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Abstract: For enhancing the control effectiveness, we firstly design a fuzzy logic based 
sliding mode controller (FSMC) for nonlinear crane systems. On basis of overhead crane 
dynamic characteristic, the sliding mode function with regard to trolley position and 
payload angle. Additionally, in order to eliminate the chattering problem of sliding mode 
control, the fuzzy logic theory is adopted to soften the control performance. Moreover, 
aiming at the FSMC parameter setting problem, a DE algorithm based optimization scheme 
is proposed for enhancing the control performance. Finally, by implementing the computer 
simulation, the DE based FSMC can effectively tackle the overhead crane sway problem 
and avoid unexpected accident greatly.

Keywords: Sliding mode control, fuzzy logic theory, systems optimization.

1 Introduction
Nonlinear crane systems is a class commonly used lifting appliance for the heavy cargoes 
transportation in harbours, construction site and industrial factories. According to the 
control requirement, the payload should rapidly and accurately arrive at the given site, 
the residual oscillation time and amplitude require shorter and smaller as far as possible 
to against the unexpected impact. In addition, the control difficulty will greatly increase 
due to the its underactuation trait. Hence, it is significant to develop the effective control 
method for solving the overhead crane systems payload swing problem.

Recently, a series of studies are made for overhead crane systems to damp the payload 
oscillations. In Sun et al. [Sun, Wang, Bi et al. (2015b); Yu, Li and Panuncio (2014)], the 
optimized PID controller are designed for damping the load vibration. The PID controllers 
performance are promoted by heuristic algorithm and neural compensation. To compare 
with nonlinear control method, the linear control method can not effectively tackle the 
nonlinear feature and easily gives rise to the unsatisfied anti-swing control performance
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for complex control environment. Aiming at this problem, the nonlinear control methods
[Sun, Fang and Chen (2017); Sun and Fang (2014); Sun, Fang, Chen et al. (2014, 2016);
Sun, Wu, Fang et al. (2017)] are successfully applied in overhead crane systems and get
satisfied control performance.

Among aforementioned nonlinear control methods, the sliding mode control method
[Cheng (2016); Chwa (2017); Du, Yang, Li et al. (2018); Li, Shi, Yao et al. (2016)]
is regarded as a kind of the effective control approach because of the advantages of the
easy designing and high robustness, and widely utilized various engineering fields. But it
also suffers the chattering problem coming from the discontinuous switching characteristic
around the predefined manifold. Hence, in order to figure out this problem, researchers
incorporate the sliding-mode with fuzzy logic uncertainty observer to realize the overhead
crane systems efficient control [Park, Chwa and Eom (2014)]. In Pezeshki et al. [Pezeshki,
Badamchizadeh, Ghiasi et al. (2015)], a T-S fuzzy logic based sliding mode controller
is developed to tackle the dynamic performance of overhead crane. But the parameter
configuration will play an important role for control performance. Hence, to design an
efficient parameter learning scheme is necessary to enhance the control performance. The
optimization approaches are widely utilized in various domain for improving the system
performance [Takahashi, Shibata, Motoyama et al. (2017); Li, Niu, Liu et al. (2018); Efe
(2018)]. To compare with traditional optimization approaches, evolutionary computation
begin to get a lot of attentions for system parameter identification and optimization because
of the outstanding optimization capability [Santucci, Baioletti and Milani (2016); Fan and
Yan (2016); Sun, Wang, Srinivasan et al. (2014); Sun, Wang, Bi et al. (2015a); Sabar,
Abawajy and Yearwood (2017); Wang and Tang (2016); Suganthi, Devaraj, Ramar et al.
(2018)]. On basis of the powerful optimization capability, we propose a optimization
scheme by incorporating DE algorithm to set the FSMC parameter.

2 Fuzzy sliding mode controller designing
Sliding mode control (SMC) is a kind of commonly used lonlinear control method and
has been successfully utilized in complex nonlinear systems. It also is a special kind of
nonlinear control which the nonlinearity is expressed as the discontinuity of the control.
The control strategy of SMC is different to compare with other control method, in which
the system structure is purposefully changed in the dynamic process according to the current
state of the system.

Given the typical nonlinear control systems as follows.

Ẋ = F (x, t) +G(x, t)u+ d(t) (1)

The nonlinear functions (F and G), control signal (u) and external disturbance (d(t))
construct the nonlinear system. And x = [x, ẋ, · · · , x(n)]T are denoted as the system state
variables. Here, we denoted xd as reference state track, and the error of system is obtained
as follows.

E(t) = xd(t)− x(t) (2)
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To let s(E) = 0, the sliding mode surface function is acquired as follows.

s(E) = C ∗ E (3)

In order to let the E(t) arrive at the sliding mode surface and move to the origin, the control
process is separate two stages which are the approaching phase(s(E) 6= 0) and the sliding
phase(s(E) = 0). For s(E) 6= 0, the control law should satisfy the condition of s(E)ṡ(E) <
0 so that control law can drive the system error E to the sliding mode surface. Then, the
corresponding switching control law usw can be depicted as follows.

usw = u0sgn

(
s(E)

)
(4)

Notes that, sgn() and u0 represent the sign function and control signal initial value.

For s(E) = 0, the equivalent control law ueq is usually adopted to let the dynamic
characteristics of the system remain on the sliding surface. The corresponding control force
ueq is described to let ṡ(E) = 0.

ṡ = CĖ
= C∂s

∂x(ẋd − ẋ)

= C

(
∂s
∂x(ẋd)−

∂s
∂x

(
F (x, t) +G(x, t)u+ d(t)

))
= 0

(5)

Here, we assume that ∂s
∂xG(x, t) is non-singular.

ueq =

(
∂s

∂x
(G(x, t)

)−1(
∂s

∂x
(ẋd)−

∂s

∂x

(
F (x, t) + d(t)

))
(6)

Then, the expression can be acquired as:

u = usw + ueq

= u0sgn

(
s(E)

)
+

(
∂s
∂x(G(x, t)

)−1

∗

(
∂s
∂x(ẋd)−

∂s
∂x

(
F (x, t) + d(t)

)) (7)

In order to figure out the chattering problem, the fuzzy theory is utilized to soft the
discontinuous switching around the predefined manifold. To consider a second-order
nonlinear systems:{
ẋ1 = x2
ẋ2 = F (x1, x2) +G(x1, x2)u

(8)

where, F (x1, x2) and G(x1, x2) are linear and nonlinear functions, u is the control force.
Based on the aforementioned description, s(x1, x2) is depicted as follows.

s(x1, x2) = C1x1 + x2 (9)
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Figure 1: Fuzzification of sliding mode function

In order to soft the control output, we adopt five fuzzy language partitions with the form
ofNB,NS, · · · , PB for fuzzification, and the corresponding fuzzification of sliding mode
function is shown in Fig. 2.

3 Fuzzy sliding mode controller optimization
3.1 Differential evolution algorithm

Differential evolution algorithm is a commonly used global real value optimization
approach for parameter identification and system optimization. It includes three basic
operations which are mutation, crossover and selection. At the beginning evolution stage,
NP individuals x = {x1, x2, . . . , xNP } are randomly produce. And the mutation, crossover
and selection operations are implemented orderly based on the following scheme.

3.1.1 Mutation

During the mutation process, xr1, xr2, xr3(xr1 6= xr2 6= xr3) are randomly choice. And
these picked out individuals do not conformity. The produced new individual can be
obtained according to the following formula.

vi = x1 + Fm · (x2 − x3) (10)

Notes that, the scaling parameter (Fm) is used for controlling the amplification of vi.

3.1.2 Crossover

In order to incorporate the population information, the new mutant individuals need
to perform the crossover operation with origin individuals. The new individual ui =
[ui,1, ui,2, . . . , ui,D] can be produced crossing operation the between mutant vi and xi.

ui,j =

{
vi,j ; if(rj ≤ pc)orj = rand
xi,j ; if(rj > pc)orj 6= rand

(11)
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The jth random number (rj) belongs to 0 and 1, and the crossover probability (pc) is a
constant among the range of [0, 1]. The rand number (rand) belongs to [1, D] to ensure the
vi,j element be obtained.

3.1.3 Selection

In order to select the high quality individual from population, the selection operation is
employed to choose the excellent individual from ui and xi. That is the individual ui should
picked out if the evaluation value of ui is better than the xi, if not, the individual xi is
remained.

xt+1
i =

{
ui; f(ui) < f(xti)
xti; f(ui) ≥ f(xti)

(12)

3.2 Parameter learning scheme

According to DE algorithm optimization process, the parameters of fuzzy sliding mode
controller firstly are encoded. These parameter can be divided into two classes which
are unknown sliding mode function and fuzzfication parameters. For evaluating the
control performance of FSMC, the evaluation function (Fun) is given on basis of control
requirement.

Fun =

∫ t

0
|x|dt+ 2 ∗

∫ t

0
|θ|dt (13)

Here, the trolley displacement (x) and payload swing angle (θ) are used for evaluating
control performance.

The corresponding parameter learning process is described in below.
Step 1: Define the leaning parameters range and initialize DE algorithm parameters (G =
500, NP = 30, pc = 0.5, Fm = 0.7);
Step 2: Produce NP groups FSMC parameters and perform control process for each group
of parameters;
Step 3: Evaluate the control performance value of each group of parameters;
Step 4: Let iter = iter + 1 and i = 1;
Step 5: Based on (eq.(10)), do the mutation and acquire new mutant individual vi;
Step 6: Perform the crossover between xi and vi to get new crossover individual ui;
Step 7: Let i = i+ 1 and return to the 5th step until i = NP ;
Step 8: Evaluate the new NP groups parameters by implementing the control process;
Step 9: Choose the best parameter to remain next generation and let iter = iter + 1;
Step 10: Go back to the 4th step when the end condition is satisfied, otherwise end the
optimization process.
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Figure 2: Nonlinear overhead crane systems

4 Description of overhead crane systems and simulation experiment
4.1 Nonlinear overhead crane systems

This section gives the brief description of nonlinear overhead crane, in which the
under-actuated feature bring the difficulties for controlling payload oscillation. From the
Fig. 2, we can see that it consists on trolley and payload basic parts. According to the
overhead crane dynamic feature, the mechanism model is described as follows.

(M +m)ẍ+ml(θ̈ cos θ − θ̇2 sin θ) = F (14)

cos θ + lθ̈ + g sin θ = 0 (15)

Here,M andm are the trolley and load weight, θ is used for representing the swing angle, x
is the trolley displacement, l is the rope length, F represents the driving force from control
system.

ẋ1 = x2
ẋ2 = f1(x) + g1(x)u
ẋ3 = x4
ẋ4 = f2(x) + g2(x)u

(16)

where, x = [x1, x2, x3, x4]
T , x1 = x, x2 = ẋ, x3 = θ and x4 = θ̇ are trolley displacement,

trolley velocity, payload swing angle and payload angular velocity; u represents the control
force. f1, f2, g1 and g2 are described as follows.

f1(x) =
mlx24sinx3 +mgsinx3cosx3

M +msin2x3
(17)

g1(x) =
1

M +msin2x3
(18)

f2(x) =
(M +m)gsinx3 +mlx24sinx3cosx3

(M +msin2x3)l
(19)

g1(x) =
cosx3

(M +msin2x3)l
(20)
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4.2 Simulation result discussions

For evaluating the optimal tunning FSMC effectiveness, this section gives the simulation
experiment under different operation conditions. According to the description of overhead
crane, we construct trolley position and payload angle sliding functions. By incorporating
this two sliding functions, the overall sliding function is derived.

s1(x1, x2) = C1 ∗ x1 + x2 (21)

s2(x3, x4) = C2 ∗ x3 + x4 (22)

s(x1, x2, x3, x4) = λ1 ∗ s1 + λ2 ∗ s2
= λ1 ∗ C1 ∗ x1 + λ1 ∗ x2 + λ2 ∗ C2 ∗ x3 + λ2 ∗ x4

(23)

where λ1, λ2, C1, C2 are overall sliding mode function coefficient which are adjustable.

To confirm the proposed method effectiveness, two different operation conditions
(Con1:m = 3kg, xd = 3, xd = 9m, Con2:m = 9kg, xd = 3, xd = 9m) simulation
are performed and do the comparisons with the optimal PID controllerSun, Wang, Bi et al.
(2015b) and sliding mode controller.

Figure 3: The simulation results under the first condition

From Fig. 3 and Fig. 4, we can infer that the three control methods can rapidly and
accurately drive the trolley to the given point. Comparing with the optimal PID and
SMC, the FSMC doesn’t take much adjustment. For damping the payload oscillation, the
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Figure 4: The simulation results under the second condition

performance of the optimal PID controller is unsatisfactory, and the payload vibration time
will last for a long time. On the contrary, the SMC and FSMC can effectively eliminate
the payload residual vibration. Note that, the FSMC is superior no matter in oscillation
amplitude control or eliminate residual vibration.

5 Conclusions
In this paper, we presented a fuzzy logic based sliding mode controller for nonlinear
overhead crane systems to solve the payload oscillation problem. In order to reasonably
configure the FSMC parameter, DE algorithm is incorporated for tunning the corresponding
FSMC parameters so as to improve the control performance. Finally, for demonstrating the
proposed method effectiveness, the corresponding simulation experiment is done at two
different operation conditions. By comparing with commonly used methods, the DE based
FSMC method shows the excellent anti-swing control performance. This proposed method
also can be used in other engineering fields such as robot control, power system control and
chemical control.
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