

Computers, Materials & Continua CMC, vol.61, no.2, pp.569-581, 2019

CMC. doi:10.32604/cmc.2019.05952 www.techscience.com/cmc

Keyphrase Generation Based on Self-Attention Mechanism

Kehua Yang1, *, Yaodong Wang1, Wei Zhang1, Jiqing Yao2 and Yuquan Le1

Abstract: Keyphrase greatly provides summarized and valuable information. This
information can help us not only understand text semantics, but also organize and retrieve
text content effectively. The task of automatically generating it has received considerable
attention in recent decades. From the previous studies, we can see many workable
solutions for obtaining keyphrases. One method is to divide the content to be summarized
into multiple blocks of text, then we rank and select the most important content. The
disadvantage of this method is that it cannot identify keyphrase that does not include in
the text, let alone get the real semantic meaning hidden in the text. Another approach uses
recurrent neural networks to generate keyphrases from the semantic aspects of the text,
but the inherently sequential nature precludes parallelization within training examples,
and distances have limitations on context dependencies. Previous works have
demonstrated the benefits of the self-attention mechanism, which can learn global text
dependency features and can be parallelized. Inspired by the above observation, we
propose a keyphrase generation model, which is based entirely on the self-attention
mechanism. It is an encoder-decoder model that can make up the above disadvantage
effectively. In addition, we also consider the semantic similarity between keyphrases, and
add semantic similarity processing module into the model. This proposed model, which is
demonstrated by empirical analysis on five datasets, can achieve competitive
performance compared to baseline methods.

Keywords: Keyphrase generation, self-attention mechanism, encoder-decoder framework.

1 Introduction
With the explosive growth of text information in recent years, people can access a large
amount of text information every day, such as news, web pages, chat records, papers and
so on. Extracting important content from a large amount of text has become an urgent
need. Automatically extracting keyphrase provides an efficient solution. Keyphrase can
provide users with highly condensed and valuable information that summarizes the major
semantic meaning of longer texts. According to keyphrases, users can easily and
accurately grasp the main content of the text, which not only saves time, but also

1 College of Computer Science and Electronic Engineering and Key Laboratory for Embedded and Network

Computing of Hunan Province, Hunan University, Changsha, 410082, China.
2 Oath Verizon Company, Manhattan, New York, 10007, USA.
* Corresponding Author: Kehua Yang. Email: khyang@hnu.edu.cn.

570 CMC, vol.61, no.2, pp.569-581, 2019

improves the efficiency of reading. Keyphrase extraction has been used in lots of fields,
such as, text categorization [Hulth and Megyesi (2006)], text summarization [Zhang,
Zincir-Heywood and Milios (2004)], information retrieval [Jones and Staveley (1999)],
opinion mining [Berend (2011)], and retrieving encrypted data in cloud server [Tang,
Lian, Zhao et al. (2018)]. Here, we think that both “keyword” and “keyphrase” mean the
same thing, and there is no difference between them. In addition, we have to pay attention
that “keyphrase” and “keyword” can be made of multiple words.
There are enormous usefulness of keyphrases, therefore, lots of studies have been done
on the generation or automatic extraction of keyphrases, including supervised
classification-based methods [Wang, Peng and Hu (2006)], ranking-based methods [Jiang,
Hu and Li (2009)], clustering-based methods [Danilevsky, Wang, Desai et al. (2014)] and
recurrent neural networks-based encoder-decoder methods [Meng, Zhao, Han et al.
(2017); Zhang and Xiao (2018)]. The first three methods do not extract keywords from
the semantic layer, which are extraction methods. They can only obtain keyphrases
appearing in the source text, but they cannot obtain absent keyphrases [Meng, Zhao, Han
et al. (2017)]. The last method uses recurrent neural networks as its encoder and decoder,
which can generate present and absent keyphrases from text semantics and is a generation
method. However, recurrent neural networks rely on the state of current and previous
time steps. This essentially sequential nature excludes parallelism, and it takes a number
of time steps to accumulate dependency features information between long-distance
words, and the longer distance, the less possibility it is to capture dependency features
information effectively. In order to overcome these shortcomings, we propose an
encoder-decoder model that abandons the recurrent neural network and entirely relies on
attention mechanism. The model creates global dependencies between input and output
and can generate present and absent keyphrases. It solves the problem of weakening
dependence caused by the long distance between words, has the property of
parallelization, and considers the semantic correlation between keyphrases. To
summarize, the main contributions of our research are as below:
1) A keyphrase generation model is proposed, which is entirely based on self-attention

mechanism. As far as we know, this is the first time that self-attention mechanism
applies to a keyphrase generation task.

2) We consider the semantic similarity between keyphrases and add semantic similarity
processing module into the model.

3) We compare six important supervised and unsupervised models, and the results
show that our model performs better.

In the rest part of the article, firstly, the related work will be shown in Section 2.
Afterwards, we introduce our model in detail in Section 3. Then, we experimentally
demonstrate the performance of our model in Section 4. At last, in Section 5, conclusions
and future work will be given.

2 Related work
Due to the important role of keyphrases, there are many methods to extract keywords,
and they usually have two steps for extracting keyphrases. The first step is to extract

Keyphrase Generation Based on Self-Attention Mechanism 571

keyword candidates from the source text and form a list. The longer length of the list, the
greater the probability of getting the correct keyphrases. The methods for extracting
candidates mainly include sequence matching [Le, Le Nguyen and Shimazu (2016)] and
extract important n-gram phrases [Medelyan, Witten and Milne (2008)]. The second step
is to sort keyword candidates according to the significance of the source text. The final
result is the top keyphrases in the list of candidates. There are two main methods to rank
the list of candidates: unsupervised and supervised. The former methods include finding
the central nodes of text graph [Grineva, Grinev and Lizorkin (2009)], topical clusters
[Liu, Huang, Zheng et al. (2010)] and so on. The latter takes it as a binary classification
problem based on positive fractional ranking [Gollapalli and Caragea (2014)]. However,
in scientific publications, instead of following the written content, authors usually assign
keyphrases based on their semantics. Therefore, the above methods only judge the
importance of the candidate keyphrases to the text according to the number of
occurrences, and cannot reveal the complete semantics of the document content.
In addition to the above extraction methods, some scholars use a completely different
way to generate keyphrases. Liu et al. [Liu, Chen, Zheng et al. (2011)] adopted a word
alignment model, which translates the documents to the keyphrases. To a certain degree,
this model reduces the vocabulary gaps between source and target. Zhang et al. [Zhang,
Wang, Gong et al. (2016)] built a sequence labeling model, which extracted keywords by
recurrent neural network from tweets. However, this model cannot fully understand the
semantics behind the source text. Meng et al. [Meng, Zhao, Han et al. (2017)] proposed
an encoder-decoder model, which combines attention mechanism and copy mechanism to
generate keyphrases. However, this approach does not consider the semantic similarity
between keyphrases, and when the sequence length is too long, it is difficult to capture
the dependency features between words. The longer the distance, the less the possibility
of effective capture. On the basis of Meng et al. [Meng, Zhao, Han et al. (2017)], Zhang
et al. [Zhang and Xiao (2018)] used the coverage mechanism to solve the semantic
similarity between keyphrases. However, the problem of weak dependence between long
distance words and the inability to parallelize training still exist.
To overcome the shortcomings above, a keyphrase generation model is proposed, which
is entirely based on self-attention mechanism. It abandons the recurrent neural network
and takes into account the semantic similarity between keyphrases.

3 Methodology
Our keyword generation model includes an encoder, a decoder and a semantic similarity
processing module. The encoder and decoder are shown in the upper and lower halves of
Fig. 1, respectively. Given a source text, the encoder is used to learn the global
dependency information between the words, the decoder combines the dependency
information to generate the corresponding keyphrase, and the semantic similarity module
handles the semantic similarity between the keyphrases.

572 CMC, vol.61, no.2, pp.569-581, 2019

Figure 1: Our model architecture

3.1 Problem definition
For the keyphrase generation model, the task is to generate multiple keyphrases to
summarize the source text by machine automatically. We suppose that dataset consists of
N different samples, and the (),i ix k represents the i-th sample, which is composed of a

source text ix and in target keyphrases. We describe these target keyphrases as
() () ()(),,1 ,2 , , , ii ni iik k k k= … . Also both source text ix and keyphrase (),i jk are regarded

as word sequences as below:

()1 2 , , ,
ix

i i i i
lx x x x= … (1)

() () ()
()

()(),

, , , ,
1 2 , ,

i jk

i j i j i j i j
lk y y y= … (2)

ix
l and (),i jk

l respectively indicate the length of word sequence ix and (),i jk respectively.
We should pay attention that the keyphrase sequences only contain a few words and are
relatively short.

As mentioned above, each sample contains a source text ix and multiple keyphrases ik .
We use an encoder and a decoder to generalize the hidden rules and learn the mapping
relationship between the target keyphrases and source text. The source text sequence ix
is used as input, and the dependencies between each word are learned by the multi-
attention mechanism in the encoder to obtain the global structure information of the
source text. The previous one keyphrase (),i jk that has been obtained is used as an
additional input to the decoder, and then the decoder outputs the next keyphrase (), 1i jk +
according to the global dependency information learnt by the encoder.

Keyphrase Generation Based on Self-Attention Mechanism 573

3.2 Encoder
Our encoder is basically the same as Vaswani et al. [Vaswani, Shazeer, Parmar et al.
(2017)]. First, the input source text is transformed into vector matrix through input
embedding. Because our keyphrase generation model consists of no convolution and no
recurrence, in order to making use of the sequence order, we must inject some
information about the absolute position or the relative of the words into the sequence. The
same as Vaswani et al. [Vaswani, Shazeer, Parmar et al. (2017)], the “positional
encoding” is added to the input embedding at the bottom of the encoder. Then, the results
of their summation are input into the multi-layer multi-head attention mechanism and
feed-forward network which is fully connected, and a sequence of consecutive
representations is finally obtained. In order to preserve the original input information as
much as possible, a residual connection [He, Zhang, Ren et al. (2016)] is adopted by
every multi-head attention mechanism and feed-forward network, and then perform layer
standardization [Ba, Kiros and Hinton (2016)].

3.2.1 Positional encoding
The self-attention mechanism is unable to distinguish different locations. To take
advantage of the position information of the sequence, it is very significant to encode the
position of every input word. There are many ways to encode the position. The simplest
way is to use additional position embedding. In this work, we try the positional encoding
approach proposed by Vaswani et al. [Vaswani, Shazeer, Parmar et al. (2017)], which is
formulated as follows:

() ()2 /
,2 sin /10000 modeli d

pos iPE pos= (3)

() ()2 /
,2 1 cos /10000 modeli d

pos iPE pos+ = (4)

where pos is the position and i is the dimension. The positional encoding is simply
added to the input embedding. Unlike the positional embedding approach, this approach
does not introduce additional parameters.
After input embedding and positional encoding, our input source text is transformed into
a matrix X , where n modeld dX R ×∈ , nd is the length of the input text, and modeld is the
dimension of the embedding.

3.2.2 Multi-head attention
The attention mechanism has been widely applied to various tasks of natural language
processing based on deep learning. We think a mapping of a query to a series of

key, value data pairs can best describe the nature of the attention mechanism. Given a
certain element Query in the target, we calculate the similarity or correlation between it
and the Key of each data pair in the Source to obtain the weight coefficient of the
corresponding Value , and then weight and sum the Value according to the weight
coefficient respectively, and the result of the summation is the attention value.

574 CMC, vol.61, no.2, pp.569-581, 2019

() ()
1

Attention , = , *
lx

i i
i

Query Source Similarity Query Key Value
=
∑ (5)

where lx represents the length of the Source , where the similarity or correlation of
Query and Key can be calculated by dot-product.

In this article, Q , K and V all represent the matrix of the n modeld d× after input
embedding and positional encoding. In order to better learn the global dependency
information within the text, we use the multi-head attention proposed by Vaswani et al.
[Vaswani, Shazeer, Parmar et al. (2017)]. It proved to be useful to project the Q , K and
V matrices linearly h times with different, which respectively learned different linear
projection to n kd d× , n kd d× and n vd d× matrices. We perform the attention function
parallel on each of these matrices of Q , K and V , resulting n vd d× output matrix.
Then we connect the matrices and project them once again, yielding the final results, as
presented in Fig. 2.

(), ,Q K V
i i i ihead Attention QW KW VW= (6)

() ()1, , , , O
hMultiHead Q K V Concat head head W= … (7)

where the projections are parameter matrices model kd dQ
iW R ×∈ , model kd dK

iW R ×∈ ,
model vd dV

iW R ×∈ and v modelhd dOW R ×∈ .

Figure 2: Multi-head attention

After projecting Q , K and V to subspaces of lower dimension, and then performing
attention calculations in different subspaces, the subspace’s dimension is lower without
increasing the computational amount, which is conducive to parallelizing and capturing
features of different subspaces.
If Q and K after linear projection are directly subjected to dot product operations, and
the operation result is used as a weighting coefficient, there may be a problem that the dot
product is too large and the gradient is too small. We try the method of Vaswani et al.

Keyphrase Generation Based on Self-Attention Mechanism 575

[Vaswani, Shazeer, Parmar et al. (2017)], scaling the dot product by
1

kd
, which is

expressed as follows:

() ()
Attention , ,

TQ K
i iQ K V V

i i i i
k

QW KW
QW KW VW softmax VW

d

 =

 (8)

where Q , K , n modeld dV R ×∈ .

The self-attention mechanism can be expressed as X Q K V= = = , which means that
attention mechanism works inside the sequence to find internal interdependencies. The
self-attention mechanism solves the problem of weak dependence caused by the text
being too long. So our multi-head attention can be simply described as:

() , ,Y MultiHead X X X= (9)

where Y is the final value after connection and projection, n modeld dY R ×∈ .

3.2.3 Feed forward
In order to fit the training data better, we add a fully connected feed forward neural
network layer to the encoder. It contains two linear layers and an intermediate nonlinear
ReLU hidden layer. Formally, we have the following equation:

() ()1 1 2 2 FFN Y ReLU YW b W b= + + (10)

where 1
model fd dW R ×∈ , 2

f modeld dW R ×∈ , n modeld dY R ×∈ .

3.3 Decoder
Since the model of Vaswani et al. [Vaswani, Shazeer, Parmar et al. (2017)] is used to solve
translation problem, they use the “Masked Multi-Head Attention” sublayer in the decoder
to prevent future output words from being used during training, ensuring that the prediction
of position i depends only on all known outputs less than i. However, our decoder part is
different from them. Because the keyphrases we generated are short and independent, and
there is no interdependence between them, our decoder only uses the keyphrase from the
last time output, and then embedding it as the Q input of multi-head attention.

When we make predictions, we enter the source text ix consisting of an abstract and a
title at the encoder. After a series of processing by the encoder, we get a matrix Z ,

n modeld dZ R ×∈ which is used as the K and V input of the multi-head attention in the
decoder, ie Z K V= = . In the decoder, the keyphrase (),i jk outputted by the previous
layer is processed by embedding to obtain a matrix which is used as another input Q of
the multi-head attention layer in the decoder, m modeld dQ R ×∈ , md is the length of the

576 CMC, vol.61, no.2, pp.569-581, 2019

keyphrase (),i jk . Q combines K , V to perform the multi-head attention and feed-
forward neural network. Similar to the encoder, each sub-layer uses a residual connection
[He, Zhang, Ren et al. (2016)], and then performs layer standardization [Ba, Kiros and
Hinton (2016)]. Using the multi-head attention and feed-forward neural network stack

xN times to get the matrix S , m modeld dS R ×∈ , and then through the linear layer and the
softmax layer, predict the next most probable keyphrase (), 1i jk + .
The linear layer is a neural network, which is simple and fully connected. It projects the
matrix S, which is produced by the stack of decoder, into a very much larger vector. This
vector is called logits vector. We suppose that our model could learn from its training
dataset and know 10,000 unique keyphrases, which turns the logits vector into 10,000
cells wide. These cells are corresponding to the score of a keyphrase respectively. Then
the softmax layer makes those scores probabilities, all of which are positive and have a
sum of 1.0. The next keyphrase be produced, which is associated with the cell with the
highest possibility.
Since the multi-head attention and the feed-forward neural network that used in our
decoder have already been introduced in the encoder, we don’t repeat them here.

3.4 Semantic similarity of keyphrases
In order to consider the semantic information between generated keyphrases, we add a
semantic similarity module behind the encoder-decoder.
Firstly, we segment each keyphrase, then use Word2vec [Mikolov, Chen, Corrado et al.
(2013)] to calculate the word vector of each word, and then add the word vectors in each
keyphrase to get the average word vector as the current keyphrase. ()1 2, , ,i i i i

nw v v v= …
indicates the word vector of the i-th keyphrase. We use the method of cosine similarity to
calculate the similarity between keyphrases.

() ()
() ()

1
2 2

1 1

SIM ,
n o p

i io p i

n no p
i ii i

v v
w w

v v

=

= =

×
=

×

∑
∑ ∑

 (11)

where ()SIM ,o pw w represents the cosine similarity of the o-th and p-th keyphrases.

4 Experiments
We introduce our experimental designs in this section. First, we describe the training
dataset and the testing datasets. Then we introduce the baseline models and evaluation
metrics. Finally, we give the experimental results and analysis.

4.1 Training dataset
As far, for evaluating keyphrase generation, we have a couple of publicly available
datasets. The largest publicly available dataset is provided by Meng et al. [Meng, Zhao,
Han et al. (2017)]. We use it to train and test our model. We mark it with "KP" in the later

Keyphrase Generation Based on Self-Attention Mechanism 577

description. The KP dataset contains plenty of high-quality computer science articles,
including nearly 567,830 articles. We randomly select 40k articles to test and validate our
model, and the rest of them were used as training dataset. About this 40k articles, 20k
articles are used as a testing dataset, we mark it with KP20k, and the remaining 20k
articles are regarded as validation dataset to judge the convergence of our model during
the training process.

4.2 Testing dataset
In order to comprehensively evaluate the proposed keypharse generation model, we not
only use the newly constructed test dataset KP20k to test our model, but also use other
four scientific article datasets. The title and abstract of the article are used as source text.
All the testing datasets and details are listed below:
1) Inspec [Hulth (2003)]: The abstracts of 2,000 articles are provided. We randomly

select 500 abstracts as our testing dataset.
2) Krapivin [Krapivin, Autaeu and Marchese (2009)]: About 2,304 full-text papers and

author-assigned keyphrases are provided. The abstracts of 400 articles among them
are used as our testing dataset.

3) NUS [Nguyen and Kan (2007)]: The dataset provides 211 full-text papers and
author-assigned keyphrases. We use all of them to test our model.

4) SemEval-2010 [Kim, Medelyan, Kan et al. (2013)]: This dataset consists of 288
articles from the ACM Digital Library. We randomly select 100 papers to test our
model.

5) KP20k [Meng, Zhao, Han et al. (2017)]: The dataset provides 20K scientific
literatures about computer science with titles, abstracts and keyphrases.

Since the number of Krapivin, Inspec, SemEval-2010 and NUS is too small to train our
powerful model. Therefore, they only are used as testing dataset.

4.3 Baseline models
We use four supervised algorithms (Maui [Medelyan, Frank and Witten (2009)], RNN
[Meng, Zhao, Han et al. (2017)], CopyRNN [Meng, Zhao, Han et al. (2017)], CovRNN
[Zhang and Xiao (2018)]) and two unsupervised algorithms (TextRank [Mihalcea and
Tarau (2004)], TF-IDF) as baselines. Zhang et al. [Zhang and Xiao (2018)] have
experimentally verified these supervised and unsupervised methods, and we take the
results of their experiments as the standard.

4.4 Evaluation metric
To measure the performance of our model, evaluation metrics consist of recall, macro-
averaged precision and F-measure (1F). The recall represents a comparison between the
quantity of correctly-predicted keywords and the total quantity of sample keywords,
while precision represents a comparison between the quantity of correctly-predicted
keywords and the total quantity of predicted keywords. In fact, precision and recall are
contradictory in some cases. In order to consider them comprehensively, we use the

578 CMC, vol.61, no.2, pp.569-581, 2019

comprehensive evaluation metric 1F to measure the performance of the model when
predicting present keyphrases.

1
2P RF
P R
×

=
+

 (12)

where R represents the recall and P represents the precision.

4.5 Results and analysis
To evaluate our model, a study on two different tasks is conducted. We classify keywords
into two categories according to whether they appear in the source text: present keyphrase
and absent keyphrase.

4.5.1 Predicting present keyphrases
To test the performance of our model on regular tasks, we compared it to six baseline
models (TextRank, TF-IDF, RNN, Maui, CovRNN, CopyRNN). To be fair, we only
consider models to predict the performance of present keyphrases. We use 1F at top 4 and
top 8 to measure the performance of each method. We highlight in bold for the best
scores among the five benchmark datasets.

Table 1: Each model predicts the performance results of the present keyphrases

Method
Inspec

1 @ 4F 1 @8F
Krapivin
1 @ 4F 1 @8F

NUS
1 @ 4F 1 @8F

SemEval
1 @ 4F 1 @8F

KP20k
1 @ 4F 1 @8F

TF-IDF 0.223 0.317 0.130 0.167 0.141 0.183 0.126 0.190 0.111 0.131
TextRank 0.224 0.271 0.171 0.152 0.183 0.191 0.171 0.181 0.174 0.142

Maui 0.037 0.041 0.247 0.216 0.242 0.271 0.041 0.037 0.271 0.234
RNN 0.084 0.061 0.133 0.087 0.154 0.152 0.143 0.112 0.179 0.191

CopyRNN 0.271 0.340 0.310 0.256 0.320 0.316 0.292 0.294 0.321 0.260
CovRNN 0.280 0.350 0.312 0.257 0.321 0.340 0.301 0.295 0.323 0.270

Our model 0.289 0.358 0.320 0.262 0.327 0.346 0.310 0.301 0.332 0.279

The results of the experiment show that the four supervised models (Maui, RNN,
CopyRNN, CovRNN) have a robust performance across different datasets. Overall,
among all baseline models, CovRNN works extremely well. In KP20k dataset, its 1@4F
and 1@8F values reach 0.323 and 0.270 respectively. These baseline models achieve
good results from the study, but our proposed model based on self-attention mechanism
performs the best.
In the predicting present keyphrases task, although our model with the self-attention
mechanism performs best, it does not work well as we expected. For instance, the 1@8F
value of the CovRNN reach 0.270 on KP20k dataset, our model is 0.279. It probably

Keyphrase Generation Based on Self-Attention Mechanism 579

because that our model pays high attention to find the hidden semantic information
behind the source text, which may result in generating general keyphrases that cannot be
referenced from the source text.

4.5.2 Predicting absent keyphrases
It is an important concern to predict the absent keyphrases based on “comprehension” of
content. It is worth mentioning that the prediction task is extreme challenging, for our
knowledge, it can only be done by the seq2seq model. Therefore, only CopyRNN,
CovRNN and our model experiments can be performed.
Here, in order to test the performance of each model to predict the absent keyphrases, we
use the recall of top 10 and top 50 as evaluation metrics. The recall metric assists us
analyze the predictive performance of each model. Tab. 2 shows the performance of
CopyRNN, CovRNN and our model for predicting absent keyphrase. The best prediction
results are shown in bold.

Table 2: Absent keyphrases prediction performance of CopyRNN, CovRNN and our
model on five datasets

Dataset
CopyRNN

R @10 R @50
CovRNN

R @10 R @50
Our model

R @10 R @50

Inspec 0.045 0.102 0.048 0.113 0.057 0.120
Krapivin 0.115 0.191 0.131 0.202 0.142 0.218
NUS 0.059 0.118 0.064 0.121 0.071 0.134
SemEval 0.045 0.069 0.049 0.073 0.051 0.082
KP20k 0.125 0.191 0.129 0.213 0.141 0.232

In Tab. 2, the recall of CopyRNN, CovRNN and our model can reach about 7.8%
(13.4%), 8.4% (14.4%) and 9.2% (15.7%) of accurate keyphrases at top 10 (50)
predictions. In addition, our model shows better performance than CopyRNN and
CovRNN. This performance shows that our model can better extract the semantic
meaning hidden in the text.
Our proposed model completely relies on the self-attention mechanism to learn the global
dependence information of the text, more comprehensively considers the dependencies
between words, and solves the problem of weakening dependence caused by the long
distance between words, has the property of parallelization. In addition, we consider the
semantic relevance between keyphrases. The experimental results show the important
role of the global dependence information of the text on keyphrase generation. This
progress also shows that self-attention mechanism is extraordinary significant in the task
of absent keyphrase prediction.

5 Conclusion and future work
In our work, we propose a keyphrase generation model based entirely on the self-
attention mechanism, which is an encoder-decoder framework. In addition, we add the

580 CMC, vol.61, no.2, pp.569-581, 2019

semantic similarity module to our model. As far as we know, this is the first time that
self-attention mechanism applies to a keyphrase generation task. Our model relies
entirely on the self-attention mechanism to learn the global dependence information of
text, without the limitation of the distance between words, has the property of
parallelization, and can generate absent keyphrases based on text semantics. The
effectiveness of our proposed model is demonstrated in the comprehensive empirical
studies.
In the future, we consider applying our model to different types of testing datasets to test
their performance. In addition, we also consider exploring a new way to deal with
semantic correlation between keyphrases.

Acknowledgement: This work is supported by National Key R&D Program of China
(No.2018YFC0831800) and Innovation Base Project for Graduates (Research of Security
Embedded System).

References
Ba, J. L.; Kiros, J. R.; Hinton, G. E. (2016): Layer normalization. arXiv:1607.06450.
Berend, G. (2011): Opinion expression mining by exploiting keyphrase extraction. 5th
International Joint Conference on Natural Language Processing, pp. 1162-1170.
Danilevsky, M.; Wang, C.; Desai, N.; Ren, X.; Guo, J. et al. (2014): Automatic
construction and ranking of topical keyphrases on collections of short documents. SIAM
International Conference on Data Mining, pp. 398-406.
Gollapalli, S. D.; Caragea, C. (2014): Extracting keyphrases from research papers using
citation networks. Association for the Advance of Artificial Intelligence, pp. 1629-1635.
Grineva, M.; Grinev, M.; Lizorkin, D. (2009): Extracting key terms from noisy and
multitheme documents. International Conference on World Wide Web, pp. 661-670.
He, K.; Zhang, X.; Ren, S.; Sun, J. (2016): Deep residual learning for image
recognition. IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778.
Hulth, A. (2003): Improved automatic keyword extraction given more linguistic knowledge.
Conference on Empirical Methods in Natural Language Processing, pp. 216-223.
Hulth, A.; Megyesi, B. B. (2006): A study on automatically extracted keywords in text
categorization. International Conference on Computational Linguistics and Meeting of
the Association for Computational Linguistics, pp. 537-544.
Jiang, X.; Hu, Y.; Li, H. (2009): A ranking approach to keyphrase extraction. 32nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 756-757.
Jones, S.; Staveley, M. S. (1999): Phrasier: a system for interactive document retrieval
using keyphrases. 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 160-167.
Kim, S. N.; Medelyan, O.; Kan, M. Y.; Baldwin, T. (2013): Automatic keyphrase
extraction from scientific articles. Language Resources and Evaluation, vol. 47, no. 3, pp.

Keyphrase Generation Based on Self-Attention Mechanism 581

723-742.
Krapivin, M.; Autaeu, A.; Marchese, M. (2009): Large Dataset for Keyphrases
Extraction. University of Trento, Trento.
Le, T. T. N.; Le Nguyen, M.; Shimazu, A. (2016): Unsupervised keyphrase extraction:
introducing new kinds of words to keyphrases. Australasian Joint Conference on
Artificial Intelligence, pp. 665-671.
Liu, Z.; Chen, X.; Zheng, Y.; Sun, M. (2011): Automatic keyphrase extraction by
bridging vocabulary gap. Fifteenth Conference on Computational Natural Language
Learning, pp. 135-144.
Liu, Z.; Huang, W.; Zheng, Y.; Sun, M. (2010): Automatic keyphrase extraction via
topic decomposition. Conference on Empirical Methods in Natural Language Processing,
pp. 366-376.
Medelyan, O.; Frank, E.; Witten, I. H. (2009): Human-competitive tagging using
automatic keyphrase extraction. Conference on Empirical Methods in Natural Language
Processing, pp. 1318-1327.
Medelyan, O.; Witten, I. H.; Milne, D. (2008): Topic indexing with wikipedia. AAAI
WikiAI Workshop, vol. 1, pp. 19-24.
Meng, R.; Zhao, S.; Han, S.; He, D.; Brusilovsky, P. et al. (2017): Deep keyphrase
generation. arXiv:1704.06879.
Mihalcea, R.; Tarau, P. (2004): Textrank: bringing order into text. Conference on
Empirical Methods in Natural Language Processing, pp. 404-411.
Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. (2013): Efficient estimation of word
representations in vector space. arXiv:1301.3781.
Nguyen, T. D.; Kan, M. Y. (2007): Keyphrase extraction in scientific publications.
International Conference on Asian Digital Libraries, pp. 317-326.
Tang, Y.; Lian, H.; Zhao, Z.; Yan, X. (2018): A proxy re-encryption with keyword
search scheme in cloud computing. Computers, Materials & Continua, vol. 56, no. 2, pp.
339-352.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L. et al. (2017): Attention
is all you need. Advances in Neural Information Processing Systems, pp. 5998-6008.
Wang, J.; Peng, H.; Hu, J. S. (2006): Automatic keyphrases extraction from document
using neural network. Advances in Machine Learning and Cybernetics, pp. 633-641.
Zhang, Q.; Wang, Y.; Gong, Y.; Huang, X. (2016): Keyphrase extraction using deep
recurrent neural networks on twitter. Conference on Empirical Methods in Natural
Language Processing, pp. 836-845.
Zhang, Y.; Xiao, W. (2018): Keyphrase generation based on deep seq2seq model. IEEE
Access, vol. 6, pp. 46047-46057.
Zhang, Y.; Zincir-Heywood, N.; Milios, E. (2004): World wide web site summarization.
Web Intelligence and Agent Systems: An International Journal, vol. 2, no. 1, pp. 39-53.

	Keyphrase Generation Based on Self-Attention Mechanism
	Kehua Yang0F , *, Yaodong Wang1, Wei Zhang1, Jiqing Yao2 and Yuquan Le1

	5 Conclusion and future work
	References

