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Abstract: Keyphrase greatly provides summarized and valuable information. This 
information can help us not only understand text semantics, but also organize and retrieve 
text content effectively. The task of automatically generating it has received considerable 
attention in recent decades. From the previous studies, we can see many workable 
solutions for obtaining keyphrases. One method is to divide the content to be summarized 
into multiple blocks of text, then we rank and select the most important content. The 
disadvantage of this method is that it cannot identify keyphrase that does not include in 
the text, let alone get the real semantic meaning hidden in the text. Another approach uses 
recurrent neural networks to generate keyphrases from the semantic aspects of the text, 
but the inherently sequential nature precludes parallelization within training examples, 
and distances have limitations on context dependencies. Previous works have 
demonstrated the benefits of the self-attention mechanism, which can learn global text 
dependency features and can be parallelized. Inspired by the above observation, we 
propose a keyphrase generation model, which is based entirely on the self-attention 
mechanism. It is an encoder-decoder model that can make up the above disadvantage 
effectively. In addition, we also consider the semantic similarity between keyphrases, and 
add semantic similarity processing module into the model. This proposed model, which is 
demonstrated by empirical analysis on five datasets, can achieve competitive 
performance compared to baseline methods. 
 
Keywords: Keyphrase generation, self-attention mechanism, encoder-decoder framework. 

1 Introduction 
With the explosive growth of text information in recent years, people can access a large 
amount of text information every day, such as news, web pages, chat records, papers and 
so on. Extracting important content from a large amount of text has become an urgent 
need. Automatically extracting keyphrase provides an efficient solution. Keyphrase can 
provide users with highly condensed and valuable information that summarizes the major 
semantic meaning of longer texts. According to keyphrases, users can easily and 
accurately grasp the main content of the text, which not only saves time, but also 
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improves the efficiency of reading. Keyphrase extraction has been used in lots of fields, 
such as, text categorization [Hulth and Megyesi (2006)], text summarization [Zhang, 
Zincir-Heywood and Milios (2004)], information retrieval [Jones and Staveley (1999)], 
opinion mining [Berend (2011)], and retrieving encrypted data in cloud server [Tang, 
Lian, Zhao et al. (2018)]. Here, we think that both “keyword” and “keyphrase” mean the 
same thing, and there is no difference between them. In addition, we have to pay attention 
that “keyphrase” and “keyword” can be made of multiple words. 
There are enormous usefulness of keyphrases, therefore, lots of studies have been done 
on the generation or automatic extraction of keyphrases, including supervised 
classification-based methods [Wang, Peng and Hu (2006)], ranking-based methods [Jiang, 
Hu and Li (2009)], clustering-based methods [Danilevsky, Wang, Desai et al. (2014)] and 
recurrent neural networks-based encoder-decoder methods [Meng, Zhao, Han et al. 
(2017); Zhang and Xiao (2018)]. The first three methods do not extract keywords from 
the semantic layer, which are extraction methods. They can only obtain keyphrases 
appearing in the source text, but they cannot obtain absent keyphrases [Meng, Zhao, Han 
et al. (2017)]. The last method uses recurrent neural networks as its encoder and decoder, 
which can generate present and absent keyphrases from text semantics and is a generation 
method. However, recurrent neural networks rely on the state of current and previous 
time steps. This essentially sequential nature excludes parallelism, and it takes a number 
of time steps to accumulate dependency features information between long-distance 
words, and the longer distance, the less possibility it is to capture dependency features 
information effectively. In order to overcome these shortcomings, we propose an 
encoder-decoder model that abandons the recurrent neural network and entirely relies on 
attention mechanism. The model creates global dependencies between input and output 
and can generate present and absent keyphrases. It solves the problem of weakening 
dependence caused by the long distance between words, has the property of 
parallelization, and considers the semantic correlation between keyphrases. To 
summarize, the main contributions of our research are as below: 
1) A keyphrase generation model is proposed, which is entirely based on self-attention 

mechanism. As far as we know, this is the first time that self-attention mechanism 
applies to a keyphrase generation task. 

2) We consider the semantic similarity between keyphrases and add semantic similarity 
processing module into the model. 

3) We compare six important supervised and unsupervised models, and the results 
show that our model performs better. 

In the rest part of the article, firstly, the related work will be shown in Section 2. 
Afterwards, we introduce our model in detail in Section 3. Then, we experimentally 
demonstrate the performance of our model in Section 4. At last, in Section 5, conclusions 
and future work will be given. 

2 Related work 
Due to the important role of keyphrases, there are many methods to extract keywords, 
and they usually have two steps for extracting keyphrases. The first step is to extract 
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keyword candidates from the source text and form a list. The longer length of the list, the 
greater the probability of getting the correct keyphrases. The methods for extracting 
candidates mainly include sequence matching [Le, Le Nguyen and Shimazu (2016)] and 
extract important n-gram phrases [Medelyan, Witten and Milne (2008)]. The second step 
is to sort keyword candidates according to the significance of the source text. The final 
result is the top keyphrases in the list of candidates. There are two main methods to rank 
the list of candidates: unsupervised and supervised. The former methods include finding 
the central nodes of text graph [Grineva, Grinev and Lizorkin (2009)], topical clusters 
[Liu, Huang, Zheng et al. (2010)] and so on. The latter takes it as a binary classification 
problem based on positive fractional ranking [Gollapalli and Caragea (2014)]. However, 
in scientific publications, instead of following the written content, authors usually assign 
keyphrases based on their semantics. Therefore, the above methods only judge the 
importance of the candidate keyphrases to the text according to the number of 
occurrences, and cannot reveal the complete semantics of the document content.  
In addition to the above extraction methods, some scholars use a completely different 
way to generate keyphrases. Liu et al. [Liu, Chen, Zheng et al. (2011)] adopted a word 
alignment model, which translates the documents to the keyphrases. To a certain degree, 
this model reduces the vocabulary gaps between source and target. Zhang et al. [Zhang, 
Wang, Gong et al. (2016)] built a sequence labeling model, which extracted keywords by 
recurrent neural network from tweets. However, this model cannot fully understand the 
semantics behind the source text. Meng et al. [Meng, Zhao, Han et al. (2017)] proposed 
an encoder-decoder model, which combines attention mechanism and copy mechanism to 
generate keyphrases. However, this approach does not consider the semantic similarity 
between keyphrases, and when the sequence length is too long, it is difficult to capture 
the dependency features between words. The longer the distance, the less the possibility 
of effective capture. On the basis of Meng et al. [Meng, Zhao, Han et al. (2017)], Zhang 
et al. [Zhang and Xiao (2018)] used the coverage mechanism to solve the semantic 
similarity between keyphrases. However, the problem of weak dependence between long 
distance words and the inability to parallelize training still exist. 
To overcome the shortcomings above, a keyphrase generation model is proposed, which 
is entirely based on self-attention mechanism. It abandons the recurrent neural network 
and takes into account the semantic similarity between keyphrases. 

3 Methodology 
Our keyword generation model includes an encoder, a decoder and a semantic similarity 
processing module. The encoder and decoder are shown in the upper and lower halves of 
Fig. 1, respectively. Given a source text, the encoder is used to learn the global 
dependency information between the words, the decoder combines the dependency 
information to generate the corresponding keyphrase, and the semantic similarity module 
handles the semantic similarity between the keyphrases. 



 
 
 
572                                                                              CMC, vol.61, no.2, pp.569-581, 2019 

 

Figure 1: Our model architecture 

3.1 Problem definition 
For the keyphrase generation model, the task is to generate multiple keyphrases to 
summarize the source text by machine automatically. We suppose that dataset consists of 
N different samples, and the ( ),i ix k  represents the i-th sample, which is composed of a 

source text ix  and in  target keyphrases. We describe these target keyphrases as 
( ) ( ) ( )( ),,1 ,2  , , , ii ni iik k k k= … . Also both source text ix  and keyphrase ( ),i jk  are regarded 

as word sequences as below: 

( )1 2  , , ,
ix

i i i i
lx x x x= …                                                                                                           (1) 

( ) ( ) ( )
( )

( )( ),

, , , ,
1 2  , ,

i jk

i j i j i j i j
lk y y y= …                                                                                             (2) 

ix
l  and ( ),i jk

l  respectively indicate the length of word sequence ix  and ( ),i jk  respectively. 
We should pay attention that the keyphrase sequences only contain a few words and are 
relatively short. 

As mentioned above, each sample contains a source text ix  and multiple keyphrases ik . 
We use an encoder and a decoder to generalize the hidden rules and learn the mapping 
relationship between the target keyphrases and source text. The source text sequence ix  
is used as input, and the dependencies between each word are learned by the multi-
attention mechanism in the encoder to obtain the global structure information of the 
source text. The previous one keyphrase ( ),i jk  that has been obtained is used as an 
additional input to the decoder, and then the decoder outputs the next keyphrase ( ), 1i jk +  
according to the global dependency information learnt by the encoder. 
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3.2 Encoder 
Our encoder is basically the same as Vaswani et al. [Vaswani, Shazeer, Parmar et al. 
(2017)]. First, the input source text is transformed into vector matrix through input 
embedding. Because our keyphrase generation model consists of no convolution and no 
recurrence, in order to making use of the sequence order, we must inject some 
information about the absolute position or the relative of the words into the sequence. The 
same as Vaswani et al. [Vaswani, Shazeer, Parmar et al. (2017)], the “positional 
encoding” is added to the input embedding at the bottom of the encoder. Then, the results 
of their summation are input into the multi-layer multi-head attention mechanism and 
feed-forward network which is fully connected, and a sequence of consecutive 
representations is finally obtained. In order to preserve the original input information as 
much as possible, a residual connection [He, Zhang, Ren et al. (2016)] is adopted by 
every multi-head attention mechanism and feed-forward network, and then perform layer 
standardization [Ba, Kiros and Hinton (2016)]. 

3.2.1 Positional encoding 
The self-attention mechanism is unable to distinguish different locations. To take 
advantage of the position information of the sequence, it is very significant to encode the 
position of every input word. There are many ways to encode the position. The simplest 
way is to use additional position embedding. In this work, we try the positional encoding 
approach proposed by Vaswani et al. [Vaswani, Shazeer, Parmar et al. (2017)], which is 
formulated as follows: 

( ) ( )2 /
,2  sin /10000 modeli d

pos iPE pos=                (3) 

( ) ( )2 /
,2 1   cos /10000 modeli d

pos iPE pos+ =                                                                              (4) 

where pos  is the position and i is the dimension. The positional encoding is simply 
added to the input embedding. Unlike the positional embedding approach, this approach 
does not introduce additional parameters. 
After input embedding and positional encoding, our input source text is transformed into 
a matrix X , where n modeld dX R ×∈ , nd  is the length of the input text, and modeld  is the 
dimension of the embedding. 

3.2.2 Multi-head attention 
The attention mechanism has been widely applied to various tasks of natural language 
processing based on deep learning. We think a mapping of a query to a series of 

key, value  data pairs can best describe the nature of the attention mechanism. Given a 
certain element Query  in the target, we calculate the similarity or correlation between it 
and the Key  of each data pair in the Source  to obtain the weight coefficient of the 
corresponding Value , and then weight and sum the Value  according to the weight 
coefficient respectively, and the result of the summation is the attention value. 
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( ) ( )
1

Attention ,  = , *
lx

i i
i

Query Source Similarity Query Key Value
=
∑                        (5) 

where lx  represents the length of the Source , where the similarity or correlation of 
Query  and Key  can be calculated by dot-product. 

In this article, Q , K  and V  all represent the matrix of the n modeld d×  after input 
embedding and positional encoding. In order to better learn the global dependency 
information within the text, we use the multi-head attention proposed by Vaswani et al. 
[Vaswani, Shazeer, Parmar et al. (2017)]. It proved to be useful to project the Q , K  and 
V  matrices linearly h  times with different, which respectively learned different linear 
projection to n kd d× , n kd d×  and n vd d×  matrices. We perform the attention function 
parallel on each of these matrices of Q , K  and V , resulting n vd d×  output matrix. 
Then we connect the matrices and project them once again, yielding the final results, as 
presented in Fig. 2. 

( ), ,Q K V
i i i ihead Attention QW KW VW=                                                                         (6) 

( ) ( )1, , , , O
hMultiHead Q K V Concat head head W= …                                                (7) 

where the projections are parameter matrices model kd dQ
iW R ×∈ , model kd dK

iW R ×∈ , 
model vd dV

iW R ×∈  and v modelhd dOW R ×∈ . 

 

Figure 2: Multi-head attention 

After projecting Q , K  and V  to subspaces of lower dimension, and then performing 
attention calculations in different subspaces, the subspace’s dimension is lower without 
increasing the computational amount, which is conducive to parallelizing and capturing 
features of different subspaces. 
If Q  and K  after linear projection are directly subjected to dot product operations, and 
the operation result is used as a weighting coefficient, there may be a problem that the dot 
product is too large and the gradient is too small. We try the method of Vaswani et al. 
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[Vaswani, Shazeer, Parmar et al. (2017)], scaling the dot product by 
1

kd
, which is 

expressed as follows: 

( ) ( )
Attention , ,

TQ K
i iQ K V V

i i i i
k

QW KW
QW KW VW softmax VW

d

 
 =
 
 

                           (8) 

where Q , K , n modeld dV R ×∈ . 

The self-attention mechanism can be expressed as X Q K V= = = , which means that 
attention mechanism works inside the sequence to find internal interdependencies. The 
self-attention mechanism solves the problem of weak dependence caused by the text 
being too long. So our multi-head attention can be simply described as: 

( )  , ,Y MultiHead X X X=                                                                                             (9) 

where Y  is the final value after connection and projection, n modeld dY R ×∈ . 

3.2.3 Feed forward 
In order to fit the training data better, we add a fully connected feed forward neural 
network layer to the encoder. It contains two linear layers and an intermediate nonlinear 
ReLU hidden layer. Formally, we have the following equation:  

( ) ( )1 1 2 2 FFN Y ReLU YW b W b= + +                                                                            (10) 

where 1
model fd dW R ×∈ ,  2

f modeld dW R ×∈ , n modeld dY R ×∈ . 

3.3 Decoder 
Since the model of Vaswani et al. [Vaswani, Shazeer, Parmar et al. (2017)] is used to solve 
translation problem, they use the “Masked Multi-Head Attention” sublayer in the decoder 
to prevent future output words from being used during training, ensuring that the prediction 
of position i depends only on all known outputs less than i. However, our decoder part is 
different from them. Because the keyphrases we generated are short and independent, and 
there is no interdependence between them, our decoder only uses the keyphrase from the 
last time output, and then embedding it as the Q  input of multi-head attention. 

When we make predictions, we enter the source text ix  consisting of an abstract and a 
title at the encoder. After a series of processing by the encoder, we get a matrix Z , 

n modeld dZ R ×∈  which is used as the K  and V  input of the multi-head attention in the 
decoder, ie Z K V= = . In the decoder, the keyphrase ( ),i jk  outputted by the previous 
layer is processed by embedding to obtain a matrix which is used as another input Q  of 
the multi-head attention layer in the decoder, m modeld dQ R ×∈ , md  is the length of the 
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keyphrase ( ),i jk . Q  combines K , V  to perform the multi-head attention and feed-
forward neural network. Similar to the encoder, each sub-layer uses a residual connection 
[He, Zhang, Ren et al. (2016)], and then performs layer standardization [Ba, Kiros and 
Hinton (2016)]. Using the multi-head attention and feed-forward neural network stack 

xN  times to get the matrix S , m modeld dS R ×∈ , and then through the linear layer and the 
softmax layer, predict the next most probable keyphrase ( ), 1i jk + . 
The linear layer is a neural network, which is simple and fully connected. It projects the 
matrix S, which is produced by the stack of decoder, into a very much larger vector. This 
vector is called logits vector. We suppose that our model could learn from its training 
dataset and know 10,000 unique keyphrases, which turns the logits vector into 10,000 
cells wide. These cells are corresponding to the score of a keyphrase respectively. Then 
the softmax layer makes those scores probabilities, all of which are positive and have a 
sum of 1.0. The next keyphrase be produced, which is associated with the cell with the 
highest possibility. 
Since the multi-head attention and the feed-forward neural network that used in our 
decoder have already been introduced in the encoder, we don’t repeat them here. 

3.4 Semantic similarity of keyphrases 
In order to consider the semantic information between generated keyphrases, we add a 
semantic similarity module behind the encoder-decoder. 
Firstly, we segment each keyphrase, then use Word2vec [Mikolov, Chen, Corrado et al. 
(2013)] to calculate the word vector of each word, and then add the word vectors in each 
keyphrase to get the average word vector as the current keyphrase. ( )1 2, , ,i i i i

nw v v v= …  
indicates the word vector of the i-th keyphrase. We use the method of cosine similarity to 
calculate the similarity between keyphrases. 

( ) ( )
( ) ( )

1
2 2

1 1

SIM ,
n o p

i io p i

n no p
i ii i

v v
w w

v v

=

= =

×
=

×

∑
∑ ∑

                                                              (11) 

where ( )SIM ,o pw w  represents the cosine similarity of the o-th and p-th keyphrases. 

4 Experiments 
We introduce our experimental designs in this section. First, we describe the training 
dataset and the testing datasets. Then we introduce the baseline models and evaluation 
metrics. Finally, we give the experimental results and analysis. 

4.1 Training dataset 
As far, for evaluating keyphrase generation, we have a couple of publicly available 
datasets. The largest publicly available dataset is provided by Meng et al. [Meng, Zhao, 
Han et al. (2017)]. We use it to train and test our model. We mark it with "KP" in the later 
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description. The KP dataset contains plenty of high-quality computer science articles, 
including nearly 567,830 articles. We randomly select 40k articles to test and validate our 
model, and the rest of them were used as training dataset. About this 40k articles, 20k 
articles are used as a testing dataset, we mark it with KP20k, and the remaining 20k 
articles are regarded as validation dataset to judge the convergence of our model during 
the training process. 

4.2 Testing dataset 
In order to comprehensively evaluate the proposed keypharse generation model, we not 
only use the newly constructed test dataset KP20k to test our model, but also use other 
four scientific article datasets. The title and abstract of the article are used as source text. 
All the testing datasets and details are listed below: 
1) Inspec [Hulth (2003)]: The abstracts of 2,000 articles are provided. We randomly 

select 500 abstracts as our testing dataset. 
2) Krapivin [Krapivin, Autaeu and Marchese (2009)]: About 2,304 full-text papers and 

author-assigned keyphrases are provided. The abstracts of 400 articles among them 
are used as our testing dataset. 

3) NUS [Nguyen and Kan (2007)]: The dataset provides 211 full-text papers and 
author-assigned keyphrases. We use all of them to test our model. 

4) SemEval-2010 [Kim, Medelyan, Kan et al. (2013)]: This dataset consists of 288 
articles from the ACM Digital Library.  We randomly select 100 papers to test our 
model. 

5) KP20k [Meng, Zhao, Han et al. (2017)]: The dataset provides 20K scientific 
literatures about computer science with titles, abstracts and keyphrases. 

Since the number of Krapivin, Inspec, SemEval-2010 and NUS is too small to train our 
powerful model. Therefore, they only are used as testing dataset. 

4.3 Baseline models 
We use four supervised algorithms (Maui [Medelyan, Frank and Witten (2009)], RNN 
[Meng, Zhao, Han et al. (2017)], CopyRNN [Meng, Zhao, Han et al. (2017)], CovRNN 
[Zhang and Xiao (2018)]) and two unsupervised algorithms (TextRank [Mihalcea and 
Tarau (2004)], TF-IDF) as baselines. Zhang et al. [Zhang and Xiao (2018)] have 
experimentally verified these supervised and unsupervised methods, and we take the 
results of their experiments as the standard. 

4.4 Evaluation metric 
To measure the performance of our model, evaluation metrics consist of recall, macro-
averaged precision and F-measure ( 1F ). The recall represents a comparison between the 
quantity of correctly-predicted keywords and the total quantity of sample keywords, 
while precision represents a comparison between the quantity of correctly-predicted 
keywords and the total quantity of predicted keywords. In fact, precision and recall are 
contradictory in some cases. In order to consider them comprehensively, we use the 
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comprehensive evaluation metric 1F  to measure the performance of the model when 
predicting present keyphrases. 

1
2P RF
P R
×

=
+

                                                                                                                   (12) 

where R  represents the recall and P  represents the precision. 

4.5 Results and analysis 
To evaluate our model, a study on two different tasks is conducted. We classify keywords 
into two categories according to whether they appear in the source text: present keyphrase 
and absent keyphrase. 

4.5.1 Predicting present keyphrases 
To test the performance of our model on regular tasks, we compared it to six baseline 
models (TextRank, TF-IDF, RNN, Maui, CovRNN, CopyRNN). To be fair, we only 
consider models to predict the performance of present keyphrases. We use 1F  at top 4 and 
top 8 to measure the performance of each method. We highlight in bold for the best 
scores among the five benchmark datasets. 
 

Table 1: Each model predicts the performance results of the present keyphrases 

Method 
Inspec 

1 @ 4F  1 @8F  
Krapivin 
1 @ 4F  1 @8F  

NUS 
1 @ 4F  1 @8F  

SemEval 
1 @ 4F  1 @8F  

KP20k 
1 @ 4F  1 @8F  

TF-IDF 0.223 0.317 0.130 0.167 0.141 0.183  0.126 0.190 0.111 0.131 
TextRank 0.224 0.271 0.171 0.152 0.183 0.191 0.171 0.181 0.174 0.142 

Maui 0.037 0.041     0.247 0.216 0.242 0.271 0.041 0.037 0.271 0.234 
RNN 0.084 0.061   0.133 0.087 0.154 0.152 0.143 0.112 0.179 0.191 

CopyRNN 0.271 0.340   0.310 0.256 0.320 0.316 0.292 0.294 0.321 0.260 
CovRNN 0.280 0.350    0.312 0.257 0.321 0.340 0.301 0.295 0.323 0.270 

Our model 0.289 0.358    0.320 0.262 0.327 0.346 0.310 0.301 0.332 0.279 
 

The results of the experiment show that the four supervised models (Maui, RNN, 
CopyRNN, CovRNN) have a robust performance across different datasets. Overall, 
among all baseline models, CovRNN works extremely well. In KP20k dataset, its 1@4F  
and 1@8F  values reach 0.323 and 0.270 respectively. These baseline models achieve 
good results from the study, but our proposed model based on self-attention mechanism 
performs the best. 
In the predicting present keyphrases task, although our model with the self-attention 
mechanism performs best, it does not work well as we expected. For instance, the 1@8F  
value of the CovRNN reach 0.270 on KP20k dataset, our model is 0.279. It probably 
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because that our model pays high attention to find the hidden semantic information 
behind the source text, which may result in generating general keyphrases that cannot be 
referenced from the source text. 

4.5.2 Predicting absent keyphrases 
It is an important concern to predict the absent keyphrases based on “comprehension” of 
content. It is worth mentioning that the prediction task is extreme challenging, for our 
knowledge, it can only be done by the seq2seq model. Therefore, only CopyRNN, 
CovRNN and our model experiments can be performed. 
Here, in order to test the performance of each model to predict the absent keyphrases, we 
use the recall of top 10 and top 50 as evaluation metrics. The recall metric assists us 
analyze the predictive performance of each model. Tab. 2 shows the performance of 
CopyRNN, CovRNN and our model for predicting absent keyphrase. The best prediction 
results are shown in bold. 

Table 2: Absent keyphrases prediction performance of CopyRNN, CovRNN and our 
model on five datasets 

Dataset 
CopyRNN 

R @10   R @50  
CovRNN 

R @10   R @50  
Our model 

R @10   R @50  

Inspec 0.045   0.102 0.048   0.113 0.057   0.120 
Krapivin 0.115   0.191 0.131   0.202 0.142   0.218 
NUS 0.059   0.118 0.064   0.121 0.071   0.134 
SemEval 0.045   0.069 0.049   0.073 0.051   0.082 
KP20k 0.125   0.191 0.129   0.213 0.141   0.232 

 

In Tab. 2, the recall of CopyRNN, CovRNN and our model can reach about 7.8% 
(13.4%), 8.4% (14.4%) and 9.2% (15.7%) of accurate keyphrases at top 10 (50) 
predictions. In addition, our model shows better performance than CopyRNN and 
CovRNN. This performance shows that our model can better extract the semantic 
meaning hidden in the text. 
Our proposed model completely relies on the self-attention mechanism to learn the global 
dependence information of the text, more comprehensively considers the dependencies 
between words, and solves the problem of weakening dependence caused by the long 
distance between words, has the property of parallelization. In addition, we consider the 
semantic relevance between keyphrases. The experimental results show the important 
role of the global dependence information of the text on keyphrase generation. This 
progress also shows that self-attention mechanism is extraordinary significant in the task 
of absent keyphrase prediction. 

5 Conclusion and future work 
In our work, we propose a keyphrase generation model based entirely on the self-
attention mechanism, which is an encoder-decoder framework. In addition, we add the 
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semantic similarity module to our model. As far as we know, this is the first time that 
self-attention mechanism applies to a keyphrase generation task. Our model relies 
entirely on the self-attention mechanism to learn the global dependence information of 
text, without the limitation of the distance between words, has the property of 
parallelization, and can generate absent keyphrases based on text semantics. The 
effectiveness of our proposed model is demonstrated in the comprehensive empirical 
studies. 
In the future, we consider applying our model to different types of testing datasets to test 
their performance. In addition, we also consider exploring a new way to deal with 
semantic correlation between keyphrases. 
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