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Abstract: Possessing advantages such as high computing efficiency and ease of 
programming, the Symplectic Euler algorithm can be applied to construct a ground-
penetrating radar (GPR) wave propagation numerical model for complex geoelectric 
structures. However, the Symplectic Euler algorithm is still a difference algorithm, and for 
a complicated boundary, ladder grids are needed to perform an approximation process, 
which results in a certain amount of error. Further, grids that are too dense will seriously 
decrease computing efficiency. This paper proposes a conformal Symplectic Euler 
algorithm based on the conformal grid technique, amends the electric/magnetic field-
updating equations of the Symplectic Euler algorithm by introducing the effective 
dielectric constant and effective permeability coefficient, and reduces the computing error 
caused by the ladder approximation of rectangular grids. Moreover, three surface boundary 
models (the underground circular void model, the undulating stratum model, and actual 
measurement model) are introduced. By comparing reflection waveforms simulated by the 
traditional Symplectic Euler algorithm, the conformal Symplectic Euler algorithm and the 
conformal finite difference time domain (CFDTD), the conformal Symplectic Euler 
algorithm achieves almost the same level of accuracy as the CFDTD method, but the 
conformal Symplectic Euler algorithm improves the computational efficiency compared 
with the CFDTD method dramatically. When the dielectric constants of the two materials 
vary greatly, the conformal Symplectic Euler algorithm can reduce the pseudo-waves 
almost by 80% compared with the traditional Symplectic Euler algorithm on average. 
 
Keywords: Symplectic Euler algorithm, conformal grid, complex geoelectric model, 
ground-penetrating radar, pseudo-reflection wave.  

 
1 College of Water Conservancy & Environmental Engineering, Zhengzhou University, Zhengzhou, 450001, 

China. 
2 National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, 

Zhengzhou, 450001, China. 
3 Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Zhengzhou, 

450001, China. 
4 CCCC First Highway Consultants Co.,LTD, Shanxi Province, Xi’an, 710065, China. 
* Corresponding Author: Hongyuan Fang. Email: 18337192244@163.com. 



 
 
 
794                                                                                CMC, vol.61, no.2, pp.793-816, 2019 

1 Introduction 
As a rapid and highly efficient underground target detection approach, ground penetrating 
radar (GPR) has been widely applied in the detection of structures such as roads, tunnels, and 
underground pipes. By establishing a GPR wave propagation numerical model for complex 
underground structures, GPR wave propagation can be studied, not only providing a 
theoretical basis for the explanation of the measured GPR signal, but also creating a precise 
and highly efficient forward model for the back-analysis of underground target parameters. 
Currently, the effect of wave focusing on displacement and pore pressure has been studied 
[Liu, Liang and Wu (2016)] and a fast multi-pole accelerated indirect boundary element 
method for broadband wave scattering has also been proposed [Liu, Sun, Cheng et al. 
(2018); Liu, Wang, Liang et al. (2018)]. It is widely applied GPR numerical simulation 
approaches include the finite-difference time-domain (FDTD) approach [Bendouba, Djebli, 
Aid et al. (2015); Cherief, Elmeguenni and Benguediab (2016); Choudhury and Jha (2013)] 
the alternating direction implicit FDTD (ADI-FDTD) approach [Datta and Ray (2015); 
Dincel and Akbarov (2017); Dong, El-Gizawy, Juhany et al. (2014); Dong, Haynes and 
Atluri (2015); Essam, Mhamed and Thamar (2015)], and finite element analysis [Fan, Zhang, 
Dong et al. (2015); Khellafi, Meddah, Chikh et al. (2015); Lam and Pan (2015); Liu, Zhang 
and Xia (2017); Ma, Sato and Takada (2015); Miao, Chen and Wang (2014)]. Ghasemi et al. 
[Ghasemi, Park and Rabczuk (2018)] have proposed a method for calculating the topological 
optimization of a multi-material flexible electric composite material, and the obtained design 
sensitivity is applied to the Hamilton-Jacobi (H-J) equation, and the LS function is modified. 
Ghasemi et al. [Ghasemi, Park and Rabczuk (2017)] have provided numerical examples 
showing that topology optimization can improve mechatronic coupling coefficient 
significantly. Nanthakumar et al. [Nanthakumar, Lahmer, Zhuang et al. (2016)] have 
proposed a method to solve the inverse problem of interface detection of inclusions in 
piezoelectric structures. Yakhno et al. [Yakhno and Cicek (2014)] have come up with 
approximate calculation method of electromagnetic Green's function for time Harmonic 
Maxwell equations for an approximate General Electrorotational anisotropic Materials. 
The Symplectic Euler algorithm is a time-domain electromagnetic field numerical 
computing method proposed in recent years that maintains a constant overall energy of the 
Hamilton system, has the advantage that only two functions are needed to fully describe 
the electromagnetic field in the two-dimensional case. Although the propagation of GPR 
waves in pavement structure cannot be regarded as a classical Hamiltonian system due to 
the energy dissipation of pavement materials, the Symplectic Euler algorithm is still 
applicable [Fang and Lin (2012)]. With respect to the classic time-domain finite difference 
method, this reduces computing time by 25% without sacrificing computing precision 
[Fang and Lin (2012); Fang, Lin and Zhang (2013)]. Anitescu et al. [Anitescu, Jia, Zhang 
et al. (2015)] have developed improvement of Gilleville abscess with external point 
collocation. However, the Symplectic Euler algorithm is still a difference algorithm. When 
using rectangular grids to perform two-dimensional spatial dispersion for a complex 
underground target, the grids need to be encrypted in order to precisely simulate the surface 
boundary, and are subject to the Courant-Friedrichs-Levy (CFL) stability condition. Thus, 
grids that are too dense will greatly lower the computing efficiency [Chen, Stang and 
Moghaddam (2016); Feng and Dai (2011); Gao and Zhai (2017); Ghasemi and 
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Abrishamian (2007)]. 
To improve computing precision and efficiency when modeling complex underground 
targets, approaches such as the sub-grid technique [Berenger (2005); Diamanti and 
Giannopoulos (2009); Georgakopoulos, Birtcher and Balanis (2002)] and the grid-free 
method [Feng, Guo and Wang, (2015)] have been utilized. The sub-grid technique uses 
relatively fine grids at the surface boundary and relatively coarse grids in other regions, 
thus shortening the computing time. Singular boundary method [Tang, Fu, Zheng et al. 
(2018)] and singular boundary method [Fu, Chen, Chen et al. (2014); Fu, Chen, Wen et al. 
(2018)] for wave propagation analysis in periodic structures has been used in periodic 
structures and the SBM has been used to solve the infinite domain problems. This approach, 
however, leads to pseudo-reflection waves at the interface between the coarse and fine 
grids. The grid-free approach relies on the moving least squares (MLS) method to fit the 
field function. Although it eliminates the constraints on the units, it is relatively difficult to 
establish near-field functionality when the geoelectric structure is complex. 
The conformal grid technique is a parameter processing method that processes grids at the 
medium interface where one grid contains several media. Recently, Hamdia et al. [Hamdia, 
Ghasemi, Zhuang et al. (2018); Hamdia, Silani, Zhuang et al. (2017)] have applied sensitivity 
analysis to determine the key input parameters affecting the energy conversion coefficient 
(ecf) of flexible materials. Vu-Bac et al. [Vu-Bac, Lahmer, Zhuang et al. (2016)] have 
provided a sensitivity analysis toolbox consisting of a set of Matlab functions. During the 
numerical computing process, the grid density is not increased, the size of the local grids of 
the model is not altered, and the effective amendment of the medium parameter is only 
performed on grids containing non-uniform medium [Dai, Wang, Feng et al. (2012); Feng 
and Dai (2011); Fang and Lin (2013); Feng and Dai (2010); Guo, Chen and Xu (2017)]. This 
method is easy to derive and program, and has been applied in the processing of 
electromagnetic signals on the surfaces of invisible airplanes and invisible clothing, as well 
as in the optimization of various antenna designs by the military [Dai, Feng, Wang et al. 
(2004); Uduwawala (2006); Yang, Li, Cheng et al. (2018); Zhong, Zhang and Xie (2011)]. 
Using two-dimensional transverse magnetic (TM) waves as an example, this study 
combines the conformal grid technique and the Symplectic Euler algorithm to establish a 
forward numerical model for the wave propagation of GPR electromagnetic wave in a 
complex geoelectric structure, where transmitting boundary conditions are applied. Using 
the underground circular void and undulating stratum models, the computing precision of 
the conformal Symplectic Euler algorithm is validated. The conformal Symplectic Euler 
algorithm have almost the same level of accuracy as the CFDTD method, the conformal 
Symplectic Euler algorithm dramatically improves the computational efficiency compared 
with the CFDTD and when the dielectric constants of the two materials vary greatly, 
conformal Symplectic Euler algorithm can reduce the pseudo-waves almost by 80% 
compared with the traditional Symplectic Euler algorithm on average. This paper adopts 
matlab R 2014a software for numerical simulation. 

2 Symplectic Euler algorithm  
2.1 Expression of the Symplectic Euler algorithm 
We let Ω  to be a domain (i.e., a non-empty, open, simply connected set) in the oriented 
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Euclidean space 2nR  of the point 1 1( , ) ( , , ; , , )n np q p p q q=   , H  is a sufficiently 
smooth real function defined in Ω , then the n-dimensional Hamilton system can be 
expressed as [ Sun (1995); Huang and Wu (2006)]: 

( , )

( , ), 1, 2, ,

def

i
i

i

def

i
i

i

dp H
f q p

dt q

dq H
g q p i n

dt p

∂
= − =

∂

∂
= − = =

∂


   (1) 

For a special type of Hamilton system, i.e., the divisional Hamilton system, the Hamilton 
function can be expressed as 

( , ) ( ) ( )p q q p= = +H H V U   (2) 
where ( , )p qH  denotes the Hamiltonian functions, ( )qV and ( )pU  represent two 
directional components of ( , )p qH . 

Eq. (1) can be simplified as 

( )
dp

f q
dt t

∂
= − =

∂

V   (3) 

( )
dq

g p
dt p

∂
= =
∂

U   (4) 

The above equations are ordinary differential equations, which are often solved using the 
Runge-Kutta methods. Assuming Eq. (3) is solved by a Runge-Kutta method, and Eq. (4) 
is solved by another Runge-Kutta method, such a computing technique may be classified 
as a partitioned Runge-Kutta method. Each L-stage partitioned Runge-Kutta method can 
have an independent Butcher expression. 
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Substituting Eq. (5) into Eq. (3) and Eq. (4) yields 
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where τ  is time increment. If the coefficients of the Eq. (6) satisfy 

0
, 1,2, ,

i ij i ji i j

i i

b A B a b B
b B i j L

+ − =
 = = 

  (7) 

The Butcher expression is Symplectic, and the Butcher expression of the first-order 
Symplectic Euler method is as follows. 
 

0  0   0  1 

 1   1 
 (8) 

Major reasons to use this method include: (1) Among the single-step Symplectic algorithms 
belonging to the same order, it requires the least amount of computation; (2) For the 
damping system, it is still in an explicit format.  

2.2 The iterative format of the Symplectic Euler algorithm 
In isotropic media, the differentiation formats of the time-domain Maxwell equations are 
expressed as 

t
∂

∇× = +
∂
DH J   (9) 

t
∂

∇× = −
∂
BE   (10) 

The constitutive relation is 
, ,ε µ σ= = =D E B H J E   (11) 

where D  represents the dielectric flux density, B  represents the magnetic flux density, E  
and H  represent the vectors for electric field and magnetic field, respectively, J  is the 
current density, and ε , µ  and σ  represent the relative dielectric constant, the relative 
permeability, and the relative conductivity, respectively. Because the medium is isotropic, 
ε , µ , and σ  are all constants. Substituting Eq. (11) into Eq. (9) and Eq. (10) yields 

1 1 J
t ε ε

∂
= ∇× −

∂
E H   (12) 
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1
t µ

∂
= − ∇×

∂
H E   (13) 

By letting the magnetic vector potential = ∇×H A , and = −E U , A and U  represent the 
vectors for electric field and magnetic field, respectively, the general Hamilton function in 
the lossy system can be expressed as 

2 21 1 1)
2 2

dV
µ ε ε

 
= + ∇× − 

 
∫H(A,U U A JA   (14) 

By combining Eq. (14) with Eq. (3) and Eq. (4), we obtain 
1d d

dt d µ
= =

A H U
U

  (15) 

21d d
dt dA

σ
ε ε

= − = ∇ −
U H A U   (16) 

When only considering TM waves, Eq. (15) and Eq. (16) can be simplified as 
1z

z

dA
U

dt µ
=   (17) 

21z
z z

dU
A U

dt
σ

ε ε
= ∇ −    (18) 

In these equations., zA  and zU  represent the vector components of the fields A  and U  
along the direction Z  , where 2∇  is the Laplace operator. 
Substituting Eq. (8) into Eq. (17) and Eq. (18) yields: 

1
, ,

n
i j i jU U=   (19) 

,

1 1
, , i j

n
i j i j

tA A U
µ
∆

= +   (20) 

1 2 1 1
, , , ,

1n n
i j i j i j i jU U t A Uσ

ε ε
+  = + ∆ ∇ − 

 
  (21) 

,

1 1
, , i j

n n
i j i j

tA A U
µ

+ ∆
= +   (22) 

From the above, the iterative formats of the first-order Symplectic Euler method are found 
to be 

1
. . ,
n n n
i j i j i j

tA A U
µ

+ ∆
= +   (23) 

1 2 1
, , ,
n n n
i j i j i j

t tU U Aε σ
ε ε

+ +− ∆ ∆
= + ∇   (24) 

From Eq. (23) and Eq. (24), the differential iterative equations of the first-order Symplectic 
Euler algorithm become 
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1
. . ,
n n n
i j i j i j

tA A U
µ

+ ∆
= +   (25) 

1 1 1 1 1
1, 1, , 1 , 1 ,1

, ,

4n n n n n
i j i j i j i j i jn n

i j i j

A A A A At tU U
x y

ε σ
ε εµ

+ + + + +
− + − ++ + + + − − ∆ ∆

= +  
∆ ∆ 

 (26) 

In the equation, x∆  and y∆  represent the grid lengths along direction x  and direction
y , respectively. 

The components of the electric and magnetic fields ZE , xH , and yH  are defined in Eq. 27. 

z z

x

y

E U
AH
y
AH
x

= −
 ∂ =

∂
 ∂ = −
 ∂

  (27) 

2.3 The iterative format of the conformal Symplectic Euler method 
Using the two-dimensional quadrangle as an example, in Fig. 1, Fig. 1(a) is the actual 
subdivision diagram of the model grids, Fig. 1(b) is a subdivision diagram of the 
conventional ladder approximation, and Fig. 1(c) is the processing subdivision diagram of 
the conformal grids. In particular, grids that are entirely inside the quadrangle or entirely 
outside of the quadrangle are classified as normal grids, while the remainder are classified 
as conformal grids. The conformal grids are processed using the effective medium 
parameters, while the non-conformal grids are processed in the staircase way. 
Using TM waves as an example, a cell is extracted from Fig. 1(c) to illustrate the equivalent 
parameter processing of the conformal grids. 

 
(a)                                             (b)                                             (c) 

Figure 1: Schematic view for subdivisions. (a) Actual model grids, (b) Conventional 
ladder approximation, (c) Conformal grids 

In the Symplectic method, the field components U   and A  are defined at the same spatial 
grid nodes and the same time steps. 1xyS  and 2xyS represents the area of medium 1 and 
medium 2, respectively. The calculation of the conformal grids of the medium in 
orthogonal coordinates is shown in Fig. 2, where F  is the sampling point of the field 
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components U and A . We assume that the electromagnetic parameters of medium 1 are  

1ε , 1σ , 1µ , and 1mσ , and the electromagnetic parameters of medium 2 are 2ε , 2σ , 2µ , 
and 2mσ . From Fig. 2, it can be seen that the field components U and A are located at the 
center of the grids. Therefore, the effective values of the dielectric constant, the 
conductivity, the permeability coefficient, and the permeability can be obtained by 
weighted averaging of the areas on adjacent surfaces occupied by different media. 

 
(a)                                                          (b) 

Figure 2: Equivalence of the medium parameters in conformal grids. (a) Before 
equivalence, (b) After equivalence 

The equivalent dielectric constant, the equivalent conductivity, the equivalent permeability 
coefficient, and the equivalent permeability, at sampling point F of the field component in 
Fig. 2 are as follows: 

1 1 2 2( ) /eff
z xy xyF S S x yε ε ε = + ∆ ∆    (28) 

1 1 2 2( ) /eff
z xy xyF S S x yσ σ σ = + ∆ ∆    (29) 

1 1 2 2( ) /eff
z xy xyF S S x yµ µ µ = + ∆ ∆    (30) 

1 1 2 2( ) /eff
mz xy m xy mF S S x yσ σ σ = + ∆ ∆    (31) 

where eff   denotes equivalent. 
Substituting Eq. (28), Eq. (29), Eq. (30) and Eq. (31) into Eq. (25) and Eq. (26), we obtain 
the differential iterative equations for the first-order conformal Symplectic Euler method. 
However, the conformal Symplectic Euler algorithm can deal with the medium in this 
paper at present, and when the material is metallic conductor, we need special treatment of 
the Eq. (32) and Eq. (33). 

1
. . ,
n n n
i j i j i jeff

tA A U
µ

+ ∆
= +   (32) 

1 1 1 1 1
1, 1, , 1 , 1 ,1

, ,

4n n n n neff eff
i j i j i j i j i jn n

i j i jeff eff eff

A A A A At tU U
x y

ε σ
ε ε µ

+ + + + +
− + − ++ + + + − − ∆ ∆

= +  
∆ ∆ 

 (33) 
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3 Numerical stability 
In order to ensure the computational stability of the conformal Symplectic Euler algorithm, 
the selection of space interval and time step of the conformal Symplectic Euler algorithm 
also needs to meet the stability conditions requirement. In this paper, the stability of 
Symplectic computation was analyzed by the amplification matrix method. It is assumed 
that all materials are loss-free. The two-dimensional line wave source can be expressed as 
Eq. (34) [Fang, Lin and Zhang (2013)]. 

1
, 0

1
, 0

exp( )

exp( )

n n
i j x y

n n
i j x y

A A ik x jk y

U U ik x jk y

+

+

= ∆ + ∆


= ∆ + ∆
  (34) 

Eq. (33) can be expressed as 

1

1
( )

n n n

n n n

tI
A A A

C t
tL tLU U UI

µ

µ µ

+

+

∆ 
       = ⋅ = ⋅     ∆ ∆      + 
 

  (35) 

where ( )C t  defines the amplification matrix, Substitute Eq. (34) into Laplace operator and 
then carry out difference discretization to obtain Eq. (36). 

22

2 2

sin ( / 2)sin ( / 2)4( )yx
k yk xL

x y
∆∆

= − +
∆ ∆

  (36) 

The characteristic equation of the amplification matrix can be shown in Eq. (37). 
2

2 2 1 0t Lλ λ
εµ

 ∆
− + + = 
 

  (37) 

when the absolute value of all eigenvalues of the characteristic Eq. (37) are less than or 
equal to unity “1”, the conformal Symplectic Euler algorithm is stable.  
Therefore, if x y δ∆ = ∆ =   and the two-dimensional stability condition of the first-order 
conformal Symplectic Euler algorithm can be expressed as Eq. (38): 

1
2

c t
δ
∆

≤   (38) 

Where c  is velocity of light. 

4 Transmitting boundary conditions 
4.1 Differential equations 
The key function of the transmitting boundaries [Liao (1996); Liao, Wong, Yang et al. 
(1984)] is to represent the one-way fluctuation of any point that propagates outwards along 
the normal direction at the cut-off boundary of the computing region as the superposition 
of a series of outgoing plane waves. 

1

( , ) ( )
N

n n
n

U t x f c t x
=

= −∑   (39) 
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where ( )n nf c t x−  represents the n  th one-way fluctuation propagating along the x -axis, 
and nc  represents the apparent velocity. Eq. (39) is one-dimensional, but the one-side 
fluctuation can be two-dimensional as well as three-dimensional. It can also be the ordinary 
expression of any linear one-side fluctuation. In recent years, because the precision of the 
equation is controllable and the programming is straightforward, it has been widely applied 
to numerical simulation issues in various types of engineering fluctuations. 
As shown in Fig. 3, the N-order transmitting boundary condition equation (MTF) at the left 
cut-off boundary is expressed as 

1 1 1
0

1

( 1)
N

n j N n j
j j

j

U C U− + − −

=

= −∑   (40) 

 

 

Figure 3: Schematic view of the MTF computing points and spatial grid nodes at the left-
side boundary 

This paper adopts the second-order transmitting boundary, i.e., 
1 1

0 1 22n n nU U U− += −   (41) 

From Fig. 3, it can be seen that the spatial grid node j x∆  does not need to coincide with 

the point ajc x∆ . Differential calculation is performed on n
jU  using the field values at the 

spatial grid node. The n t∆  moment is defined, and the field value at the spatial grid node 
j x∆  is 

( ), ,n
s jU U n t j x= ∆ ∆   (42) 

First, the field values at points 0x = , x x= ∆ , and 2x x= ∆  at the moment n t∆  undergo 
secondary differentiation, to obtain the field value 1

nU  at the point ax c t= ∆  at the moment 
n t∆ . 

3

1 1, , 1
1

n n
k s k

k

U N U −
=

=∑   (43) 

where ( )( )1,1 2 1 / 2N s s= − − , ( )1,2 2N s s= − , ( )1,3 1 / 2N s s= −  and /as c t x= ∆ ∆ . 

Similarly, differentiation is performed on 1
2
nU + , to obtain 
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5
1 1

2 2, , 1
1

n n
k s k

k

U N U+ +
−

=

=∑   (44) 

where 2
2,1 1,1N N= , 2,2 1,1 1,22N N N= , 2

2,3 1,1 1,3 1,22N N N N= + , 2,4 1,2 1,32N N N=  and 2
2,5 1,3N N= . 

Similar calculations can be performed on other boundaries. 

4.2 Validation of the boundary conditions 
A 2 2m m×  model is selected, where the excitation signal source is located at its center, the 
Ricker sub-waves with an antenna frequency of 1 GHz are applied, the time step is selected 
to be 0.01 ns, and the spatial step length is selected to be 0.005 m. The computing region 
is filled with air, which has a relative dielectric constant of 1 and relative conductivity of 0 
mS/m. The model and the absorption effects are shown in Fig. 4. 

 
(a)                                                  (b) 

 
(c)                                                  (d) 

Figure 4: Validation of the adsorption effects in the uniform medium. (a) Snapshot of the 
wave field at 2.5 ns, (b) Snapshot of the wave field at 5 ns, (c) Snapshot of the wave field 
at 7.5 ns, (d) Snapshot of the wave field at 10 ns 
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From Fig. 4, it can be seen that the absorption effects under the transmitting boundary 
conditions are satisfied, and there are no apparent reflection waves at the boundaries. 

5 Numerical simulations  
5.1 Example 1 
The schematic view of the model is illustrated in Fig. 5, where the media in the model 
consist of two layers [ Hamdia, Ghasemi, Zhuang et al. (2018); Hamdia, Silani, Zhuang et 
al. (2017); Fang, Lin and Zhang (2013); Vu-Bac, Lahmer, Zhuang et al. (2016)]: the first 
layer is air, with a relative dielectric constant 0ε  of 1 and a conductivity 0σ  of 0; the 
second layer has a relative dielectric constant 1ε  of 6 and conductivity 1σ  of 1 mS/m. 
Further, a circular void with a diameter of 15 cm is introduced into the second layer, in 
which the location of the circular center is (1 m, 0.5 m). By varying the dielectric constant 
of the circular void medium, the impacts of conformal grid and non-conformal grid 
processing on the GPR signals in media with different dielectric constants can be analyzed. 
The relative dielectric constants of media in the circular void are designed to be 1, 3, 6.4, 
10, 16, and 20. All media are assumed to be non-magnetic; in other words, we assume that 
their relative permeability µ  is 1. Each time step is 0.01 ns, the spacing between each 
spatial grid is 0.005 m, the total number of simulated time steps is 5000, the Ricker sub-
waves with frequency 1 GHz are selected at the center of the transmitting antenna, the 
reflection waves are received at 1x m=  , and the distance from the transmitting location to 
the ground is 1 grid. We have used the same parameters between the CFDTD method and 
the conformal Symplectic Euler Algorithm. Fig. 6 shows the comparison between 
conformal Symplectic Euler algorithm and CFDTD reflection waves (the relative dielectric 
constant of the circular void portion is 3). Fig. 7 shows the absolute error of the amplitude 
of the reflection waves by the CFDTD method and the conformal Symplectic Euler 
algorithm (the relative dielectric constant of the circular void portion is 3). Fig. 8 shows 
the relative error of the amplitude of the reflection waves by the CFDTD method and the 
conformal Symplectic Euler algorithm (the relative dielectric constant of the circular void 
portion is 3). The reflection waveforms in the simulated computation are shown in Figs. 9, 
10, 11, 12, 13 and 14.  
Fig. 7 and Fig. 8 give the quantitative comparison of the difference in amplitude of the two 
methods. The maximum absolute difference between the two methods is no more than 
0.00002 V/m, and the maximum relative difference between the two methods is 14.8%, the 
average relative difference between the two methods is 2.9%, the relative difference equals 
0.00015% for the first peak at 0.81 ns, 0.079% for the secondary peak at 3.26 ns and 0.1% for 
the third peak at 5.86 ns, and in short, 95% of the relative error is within plus or minus 5%. 
Based on comparison Fig. 6 and Fig. 7, we can obtain the accuracy of the two algorithms 
is the same, but the computational time of the conformal Symplectic Euler algorithm is 
3.99 s, and the other computational time of the CFDTD method is 5.32 s. In conclusion, 
the conformal Symplectic Euler algorithm greatly improves the computational efficiency 
[Anitescu, Jia, Zhang et al. (2015)] compared with the CFDTD method. 
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Figure 5: Schematic view of the circular void model 

 
Figure 6: Comparison between conformal Symplectic Euler algorithm and CFDTD 
reflection waves (the relative dielectric constant of the circular void portion is 3) 

 
Figure 7: Absolute error of the amplitude of the reflection waves by the CFDTD method 
and the conformal Symplectic Euler algorithm (the relative dielectric constant of the 
circular void portion is 3) 
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Figure 8: The relative error of the amplitude of the reflection waves by the CFDTD method 
and the conformal Symplectic Euler algorithm (the relative dielectric constant of the 
circular void portion is 3) 

 
Figure 9: Comparison between conformal and non-conformal Symplectic Euler algorithm 
reflection waves (the relative dielectric constant of circular void portion is 1) 

 
Figure 10: Comparison between conformal and non-conformal Symplectic Euler 
algorithm reflection waves (the relative dielectric constant of circular void portion is 3) 
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Figure 11: Comparison between conformal and non-conformal Symplectic Euler 
algorithm reflection waves (the relative dielectric constant of circular void portion is 6.4) 

 
Figure 12: Comparison between conformal and non-conformal Symplectic Euler 
algorithm reflection waves (the relative dielectric constant of circular void portion is 10) 

 
Figure 13: Comparison between conformal and non-conformal Symplectic Euler 
algorithm reflection waves (the relative dielectric constant of circular void portion is 16) 
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Figure 14: Comparison between conformal and non-conformal Symplectic Euler 
algorithm reflection waves (the relative dielectric constant of circular void portion is 20) 

From Figs. 9-14, it can be seen that the greater the difference between the dielectric 
constant of the material filling the circular void portion and that of the medium of the 
second layer, the more diffracted waves are generated by non-conformal processing. Fig. 
14 shows the comparison between conformal and non-conformal Symplectic Euler 
algorithm reflection waves (the relative dielectric constant of the circular void portion is 
20). Fig. 14(b) shows the amplitude of the virtual wave was reduced by 96.18% for the first 
peak at 19.77 ns, 59.51% for the second peak at 21.31 ns and 87.35% for the third peak at 
22.54 ns. On average, 80% of the diffraction wave can be eliminated by the conformal 
Symplectic Euler algorithm. 
Therefore, it is concluded that conformal processing can effectively remove artificial 
waves generated by the ladder approximation approach. The greater relative difference 
between the dielectric constants of the two materials, the more necessary to adopt the 
conformal Symplectic Euler algorithm. 

5.2 Example 2 
An undulating geoelectric model is selected, as shown in Fig. 15. The first layer is air, with 
a relative dielectric constant 0ε  of 1 and conductivity 0σ  of 0 mS/m [Hamdia, Ghasemi, 
Zhuang et al. (2018); Hamdia, Silani, Zhuang et al. (2017); Fang, Lin and Zhang (2013); 
Vu-Bac, Lahmer, Zhuang et al. (2016)]; the second layer has a relative dielectric constant 

1ε  of 6 and conductivity 1σ  of 1 mS/m; the third layer has a relative dielectric constant 2ε  
of 14 and conductivity 2σ  of 2 mS/m. The entire computing area has a size of 20 10m m× . 
We assume all media are non-magnetic, i.e., their relative permeability µ  is 1, and the 
spacing between spatial grids is selected to be 0.05 m. The manners of self-excitation and 
self-receiving are applied, and synchronous movement is performed from left to right, in 
which the time step is 0.1 ns, the total number of simulated time steps is 3000, and the 
Ricker sub-waves with a frequency of 100 MHz are selected at the excitation source center, 
whose location is 1 grid away from the ground surface. Figs. 15, 16 and 17 are comparison 
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and wiggle diagrams of the reflection waveforms obtained by conformal and non-
conformal Symplectic Euler algorithm grid processing. 

 
Figure 15: Schematic view of the undulating geoelectric model 

 
Figure 16: Comparison diagram of reflection waves between conformal and non-
conformal Symplectic Euler algorithm grid processing 
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Figure 17: Subdivision diagram of the GPR by the non-conformal Symplectic Euler algorithm 

 

Figure 18: Subdivision diagram of the GPR by the conformal Symplectic Euler algorithm 

From Figs. 16, 17 and 18, it can be seen that, in comparison to the conventional Symplectic 
Euler algorithm, the conformal Symplectic Euler algorithm greatly reduces the pseudo-
waves generated by the ladder approximation (see red box in Fig. 17 and Fig. 18).  

5.3 Example 3 
In order to verify the effect of the example 1 and example 2, in the laboratory we dug a 
1 1 1m m m× ×  square hole filled with dry sand, and a plastic pipe was buried at a depth of 
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15.2 cm. The center frequency of the ground penetrating radar (GPR) is 2.5 GHz, the 
number of sampling points is 512, the time window is 12 ns, and the antenna movement 
step is 0.004 m. The GPR measures along the dotted line. Fig. 19 shows the diagram the 
GPR measurement schematic. Fig. 20 shows the comparison diagram of the single-channel 
wave of the actual value of the radar measurement and the simulated value. 

 

Figure 19: The diagram the GPR measurement schematic 

 
Figure 20: The comparison diagram of the single-channel wave of the actual value of the 
GPR measurement and the simulated value 

It can be seen from Fig. 20 that the actual measured data are basically consistent with the 
conformal Symplectic Euler algorithm and the CFDTD method, indicating that the accuracy 
and error of the conformal Symplectic Euler algorithm are small, and this algorithm is 
effective in reducing the diffraction wave in GPR imaging. In Fig. 20, the computational time 
of the conformal Symplectic Euler algorithm is 1.22 s, and the other computational time of 
the CFDTD method is 1.89 s. In short, the conformal Symplectic Euler algorithm greatly 
improves the computational efficiency compared with the CFDTD method. 
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6 Conclusions 
This study combined the conformal grid technique and the Symplectic Euler algorithm, 
established a numerical model illustrating the wave propagation of GPR electromagnetic 
in a complex geoelectric structure, validated the adsorption effects under the transmitting 
boundary conditions, and compared the reflection waveforms simulated by conformal and 
non-conformal processing for the circular void and undulating stratum models, and 
compared with the actual measurement data and conformal Symplectic Euler algorithm. 
The conformal Symplectic Euler algorithm achieves almost the same level of accuracy as 
the CFDTD method, but the conformal Symplectic Euler algorithm improves the 
computational efficiency enormously compared with the CFDTD method. When the 
dielectric constants of the two materials vary greatly, conformal Symplectic Euler 
algorithm can reduce the pseudo-waves almost by 80% compared with the traditional 
Symplectic Euler algorithm. The results indicate that the conformal Symplectic Euler 
algorithm can effectively reduce pseudo-reflection waves and decrease the error brought 
about by the ladder approximation at the surface boundary of the underground structure. 
The further theoretical study of conformal symplectic Euler algorithm and the application 
of more interesting engineering problems including conductor materials are still the 
research topics in the future. 
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