
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2023.034078

Article

Self-Tuning Parameters for Decision Tree Algorithm Based on Big Data
Analytics

Manar Mohamed Hafez1,*, Essam Eldin F. Elfakharany1, Amr A. Abohany2 and Mostafa Thabet3

1College of Computing and Information Technology, Arab Academy for Science, Technology & Maritime Transport,
Cairo, Egypt

2Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh, Egypt
3Faculty of Computers and Information, Fayoum University, Fayoum, Egypt

*Corresponding Author: Manar Mohamed Hafez. Email: M.mohamed@aast.edu
Received: 05 July 2022; Accepted: 09 November 2022

Abstract: Big data is usually unstructured, and many applications require the
analysis in real-time. Decision tree (DT) algorithm is widely used to analyze
big data. Selecting the optimal depth of DT is time-consuming process as it
requires many iterations. In this paper, we have designed a modified version
of a (DT). The tree aims to achieve optimal depth by self-tuning running
parameters and improving the accuracy. The efficiency of the modified (DT)
was verified using two datasets (airport and fire datasets). The airport dataset
has 500000 instances and the fire dataset has 600000 instances. A comparison
has been made between the modified (DT) and standard (DT) with results
showing that the modified performs better. This comparison was conducted
on multi-node on Apache Spark tool using Amazon web services. Resulting
in accuracy with an increase of 6.85% for the first dataset and 8.85% for the
airport dataset. In conclusion, the modified DT showed better accuracy in
handling different-sized datasets compared to standard DT algorithm.

Keywords: Big data; classification; decision tree; Amazon web services

1 Introduction

Big data is an umbrella phrase that encompasses many methodologies and technologies, hardware,
software, real-time data collection, and analysis [1–6]. Big Data analytics analyses all the data instead
of just a small portion of it, as is the case with traditional data analytics. Samples were randomly
chosen and deemed to be typical of the entire dataset in the event of small data. Using only a small
portion of the available data, the conclusions are erroneous and incomplete, so the judgments and
results are suboptimal [1–4].

There is a lot of interest in using decision trees (DTs) [4–6] and related ensembles for machine
learning classification and regression applications. There is a broad usage of them since they are
straightforward to understand, can deal with categorical features, extend to multiclass classification,
do not need feature scaling, and can capture nonlinearities and feature interactions. Moreover, DTs are

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.034078
https://www.techscience.com/doi/10.32604/cmc.2023.034078
mailto:M.mohamed@aast.edu


944 CMC, 2023, vol.75, no.1

often employed in data mining [7]. Nodes make up a DT model, and each node of the input values is
divided into two or more branches before constructing the tree. The output values of the target variable
are represented by the leaves, the tree’s outer nodes, which follow the route from the root through
many splits to the leaf. In addition to classifications, it may be used for regressions. Classification
trees refer to DTs that represent target values as discrete classes, whereas regression trees refer to DTs
that represent target values as continuous categories. DTs, such as ID3 [8], CART [9], and C4.5 [10],
may be trained using methods that fall within the category of top–down induction. In this procedure,
items are partitioned into subsets. The recursion ends when all the objects in a subset have the same
value. The division may be determined using a variety of measures. Information gain [11] or a measure
of a person’s Gini impurity [12] may be used to determine whether to separate.

The main contributions of this study are summarized as follows:

• Standard DT is modified and then reproduced to develop a modified version, called modi-
fied DT.

• The optimal DT depth is selected using the proposed modified DT by self-tuning running
parameters.

• An appropriate file format for the mining tool is created from the raw data and tested in Scala
programming language.

• The performance of the proposed model is compared with the standard DT using various
evaluation metrics to evaluate their performance.

• The proposed modified DT achieved accuracy with an increase of 6.85% and 8.85% for the fire
and airport datasets, respectively.

The remainder of this paper is organized as follows. Section 2 presents the literature review
and related studies. In Sections 3 and 4, we present the methodology, which includes the proposed
framework and a comparative study between DT and its improvements. Section 5 discusses the
experimental results. Finally, Section 6 presents the conclusion and recommendation.

2 Related Work

The related work based on DT for big data analytics gives a simplified example of different kinds
of research that improves on DT to ensure the quality of prediction.

In [13], an upgraded vision of execution results was presented. Given their high accuracy,
optimized parameters improved tree pruning strategies (ID3, C4.5, CART, CHAID [14], and QUEST
[15,16]) are commonly used by all recognized information classifiers. The partitioned datasets are used
in preparing tests from a tremendous information set, which in turn influences the accuracy of the test
set. This paper surveys foremost the latest inquiries that are conducted in numerous areas, such as the
examination of restorative maladies, classification of writings, and classification of client smartphones
and images. Moreover, the creators used datasets and summarized accomplished results related to the
precision of choice trees.

When dealing with imbalanced data, the efficiency of DTs may be improved by employing a
support vector machine (SVM) [17]. As discussed in [18], SVM predictions are used to modify the
training data, which is subsequently used to train the DT in the proposed method. In addition to using
various normal sampling procedures, we used COIL data, which had a distribution ratio of 94:6, so
it was very imbalanced. The suggested strategy, as measured by sensitivity, was shown to significantly
improve the efficiency of DTs. Moreover, DT can be replaced by more sophisticated methods. Machine



CMC, 2023, vol.75, no.1 945

learning techniques, such as DTs, are well-known to be biased toward the majority class when faced
with imbalanced data.

In [19], the DT method was combined with particle swarm optimization and unsupervised filtering
to significantly improve the accuracy rate. The findings of the comparison study plainly show that the
current procedures are not as effective as they may seem. This study proposes a unique approach to
address the problems associated with the current email spam mining process. The suggested method
uses the particle swarm optimization algorithm to classify emails more accurately into normal and
spam emails. Meanwhile, unsupervised filtering is also used as a preprocessing method for email spam
classification. MATLAB 2010 and Weka 7.0 are used in the studies. The experimental results show
that new procedures are more accurate than current methods. Thus, we plan to apply different feature
extraction methods to significantly increase the accuracy rate of our study.

In [20], using the unknown emotion classes in the mixed dataset are almost identical to those
obtained with the learned ones. The CDT’s precision is much superior to that of competing models.
As previously mentioned, this is the simplest model for forecasting the mixed dataset’s secret emotion
since it alters data so profoundly. C# programming with a 32-bit compiler is used to build the new
techniques, and Microsoft Excel is used to create graphical models. The techniques used in forecasting
the mixed dataset proved to be memory efficient because they required fewer computing steps.

In [21], a model for predicting cervical cancer that provides early forecasting of cervical cancer
was introduced by employing the risk factors as inputs. First, the proposed model removes outliers
using anomalous detection techniques, such as density-based spatial clustering of applications with
isolation forest and noise, by growing the number of states in the dataset in a balanced manner. In
[20], nonlinear acoustic ion waves (AIWs) in space plasmas were used to show chaotic dynamics that
can be applied to cryptography. The dynamic properties of AIWs were investigated using the direct
method in plasma formed of negative and positive ions and non-extensive distributed electrons. The
governing equations can be inferred into a dynamical system by applying wave transformation. Super
nonlinear and nonlinear periodic (AIWs) are demonstrated by phase plane analysis. The analytical
periodic wave solution for AIWs is accomplished.

In [22], an analysis was presented to perform image encryption and decryption by hybridizing
elliptic curve cryptography (ECC) with Hill Cipher (HC), ECC with advanced encryption standard
(AES) and ElGamal with double playfair Cipher (DPC). The hybrid process includes faster and easier
implementation of symmetric methods and improved security from asymmetric methods. ElGamal
and ECC provide asymmetric key cryptography, whereas AES, DPC, and HC are symmetric key
methods. ECC and AES are ideal for private or remote communications with smaller image sizes,
depending on the amount of time required for decryption and encryption. The metric measurement
with test cases showed that HC and ECC have a good overall performance for image encryption.

In [23], a personalized healthcare monitoring system was introduced using a Bluetooth low energy
(BLE)-based real-time data processing, machine learning-based methods, and sensor device to assist
in better management of diabetic patients in their chronic condition. BLEs were used to collect users’
vital sign data, such as heart rate, blood pressure, blood glucose, and weight from sensor nodes to
smartphones, whereas real-time data processing was used to manage the massive amount of data
generated using sensors. The proposed real-time data processing used Apache Kafka as a streaming
platform and Mongo DB to store the sensor data from the patient. The empirical results reveal that
commercial versions of the proposed BLE-based sensors and real-time data processing are effective
enough in monitoring the vital sign data of diabetic patients.



946 CMC, 2023, vol.75, no.1

In [24], a hybrid prediction model (HPM) that can provide an initial prediction of hypertension
and type 2 diabetes (T2D) depending on input risk factors from individuals was introduced. The
suggested HPM consists of a synthetic minority oversampling technique (SMOTE) to balance the
distribution of class, density-based spatial clustering of applications with noise (DBSCAN)-based
outlier detection to remove the outlier data and random forest (RF) to classify the diseases. Three
benchmark datasets were used to predict the risk of diabetes and hypertension at the early stage. The
empirical results revealed that hypertension and diabetes could be successfully predicted by integrating
SMOTE, DBSCAN-based outlier detection and RF. The proposed HPM performs better than other
methods in predicting hypertension and diabetes.

Moreover, these methods may be used to forecast unknown emotions based on facial and gestural
data. Real-time data mining and gene prediction algorithms may also be tested for their efficiency and
accuracy using this technology.

For big data handling, although an algorithm performs very well for one kind of dataset, another
one may perform poorly. Therefore, the search for an advanced approach for handling almost all
possible dataset types is still an open research question.

3 Proposed Framework

The proposed framework improves the quality of prediction. It is made to modify the best
algorithm. According to a previous study [25], which presents a comparative study among different
algorithms with different types and sizes of datasets, the best algorithm is DT; specifically, the
classification and regression trees.

The proposed framework consists of five phases. It starts with data extraction, which includes
collecting data. Data preparation and filtering are used to clean, integrate, and alter the data.
An appropriate file format for the mining tool is created from the raw data and tested in Scala
programming language. In this study, the model using the machine learning standard DT algorithm is
compared with the modified DT to find the compatible model with the best accuracy. All of them are
practiced on multi-node by Apache Spark [26–31] standalone cluster on Amazon web services. Finally,
the compatible model can be loaded and saved.

Amazon’s cloud computing platform has implemented the Apache Spark data processing cluster
architecture model, which includes the machine learning library “spark.mllib,” as shown in Fig. 1.

Figure 1: Overview of our proposed methodology



CMC, 2023, vol.75, no.1 947

3.1 Input Data

In this study, we used two datasets: airport and fire call service datasets.

3.2 Data Extraction and Processing Phase

This phase consists of data cleansing, integration, and transformation. A major focus here is
getting data ready for categorization. Cleaning the data is necessary before classifier algorithms can be
applied to it for analysis. The data imputation process includes removing records with missing values
and correcting inconsistencies, identifying outliers, and removing duplicate data. In order to be fed into
the data mining program, the information was denoted by numbers and saved as a CSV or txt file.

There should be no empty cells, not even a “not a number (NaN),” or any incorrectly rendered
strings in the “data store,” that might interrupt the execution of the program and result in incorrect
indication. Preprocessing procedures were employed for clean-up. Zero was given to NaN and empty
cells. Then, the decoding procedure began, where the letters were recognized. MATLAB is used to
determine the unique list, and then a unique digital code is assigned to each item on the list. Decoding
the strings requires a digit between 1 and 26 to be assigned to each letter of the alphabet A.

3.3 Apache Spark Standalone Cluster on Amazon Web Services

Amazon web services were used to get all the data. Elastic cloud computing is a web service for
launching and managing virtual machine instances in a virtual computing environment. In this case,
we use Ubuntu Server 16.04 LTS (HVM), EBS general-purpose volume type. Canonical (http://www.
ubuntu.com/cloud/services) offers assistance.

Amazon offers a variety of instance types, each with a particular set of performance specifications.
An Amazon EC2 computing unit serves as the basis for vCPU capacity. A 2007 Opteron or 2007 Xeon
processor clocked at 1.0–1.2 GHz roughly represents one EC2 computing unit. Build a standalone
Spark cluster on top of Hadoop. We suggest using M4 large spot instances with 200 GB of magnetic
hard drive space because of Spark’s memory requirements.

M4 instances are the newest generation of general-purpose instances. Many applications may
benefit from this family’s mix of computing, memory, and network resources. There are no extra costs
for EBS-optimized E5-2686 v4 or E5-2676 v3 processors in M4 features. There is also support for
enhanced networking and an even distribution of processing, memory, and network resources. As
the name suggests, this instance type contains four computing units and eight gigabytes of memory,
making it ideal for large-scale web applications that need enormous amounts of processing power.

One of the nodes will be designated as the master (Name Node), and the other three will
be designated as slave (Data Nodes). Gigabit Ethernet connects the nodes. The binaries built on
Lawrencium were used on EC2 for consistency. The nodes are in the same availability zone in the
N. California area. Moreover, Amazon gives no assurances as to the closeness of the nodes placed
together, and the latency between nodes varies widely. Apache Spark v2.1.0, Apache Hadoop v2.6.1,
Java v8, and Scala v2.11.0 were used in the experiments.

Furthermore, we used distributed memory for fault-tolerant calculations on a cluster using Spark.
Even though Spark is a relatively young open-source technology, it has already overtaken Hadoop’s
MapReduce approach in terms of popularity. This is mainly because Spark’s resilient distributed
dataset (RDD) [30] architecture can work as MapReduce paradigm. With Spark MLlib, machine
learning algorithms can be run significantly quicker than with Hadoop alone because of its ability
to execute iterative computations on large datasets.

http://www.ubuntu.com/cloud/services
http://www.ubuntu.com/cloud/services


948 CMC, 2023, vol.75, no.1

Our methods are implemented using the Apache Spark cluster computing framework to handle
datasets that are too large to be stored and processed on a single node. The fault-tolerant parallel
and distributed computing paradigm and execution engine provided by Spark are based on RDD.
Functional programming techniques, such as map, filter, and reduce, each yield a new RDD when
performed on an RDD. RDDs are immutable, lazily materialized distributed collections. Data may be
retrieved from a distributed file system or produced by parallelizing a data collection that the user has
already made.

There are many operations that are possible with RDDs containing key-value pairs that may be
applied to them as associative arrays. In order to save time, Spark employs a lazy evaluation method.
One of the key advantages of Spark over MapReduce is the use of in-memory storage and caching to
reuse data structures. Hadoop has three components, and it is vital to have a general understanding
before its implementation.

• Files are divided into “blocks” and stored redundantly on numerous low-cost workstations
known as “Data Nodes” using the Hadoop distributed file system (HDFS) [29]. HDFS is based
on the Google file system [25–31]. Moreover, the Name Node is a high-quality computer that
serves as the point of entry to these data nodes.

• Hadoop MapReduce (based on Google MapReduce) is a distributed computing paradigm that
divides calculations across numerous computers. Each computer in the cluster performs a user-
defined function on a slice of the input data in the Map job. In the Reduce task, the output of
the Map job is shuffled throughout the cluster of workstations.

• A new feature in Hadoop 2.0 known as YARN (unofficially known as yet another resource
negotiator) handles resources and task scheduling like an operating system. This is an essential
enhancement, particularly in production with several programs and users, but we will not focus
on this for now.

Finally, the scholars were employed during the experimentation: a master and three workers, each
with two virtual central processing units and eight gigabytes of RAM, and four same-level clusters were
used to complete the jobs quicker. Amazon platform built the infrastructure. Apache Spark v2.1.0,
Apache Hadoop v2.6.1, Java v8, and Scala v2.11.0 were used in the experiments. Apache Spark is
a high-performance in-memory computing platform intended to be one of the fastest available and
extremely general-purpose in terms of conducting many types of computing tasks.

3.4 Finding the Accurate Model

After the data processing and classification phase, we propose a model using a multi-layer to
build an environment by determining the number of nodes. Then, we prepare programming language
libraries used in the environment, such as Java v8 and Scala v2.11, and continue downloading all layers.
The first layer is an Apache Hadoop v2.7 (MapReduce, HDFS, YARN), and the second layer is an
Apache Spark, including the number of cores. All the layers are downloaded on all nodes used in the
environment. The accurate choice model is based on several features; one of the most important is
accuracy. All of them depend on a dataset. Finally, save and load the accurate model.

3.5 Evaluation Measures

The proposed model is evaluated using different evaluation metrics, including recall, precision,
accuracy, and F1-score. These metrics depend on true positive (TP), true negative (TN), false positive
(FP), and false negative (FN), which are common evaluation parameters for predictive models.



CMC, 2023, vol.75, no.1 949

Accuracy (Acc) is expressed as in Eq. (1):

Acc = TP + TN
TP + TN + FP + FN

(1)

Precision (P) [20], which equals TP divided by TP + FP, is expressed as in Eq. (2).

P = TP
TP + FP

(2)

Recall (R) [20], which equals (TP) divided by TP + FN, is expressed as in Eq. (3).

R = TP
TP + FN

(3)

F-Measure (F1) [20], which is equal to twice the precision multiplied by recall divided by the sum
of precision and recall is written as Eq. (4).

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

A receiver operating characteristic (ROC) or ROC curve is a graphical plot that shows the
performance of a binary classifier system as the discernment threshold is diverse.

Area under the precision-recall curve (PRC): Tuning the prediction threshold will change the
precision and recall of the model, and it is an imperative part of model optimization. It plots (precision,
recall) points for diverse threshold values; ROC curve plots (recall, FP rate) points.

Mean squared error (MSE) is a variance of the estimator and what is estimated. It is a risk function,
consistent with the estimated value of the squared error or quadratic loss.

Root mean square error (RMSE) is often used to measure the variances between values predicted
by a model or an estimator and the values actually detected.

4 Equations and Mathematical Expressions

In this section, we first present the standard DT, followed by the improved DT. Then, we compare
the two DT algorithms.

4.1 Standard DT

We have all the essential components to demonstrate how Algorithm 1’s (DT) implementation
works. It is built on the Spark MLlib source code as a model implementation. To import a data
file and parse it into an RDD of a labeled point, see Algorithm 1. The dataset was divided into
training, cross-validation, and test sets, consisting of 60%, 10%, and 30% of the dataset, respectively.
We used five parameters to build the DT model, including the number of classes, number of bins,
categorical characteristics, impurity, and number of depths. The algorithm can produce more precise
split judgments when increasing the maximum number of bins. Additionally, it raises computational
and communication demands. Consider that the max-bin parameter must be greater than or equal
to the maximum number of categorical features. How many values can each feature have? That is
the question that categorical features answer. This is presented as a feature index-to-arity mapping
(number of categories) using DT with a Gini impurity measure or DT with a variance impurity measure
and a tree depth of 5 for classification or regression. Once a test error is generated, MSE is produced
to evaluate the algorithm’s correctness.



950 CMC, 2023, vol.75, no.1

4.2 Enhancement of DT

Algorithm 2’s enhancement (DT) implementation may now be explained using the relevant com-
ponents. The algorithm requires some parameters; however, we make self-tuning running parameters
based on the depth. Classification or regression may be performed using DT using Gini or variance
impurity as an impurity metric. We iterate with an initial depth of zero, increasing it incrementally to
thirty, building the model. Additionally, we compare it with the best accuracy. Finally, we create the
best model with the best accuracy.

Algorithm 1: Standard (DT) on Spark
Input:

1. Reading the dataset
2. Determine features and label
3. Using function randomSplit (Split into 60% Training data, 10% cross validation Data, 30%

Testing Data)
4. Initialize number of classes, set Categorical Features to Map [Int, Int] (), set Impurity ←

“gini/variance”, set Depth ← 5 and set Bins ← 32
Process:

5. Build a simple default DecisionTreeModel
Set Model ← DecisionTree.trainClassifier (Training data, number of classes, Categorical

Features, Impurity, Depth, Bins)
6. Set Metrics ← getMetrics (Model, Cross Validation Data)
7. Evaluate model on test instances

Set Evaluate ← Testing Data. map {}
Output:

8. Compute Confusion Matrix
9. Compute Individual label stats
10. Compute Overall Statistics (Accuracy, precision, recall, TPR, FPR, and so on)
11. Save Model by function save
12. load Model by function load

Algorithm 2: Modified (DT) on Spark
Input:
1. Initialize set Depth ← 0
2. set Best_Model ← 0, set Best_Accuracy ← 0.0
Process:
3. for Depth ← 0 to 30 do

a) set Model ← DecisionTree.trainClassifier (Training data, number of classes, Categorical
Features, Impurity, Depth, Bins)

b) set Metrics = getMetrics (Model, Cross Validation Data)
c) set Accuracy ← Metrics.accuracy
d) IF (Accuracy > Best_Accuracy) then

i) Best_Accuracy ← Accuracy
ii) Best_Model ← Depth

e) End IF
4. End For

(Continued)



CMC, 2023, vol.75, no.1 951

ii. Continued
5. Evaluate model on test instances

Set Evaluate = TestingData.map {point → prediction = Best_Model.predict (point.features)
(point.label, prediction)

Output:
6. Compute Best_Model
7. Compute Best_Accuracy
8. Save and load Best_Model

5 Result and Analysis

This section presents the experimental results of our proposed model. The datasets used to verify
the effectiveness of the proposed model are described in Subsection 5.1. We present the working
environment in Subsection 5.2. Furthermore, we present the comparative analysis in Subsections 5.3
and 5.4.

5.1 Datasets Description

We use two datasets in our experiment. The first is a huge dataset initially created by the
Research & Innovative Technology Administration. Five classes, 29 characteristics, and 86 features
are included in the dataset, approximately 500,000 instances. The second large dataset was provided
by San Francisco domestic fire department calls for service. The dataset consists of nearly 600,000
instances with five classes and 35 attributes. All datasets should have correct feature extraction and
feature selection performed.

5.2 Working Environment

The simulation results have been carried out on the FN data using a local machine with an Intel
processor core i7, 16 GB of RAM, and an NVIDIA GTX 1050i GPU.

5.3 Classification Results and Performance Evaluation on First Dataset

There is no difference between the experimental results with a multi-node or local (one node)
environment. The only difference is that the time also depends on the number of nodes shown in
the next table. Fig. 2 shows the accuracy results for the standard and modified DT algorithms tested
on the airport dataset using the Apache Spark mining tool. The x-axis represents the results of the
accuracy (correctly classified and incorrectly classified instances), whereas the y-axis represents the
modified and standard algorithms. The standard and modified DTs are represented in blue and red,
respectively.

Table 1 compares the standard DT cluster with the local using the airport dataset. The results in
this table present the time needed to build the model in seconds, where the time is calculated using the
Apache Spark mining tool. In this study, the results of time vary based on the cluster (multi-node) or
local (one node). The time to build the standard DT model with cluster (four nodes) and local (one
node) are 426 and 660 s, respectively.



952 CMC, 2023, vol.75, no.1

Figure 2: A comparative study of accuracy percentage between modified decision tree (DT) algorithm
and standard (DT) using Apache spark with the airport dataset

Table 1: A comparison study between standard decision tree ((DT) cluster and local using the airport
dataset

Classifier Number of model Cluster/local Number of nodes

Standard (DT) 5 Cluster (4 nodes) 426
Local (One node) 660

Table 2 compares the results of the modified DT cluster and local using the airport dataset. This
table shows the time needed to build the model in seconds, where time is calculated using the Apache
Spark mining tool. Here, the results of time vary based on the cluster (multi-node) or local (one node).
The time to build the modified DT model in the first and second runs with cluster (four nodes) are
2640 and 482 s, respectively. In contrast, the time to build the modified DT model in the first and
second runs with local is 7680 and 666 s, respectively. The variances for the modified DT model with
local are three times more than those in the cluster.

Table 2: A comparison between modified (DT) cluster and local using the airport dataset

Classifier Number of
running time

Number of
model

Cluster/local Number of
nodes

Time is taken to
build model (s)

modified (DT) First time modified Cluster 4 2640
Local 1 7680

Second time 16 Cluster 4 482
Local 1 666

Table 3 compares the results of the standard DT and modified DT algorithms in the cluster using
the airport dataset. This table shows the time needed to build the model in seconds, where the time is
calculated using the Apache Spark mining tool. The time to build the modified DT model in the first
run is 2640 s, whereas the time to build the modified DT when putting the number of models 16 is 482 s
with four nodes for both. The study shows that when we put the number of models, it takes five times
the first run. The time to build the standard DT model with four nodes is 426 s, whereas the time to
build the modified DT when putting the number of models 16 is 482 s.



CMC, 2023, vol.75, no.1 953

Table 3: A comparison study between standard (DT) and modified (DT) in cluster using the airport
dataset

Cluster/local Classifier Number of model Time (s)

Cluster (4 nodes) modified (DT) modified 2640
16 482

standard (DT) 5 426

Table 4 compares the results of the standard and modified DT models in local using the airport
dataset. This table shows the time needed to build the model in seconds, where the time is calculated
using the Apache Spark mining tool. The time to build the modified DT model in the first run is 7680 s,
whereas the time to build the modified DT model when putting the number of models as 16 is 666 s
with one node for both. The study shows that when we put the number of models, the results of the
time change at a percentage equal to eleven times the result for the first time. The time to build the
modified DT model with one node is 660 s, whereas that of the modified DT when putting the number
of models 16 is 666 s.

Table 4: A comparison study between standard (DT) and modified (DT) in local using the airport
dataset

Cluster/local Classifier Number of model Time (s)

Local (One node) Modified (DT) modified 7680
16 666

Standard (DT) 5 660

Table 5 shows the FP rate, recall, and precision of the first datasets, along with the number of
models. A look at the data reveals that the modified DT has the greatest value for most parameters by
6.85% and the lowest good value of MSE at 0.0100 because a value closer to zero is better. External
predictability may be shown by an R-squared prediction value larger than 0.6. The RMSE values of
0.5 and 0.3 should be low for a decent prediction model. Both are a better value and good external
of RMSE. The modified DT is better than the standard DT because the value of RMSE at 0.10020 is
less than 0.3, and the standard DT is greater than 0.3 but still a good predictive model. The modified
DT has a better value and good external R-squared at 0.98206, whereas the standard DT has poor
external predictability at 0.31619.

Table 5: A comparison between standard (DT) with modified (DT) using the airport dataset

Dataset Classifier FP Rate Precision Recall F-
Measure

PRC
Area

ROC
Area

MSE RMSE R-
squared

Model
number

D4 (Airport) Standard (DT) 0.2339 0.8915 0.9199 0.90534 0.9969 0.862 0.2307 0.48033 0.31619 5
Modified (DT) 0.0193 0.9884 0.9884 0.98844 0.9999 0.998 0.0100 0.10020 0.98206 16

Finally, the comparison study made between the standard and modified DT algorithms aid in
attaining high accuracy in various datasets. The top method was the modified DT algorithm, which



954 CMC, 2023, vol.75, no.1

had a 98.84% accuracy rate with a total construction of 2640 s. As shown, the modified DT has the
highest value of all parameters by 6.85%.

5.4 Classification Results and Performance Evaluation on Second Dataset

There is no difference between the experimental results with a multi-node or local (one node)
environment. The only difference is that the time also depends on the number of nodes shown in
the next table. Fig. 3 shows the accuracy results of the standard and modified DT algorithms tested
on the fire call service dataset using the Apache Spark mining tool. The x-axis represents the results
of the accuracy (correctly classified and incorrectly classified instances), whereas the y-axis represents
the modified and standard DT algorithms. The standard and modified DT models are represented in
blue and red, respectively.

Figure 3: A comparative study of accuracy percentage between modified (DT) algorithm and standard
(DT) using Apache spark with fire dataset

Table 6 compares the results of the standard DT in the cluster and local environments using the fire
dataset. These results show the time needed to build the model in seconds, where the time is calculated
using the Apache Spark mining tool. Here, the time results vary widely based on the cluster (four
nodes) or local environment (one node). The time to build the standard DT model with the cluster
(four nodes) and local environment are 129 and 367, respectively.

Table 6: A comparison study between standard (DT) cluster and local in fire dataset

Classifier Number of model Cluster/local Number of nodes

Standard (DT) 5 Cluster (4 nodes) 129
Local (One node) 367

Table 7 compares the results of the modified DT in the cluster and local environments using the fire
dataset. These results show the time needed to build the model in seconds, where the time is calculated
using the Apache Spark mining tool. Here, the time results vary widely based on the cluster (four
nodes) or local environment (one node). The time to build the modified DT model in the first run
in the cluster (four nodes) is 2280 s, and that when putting the number of model 12 with the same
number of nodes is 187 s. In contrast, the time to build the modified DT model in the first run in the
local environment is 3780 s and that when putting the number of model 12 with the same number of
nodes (one node) is 365 s. The variances of the DT in the first run in the local environment are more
than one and half times that in the cluster environment.



CMC, 2023, vol.75, no.1 955

Table 7: A comparison between modified (DT) cluster and local in fire dataset

Classifier Number of
running time

Number of
model

Cluster/local Number of
nodes

Time is taken to
build model (s)

Modified (DT) First time Modified Cluster 4 2280
Local 1 3780

Second time 12 Cluster 4 187
Local 1 425

Table 8 compares the results of the standard and modified DT algorithms in the cluster environ-
ment using the fire dataset. This table shows the time needed to build the model in seconds, where the
time is calculated using the Apache Spark mining tool. The time to build the modified DT model in
the first run is 2280 s, whereas that when putting the number of model 12 is 187 s in the cluster (four
nodes). Here when putting the number of models, the time results change at a percentage equal to
twelve times the result for the first time. The time to build the standard DT model with four nodes is
129 s, whereas that putting the number of models 12 is 187 s.

Table 8: A comparison study between standard (DT) and modified (DT) in cluster in fire dataset

Cluster/local Classifier Number of model Time (s)

Cluster (4 nodes) Modified (DT) Modified 2280
12 187

Standard (DT) 5 129

Table 9 compares the results of the standard and modified DT in the local environment using
the fire dataset. These results show the time needed to build the model in seconds, where the time is
calculated using the Apache Spark mining tool. The time to build the modified DT model in the first
run is 3780 s, whereas that when putting the number of models 12 is 425 s with one node for both.
When we put the number of models, the time results change at a percentage equal to ten times the
result for the first time. The time to build the standard DT model with one node is 367 s, whereas that
to build the modified DT when putting the number of models 12 is 425 s.

Table 9: A comparison study between standard (DT) and modified (DT) in local in fire dataset

Cluster/local Classifier Number of model Time (s)

Local (One node) Modified (DT) Modified 3780
12 425

Standard (DT) 5 367

Table 10 shows the first dataset: FP rate, precision, recall, F-measure, PRC area, ROC area, and
the number of models. Modified decisions are shown in the table. The modified DT has an 8% higher
value for most factors, as shown in the table. Since a value closer to zero is preferable, the modified



956 CMC, 2023, vol.75, no.1

(DT) has the lowest and best MSE of 0.03019. The RMSE values should be low (0.5 and 0.3) for a
decent prediction model. Both have better values and good external RMSE because they have good
predictions under the rule <0.3. External predictability may be shown by the R-squared prediction
value greater than 0.6. The modified and standard DT models have better values and good external
R-squared at 0.8987 and 0.63170, respectively.

Table 10: A comparison between standard (DT) with modified (DT) using fire dataset

Dataset Classifier FP
Rate

Precision Recall F-
Measure

PRC ROC MSE RMSE R-
squared

Model
number

Fire Standard (DT) 0.1067 0.8831 0.8753 0.8756 0.8443 0.891 0.0883 0.2973 0.6317 5
Modified (DT) 0.0796 0.9645 0.9638 0.9632 0.952 0.942 0.0301 0.1737 0.8987 12

Finally, the comparison study between the standard and modified DT algorithms helps attain
high accuracy in various datasets. The modified DT method was the most accurate and took the least
time to create, with 96.4% accuracy and a total duration of 2280 s. As shown, the modified DT has the
highest value of all parameters by 8%.

5.5 Managerial Implications

The proposed modified DT approach aims to achieve optimal depth by self-tuning running
parameters and improving the performance. The modified DT can achieve higher accuracy in terms
of training, validation, and testing than the standard DT. It plays an essential role as a daily-accessed
decision-making system that can support the strategic and practical implications of decision-making
in organizations for top management, particularly in developing countries. This study attempts to
contribute to the literature with new findings and recommendations. These fallouts will help the top
management during the key decision-making process and encourage practitioners who seek a compet-
itive advantage through enhanced organizational performance in small and medium enterprises.

6 Conclusion

Big data analytics has attracted significant attention from business and academia because of
its tremendous cost-cutting and decision-making advantages. For example, it can provide important
information for a wide range of businesses. Therefore, in this study, we proposed a modified DT
approach for handling big data. For normal cases while using (DTs), the model is static. Therefore,
this study should be more dynamic than the benchmark by allowing the tree to create a new model that
fits the dataset. One drawback of making the structure of the model dynamic when determining which
model will fit is that it takes more time than the standard model at once, but there are more accurate
parameters because the model will certainly fit. However, after using the same model of the modified
DT in the second time, it takes approximately the same time as the standard model. Additionally,
the number of nodes is taken as a measurement factor to evaluate the time. The time results taken
to build the model with multiple nodes (four nodes) within the cluster are less than that with local
(one node). Finally, the modified DT achieves an optimal depth by self-tuning running parameters
and improving the performance. The efficiency and efficacy of the modified DT were verified using
two datasets: airport and fire. The airport and fire datasets contain 500000 and 600000 instances,
respectively. Furthermore, we compared the modified and standard DT, and the comparison results
showed that the modified DT performs better than the standard DT. This comparison was conducted
on multi-node using the Apache Spark tool with Amazon web services, resulting in an increase in the



CMC, 2023, vol.75, no.1 957

accuracy of 6.85% and 8.85% for the fire and airport datasets, respectively. The main limitations of this
study are that the proposed modified DT takes longer than the standard DT. Although the proposed
model achieved an accuracy higher than standard (DT), it still needs more modifications to achieve
better results. In future studies, we will improve the proposed model to achieve the highest accuracy
and minimize the execution time. This will be implemented on a cluster and big data from various
sources.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

Supplementary Materials: The authors received no supplemental materials for this study.

References
[1] D. Ramos, P. Faria, A. Morais and Z. Vale, “Using decision tree to select forecasting algorithms in distinct

electricity consumption context of an office building,” Energy Reports, vol. 8, no. 3, pp. 417–422, 2022.
[2] M. Li, P. Vanberkel and X. Zhong, “Predicting ambulance offload delay using a hybrid decision tree

model,” Socio-Economic Planning Sciences, vol. 80, no. 1, pp. 101146, 2022.
[3] M. M. Hafez, R. P. D. Redondo and A. F. Vilas, “A comparative performance study of Naïve and ensemble

algorithms for E-commerce,” in 14th Int. Computer Engineering Conf. (ICENCO), Cairo, Egypt, pp. 26–31,
2019.

[4] A. M. Shah, X. Yan, S. A. A. Shah and G. Mamirkulova, “Mining patient opinion to evaluate the
service quality in healthcare: A deep-learning approach,” Journal of Ambient Intelligence and Humanized
Computing, vol. 11, no. 5, pp. 2925–2942, 2020.

[5] A. M. Shah, X. Yan, S. Tariq and M. Ali, “What patients like or dislike in physicians: Analyzing drivers of
patient satisfaction and dissatisfaction using a digital topic modeling approach,” Information Processing &
Management, vol. 58, no. 3, pp. 102516, 2021.

[6] C. Magazzino, M. Mele, N. Schneider and U. Shahzad, “Does export product diversification spur energy
demand in the APEC region? Application of a new neural networks experiment and a decision tree model,”
Energy and Buildings, vol. 258, no. 1, pp. 111820, 2022.

[7] K. Saleh and A. Ayad, “Fault zone identification and phase selection for microgrids using decision trees
ensemble,” International Journal of Electrical Power & Energy Systems, vol. 132, no. 1, pp. 107178, 2021.

[8] Y. An and H. Zhou, “Short term effect evaluation model of rural energy construction revitalization based
on ID3 decision tree algorithm,” Energy Reports, vol. 8, no. 1, pp. 1004–1012, 2022.

[9] F. M. Javed Mehedi Shamrat, R. Ranjan, K. M. Hasib, A. Yadav and A. H. Siddique, “Performance
evaluation among ID3, C4.5, and CART decision tree algorithm,” Pervasive Computing and Social
Networking, vol. 317, no. 1, pp. 127–142, 2022.

[10] F. Tempola, M. Muhammad, A. K. Maswara and R. Rosihan, “Rule formation application based on C4.
5 algorithm for household electricity usage prediction,” Trends in Sciences, vol. 19, no. 3, pp. 2167–2167,
2022.

[11] C. Stachniss, G. Grisetti and W. Burgard, “Information gain-based exploration using rao-blackwellized
particle filters,” Robotics: Science and Systems, vol. 2, no. 1, pp. 65–72, 2005.

[12] J. L. Grabmeier and L. A. Lambe, “Decision trees for binary classification variables grow equally with
the Gini impurity measure and Pearson’s chi-square test,” International Journal of Business Intelligence and
Data Mining, vol. 2, no. 2, pp. 213–226, 2007.

[13] B. Charbuty and A. Abdulazeez, “Classification based on decision tree algorithm for machine learning,”
Journal of Applied Science and Technology Trends, vol. 2, no. 1, pp. 20–28, 2021.



958 CMC, 2023, vol.75, no.1

[14] F. Rahimibashar, A. C. Miller, M. Salesi, M. Bagheri, A. Vahedian-Azimi et al., “Risk factors, time to
onset and recurrence of delirium in a mixed medical-surgical ICU population: A secondary analysis using
Cox and CHAID decision tree modeling,” EXCLI Journal, vol. 21, no. 1, pp. 30–30, 2022.

[15] N. A. K. Dam, T. Le Dinh and W. Menvielle, “The quest for customer intelligence to support marketing
decisions: A knowledge-based framework,” Vietnam Journal of Computer Science, vol. 9, no. 1, pp. 1–20,
2022.

[16] S. Kaul, S. A. Fayaz, M. Zaman and M. A. Butt, “Is decision tree obsolete in its original form? A burning
debate,” Revue D’Intelligence Artificielle, vol. 36, no. 1, pp. 105–113, 2022.

[17] W. Fan, B. Xu, H. Li, G. Lu and Z. Liu, “A novel surrogate model for channel geometry optimization of
PEM fuel cell based on bagging-SVM ensemble regression,” Int. J. Hydrogen Energy, vol. 47, no. 33, pp.
14971–14982, 2022.

[18] A. Almas, M. Farquad, N. R. Avala and J. Sultana, “Enhancing the performance of decision tree: A
research study of dealing with unbalanced data,” in Seventh Int. Conf. on Digital Information Management
(ICDIM), Macao, China, pp. 7–10, 2012.

[19] H. Kaur and A. Sharma, “Improved email spam classification method using integrated particle swarm
optimization and decision tree,” in 2nd Int. Conf. on Next Generation Computing Technologies (NGCT),
Dehradun, India, pp. 516–521, 2016.

[20] S. Sriram and X. Yuan, “An enhanced approach for classifying emotions using customized decision tree
algorithm,” in 2012 Proc. of IEEE Southeastcon, Orlando, FL, USA, pp. 1–6, 2012.

[21] M. Ijaz, M. Attique and Y. Son, “Data-driven cervical cancer prediction model with outlier detection and
over-sampling methods,” Sensors, vol. 20, no. 10, pp. 2809, 2020.

[22] J. Tamang, J. Nkapkop, M. Ijaz, P. Prasad and N. Tsafack, “Dynamical properties of ion-acoustic waves in
space plasma and its application to image encryption,” IEEE Access, vol. 9, no. 1, pp. 18762–18782, 2021.

[23] G. Alfian, M. Syafrudin, M. F. Ijaz, M. A. Syaekhoni and N. L. Fitriyani, “A personalized healthcare
monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing,”
Sensors, vol. 18, no. 7, pp. 2183, 2018.

[24] M. F. Ijaz, G. Alfian, M. Syafrudin and J. Rhee, “Hybrid prediction model for type 2 diabetes and hyper-
tension using DBSCAN-based outlier detection, synthetic minority over sampling technique (SMOTE),
and random forest,” Applied Sciences, vol. 8, no. 8, pp. 1325, 2018.

[25] M. M. Hafez, M. E. Shehab, E. El Fakharany and A. E. F. A. G. Hegazy, “Effective selection of machine
learning algorithms for big data analytics using apache spark,” International Conference on Advanced
Intelligent Systems and Informatics, vol. 533, pp. 692–704, 2016.

[26] A. Esmaeilzadeh, M. Heidari, R. Abdolazimi, P. Hajibabaee and M. Malekzadeh, “Efficient large scale
nlp feature engineering with apache spark,” in 12th Annual Computing and Communication Workshop and
Conf. (CCWC), Las Vegas, USA, pp. 0274–0280, 2022.

[27] B. T. Hasan and D. B. Abdullah, “A survey of scheduling tasks in big data: Apache spark,” Micro-
Electronics and Telecommunication Engineering, vol. 373, pp. 405–414, 2022.

[28] N. Fikri, M. Rida, N. Abghour, K. Moussaid and A. Elomri, “WS-PDC: Persistent distributed channel-
based web services applied on IFRS data processing and loading,” Proceedings of Sixth International
Congress on Information and Communication Technology, vol. 235, pp. 847–855, 2022.

[29] P. MacKo and J. Hennessey, “Survey of distributed file system design choices,” ACM Transactions on
Storage, vol. 18, no. 1, pp. 1–34, 2022.

[30] S. Ghemawat, H. Gobioff, and S. -T. Leung Google, “The google file system,” in Proc. of the Nineteenth
ACM Symp. on Operating Systems Principles, New York, USA, pp. 29–43, 2003.

[31] R. Vijayakumari, R. Kirankumar, and K. G. Rao, “Comparative analysis of google file system and hadoop
distributed file system,” International Journal of Advanced Trends in Computer Science and Engineering, vol.
3, pp. 553–558, 2014.


	Self-Tuning Parameters for Decision Tree Algorithm Based on Big Data Analytics
	1 Introduction
	2 Related Work
	3 Proposed Framework
	4 Equations and Mathematical Expressions
	5 Result and Analysis
	6 Conclusion


