000 5000 1500 100

acidity, non-volatile acid, citric acid, residual sugar, chlorine, total sulfur dioxide, free of
sulfur dioxide, sulfate, concentration, PH and alcohol. There are three quality classes:1, 2,
or 3.

In order to keep the data more versatile, and the classification results more persuasive, we
use k-fold cross validation and assign the dataset to the training set and testing set according
to the ratio 7:3. The test results are given as follows.

From Tab. 2 to Tab. 4, we can see that the DLR++ algorithm shows better prediction
accuracy. In the three datasets, Numb is linear, while Iris and Wine are non-linear.
We can see from the results that both N-logistic and SoftMax models can solve the
multi-classification problem well. Both oversampling and smote sampling method can
be used to improve the classification results of the sample imbalance problem with the
accuracy rate increased by 1.34% and 3.92% respectively. The improved DLR++ model
based on kernel density is the best among all these methods, and it has an advantage in
solving nonlinear multi-classification problems. From Tab. 2 to Tab. 4, we can see that the
improved DLR++ model converges faster than the original logistic model, using only 1/20
of the training times. At the same time, the accuracy rate has been increased 7.04%, at the
cost of a higher operation time.

From Tab. 5 to Tab. 6, we can see that the improved DLR++ model has a better performance
on datasets of large scales and multiple categories. It offers an accuracy of 93.0% while LR
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Table 5: Performance of DLR++ on different scales of datasets

Scale 100 200 500 1000

Size of Train dataset 89 164 413 834
Size of Test dataset 84 84 84 84

Accuracy 98.81% 98.81% 100.0% 100.0%

Table 6: Performance of DLR++ on different number of categories

Num of categories 3 5 7 10

Size of Train dataset 196 191 193 200
Size of Test dataset 95 94 93 100

Accuracy 98.95% 98.94% 98.92% 93.0%
Comparation(Best of the others) 91.58% 84.0% 79.57% 47.0%

offers an accuracy of 47.0% for 10-classification problems.

6 Conclusion
In this paper, we propose an improved logistic regression model based on kernel density
estimation, and it can be applied to solve nonlinear multi-classification problems. We
have compared and tested several common algorithms for logistic regression. For the
experimental results, we found that the sampling method [Gao, Ding and Han (2008);
Chawla, Bowyer, Hall et al. (2002)] can improve the classification accuracy, but the training
samples obtained are very different from the original samples, which destroys the data
characteristics inherently in the original sample. However in contrast, our improved model
guarantees the integrity of the samples, it has obvious advantages in classification accuracy,
and has good generalization ability with an ideal training speed. But there is still room
for optimization in training, especially in the matrix operation stage. In the future, we will
reduce the size of the matrix and block calculation, expected to decline training time and
improve efficiency. Combining application to document retrieval [Xiong and Wang (2018);
Xiong, Shen, Wang et al. (2018)], we will also expect to check the improved method in this
paper is effect to document classification which is interested by us.
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