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Abstract: The Corona Virus Disease 2019 (COVID-19) effect has made
telecommuting and remote learning the norm. The growing number of
Internet-connected devices provides cyber attackers with more attack vectors.
The development of malware by criminals also incorporates a number of
sophisticated obfuscation techniques, making it difficult to classify and detect
malware using conventional approaches. Therefore, this paper proposes a
novel visualization-based malware classification system using transfer and
ensemble learning (VMCTE). VMCTE has a strong anti-interference ability.
Even if malware uses obfuscation, fuzzing, encryption, and other techniques
to evade detection, it can be accurately classified into its corresponding
malware family. Unlike traditional dynamic and static analysis techniques,
VMCTE does not require either reverse engineering or the aid of domain
expert knowledge. The proposed classification system combines three
strong deep convolutional neural networks (ResNet50, MobilenetV1, and
MobilenetV2) as feature extractors, lessens the dimension of the extracted
features using principal component analysis, and employs a support vector
machine to establish the classification model. The semantic representations of
malware images can be extracted using various convolutional neural network
(CNN) architectures, obtaining higher-quality features than traditional
methods. Integrating fine-tuned and non-fine-tuned classification models
based on transfer learning can greatly enhance the capacity to classify
various families of malware. The experimental findings on the Malimg dataset
demonstrate that VMCTE can attain 99.64%, 99.64%, 99.66%, and 99.64%
accuracy, F1-score, precision, and recall, respectively.
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1 Introduction

Malware is malicious software designed to damage or disrupt the normal use of an endpoint
device. Based on its functionalities and characteristics, it can be categorized into many types; examples
include Trojan horses, spyware, viruses, worms, adware, ransomware, and rootkits. Malware is used by
cybercriminals to target computers and networks to sabotage or control computer resources, obtain
money, and steal business intelligence or state secrets. The McAfee Labs Threats Report (June 2021)
[1]revealed that the total volume of malware threats averaged 688 per minute, an increase of 40 threats
per minute in the first quarter of 2021. The economic losses caused by malicious attacks should not
be underestimated. According to a survey by Check Point [2], the average ransom demand brought
on by ransomware rose to $233,817 in the third quarter of 2020, a 30% rise from the second quarter.
Overall, the rapid growth and evolution of malware pose considerable security threats to businesses
and individuals. Therefore, there is a pressing need to enhance the performance of systems that
automatically classify and detect malware.

Many researchers have put forth research plans meant to boost malware detection and classifica-
tion efficiency [3,4]. Analyzing static data and analyzing dynamic data are the two primary approaches.
Static analysis can extract a variety of static features, such as portable executable (PE) headers, n-grams,
opcode sequences, and other features for code-level classification and detection, through classic static
analysis tools (e.g., PEview, Yara, IDA Pro, Accesschk), without executing the malware. However,
cybercriminals can evade static analysis using methods such as fuzzing, obfuscation, and encryption.
Conversely, dynamic analysis requires the loading and running of malware samples and relies more on
interaction with the computer for analysis. It usually involves building a secure, controlled environment
that runs sample files to monitor activities, including registry key changes, application programming
interface (API) calls, or system file deletions. Dynamic analysis might potentially infect endpoint
systems and is time-consuming, although being effective against obfuscation tactics. Furthermore,
most static analysis tools construct classification systems through the fusion of various features of
different malware classes. Dynamic analyses involve the construction of isolated environments and the
capture of behavioral features. Both methods require the researcher to have adequate domain expertise
and experience.

Malware identification and classification have both benefited greatly from the use of machine
learning techniques [5—8]. Conventional machine learning methods are superior to deep learning
methods when the sample data size is limited. However, with the exponential growth of malicious
programs and their increasing complexity, it is challenging to adapt machine learning techniques to
tasks in complex scenarios (e.g., insufficient learning in the face of high-dimensional features, tedious
feature engineering, and weak adaptability). As a result, classical machine learning techniques alone
cannot completely meet the needs for malware detection and classification in today’s increasingly
severe computer security environment. Deep learning-related technologies have advantages in dealing
with high-dimensional data. To reduce computational resources and time consumption, there must not
be over-reliance on domain expertise. The utilization of image visualization techniques for malware
classification and detection has been advocated in recent studies with encouraging outcomes [9,10].
The public dataset used for this research suffers from an imbalance in the number of malware
family samples. Transfer learning is used in this research to lessen the effect of data imbalance on
classification performance. To further improve the performance of classification systems, researchers
have used ensemble learning to fuse the advantages of multiple classification models to achieve
accurate classification of malware families [11,12].
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This paper introduces a novel visualization-based malware classification system (VMCTE), which
fuses the strengths of three classical neural networks (ResNet50, MobilenetV1, and MobilenetV?2)
based on ensemble learning. All three neural networks transfer weights pre-trained on the ImageNet
dataset [13]. Transfer learning effectively alleviates the impact of data imbalance on classification
accuracy, and also makes the network unnecessary to train from scratch. The system achieves a
promising classification performance on the Malimg dataset [14], which contains obfuscated and
encrypted malware samples. The following are the work’s main contributions:

e A new malware classification system is proposed, which reduces the reliance on feature
engineering techniques and domain expertise. Furthermore, it has high classification accuracy,
a straightforward deployment procedure, and a novel structure.

e This paper fuses fine-tuned and non-fine-tuned deep convolutional neural network (CNN)
classification structures based on transfer learning. Compared with sub-classification systems,
experimental results show that the fused model can improve malware classification.

e On the Malimg dataset, which contains obfuscated and encrypted samples, the suggested
system’s capacity to categorize malware samples is assessed. The experiment demonstrates that
the system is capable of classifying malware samples with accuracy and F1-score of 99.64% and
99.64%, respectively.

The remainder is organized as follows: The discussion and review of malware researchers’ work
can be found in Section 2. Section 3 provides a comprehensive explanation of VMCTE. In Section 4,
the experimental findings are assessed and displayed. The research is finally summarized and a future
work plan is presented in Section 5.

2 Related Work

In this section, related works on anomaly-based malware analysis are reviewed, including static
analysis, dynamic analysis, and visualization analysis. Some of the techniques employed in the
proposed malware classification system are then introduced, including transfer and ensemble learning.

2.1 Anomaly-Based Malware Analysis

The anomaly-based malware analysis method, which is primarily introduced from three aspects:
static analysis, dynamic analysis, and visualization analysis, is introduced in this part.

2.1.1 Static Analysis

Anti-malware systems based on static analysis usually rely on extracting and analyzing static
features of PE files, such as hash values, n-grams, PE header information, opcode sequences,
string information, and their combinations to identify malware. Static analysis-based anti-malware
solutions often rely on extracting and analyzing static aspects of PE files, including PE header
information, n-grams, hash values, opcode sequences, string information, and their combinations.
Moskovitch et al. [15] utilized opcodes generated by disassembling executables as classification
features and used machine learning algorithms to classify malware. The approach achieved an
accuracy of over 99% on the dataset, in which less than 15% of the files were malicious. For the
first time, Schultz et al. [16] utilized data mining technologies for the classification of malware.
They attained a classification accuracy of 97.11% utilizing static features extracted from string
sequences, byte sequences, and PE headers, demonstrating the feasibility of data mining techniques in
malware classification. Narayanan et al. [17] proposed using principal component analysis (PCA)
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to extract malware features. On a public dataset (BIG2015) offered by the Microsoft Malware
Classification Challenge, the approach used the k-nearest neighbors (KNN) algorithm and achieved
96.6% classification accuracy. David et al. [18] found that a large portion of malware did not adhere
to Microsoft specifications for the MZ-PE format. Their experimental results showed that structural
analysis tests on PE headers can accurately identify malware. These results could greatly reduce the
workload of analyzing malware and are useful for future research.

Static malware analysis techniques are fast and can be used for large-scale real-time classification.
However, their classification efficiency is lacking in the face of malware that uses techniques such
as obfuscation, encryption, and fuzzing. Currently, malware classification schemes are primarily built
based on the researchers’ expertise or the features suggested by the literature to which they refer, which
may result in the absence of some crucial aspects and limit the classification performance. In addition,
static analysis usually requires researchers to obtain a level of domain expertise and knowledge of
feature engineering techniques.

2.1.2 Dynamic Analysis

It is common practice to identify and classify newly discovered malware samples using dynamic
analysis-based malware analysis techniques. Researchers execute software samples in a secure envi-
ronment to distinguish between malicious and benign sample files by observing system resource
consumption and activities such as API calls, registry key changes, new file creation, and web access.
Pektas et al. [19] introduced a malware classification approach for Windows computers utilizing
runtime behavior. The system achieved 98% classification accuracy on a dataset of 17,400 malware by
examining features such as network usage, file access, registry activity, and API calls. Dash et al. [20]
presented a malware classification system that combines conformal prediction and support vector
machine (SVM). The system uses system calls and virtual machine introspection to reconstruct inter-
process communication, which can alleviate the issue of data sparsity. It achieved 94% classification
accuracy on datasets collected in the real world. Cai et al. [21] introduced a malware classification
model (DroidCat) that utilizes method calls and inter-component communication. The system can
fully handle reflective calls without using features based on application resources and permissions.
The approach earned an Fl-score of 97.8% on the Malgenome dataset. Afonso et al. [4] presented a
classification system based on machine learning and API calls that can effectively classify malware.
The classification accuracy of the system was 96.66% on a dataset containing 7,520 malicious samples.

Dynamic analysis can effectively identify malware that uses evasive techniques such as obfusca-
tion, fuzzing, and encryption. However, the presentation of dynamic analysis reports is often overly
detailed, providing specific details about the behavior of the executable that are irrelevant to the task
of identifying malware. The size of the report additionally grows due to the intricacy of the textual
representation, which has a detrimental effect on the analysis’s time overhead. A dynamic malware
classification approach pulls feature vectors from sample behavior reports generated in a controlled
environment and then utilizes deep learning or machine learning algorithms to identify and categorize
malware. Therefore, quickly classifying malicious samples takes time and is challenging.

2.1.3 Visualization Analysis

The building of malware classification systems based on visualization is a popular study topic
in the world of computer security. Researchers have recently conducted various in-depth analyses
and examinations of visualization-based malware classification techniques. They have also proposed
myriad malware classification systems.
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Nataraj et al. [14] proposed an algorithm for converting malware binaries to grayscale images.
The experimental results demonstrated the similarity among images from the same malware family.
The evaluation was conducted by the researchers on a dataset that contained 25 malware families,
and their classification accuracy was 97.18%. Gibert et al. [22] represented the malware as grayscale
images to capture minute changes while maintaining the overall structure. The proposed system
adopts the CNN-SVM structure. The SVM performs the last classification process utilizing the
CNN’s output as its input. The authors evaluated the effectiveness of the suggested approach on the
Malimg and BIG2015 datasets, achieving classification accuracies of 98.48% and 97.49%, respectively.
Choi et al. [23] constructed a classification model using deep learning techniques. The classification
accuracy reached 95.66% on a dataset of 30,000 samples (10,000 benign samples and 20,000 malicious
samples). Overhead time was not taken into account in this work. Arefkhani et al. [24] applied
the perceptual hashing algorithm from image processing to malware classification. They analyzed
perceptual hash (PHash), difference hash (DHash), and average hash (AHash), and found that PHash
was the most accurate. Su et al. [25] worked on developing a malware classification system that can
be applied to real-world scenarios. They proposed a lightweight system that can detect distributed
denial of service (DDoS) malware with 94% classification accuracy on real-world datasets. However,
this system has a shallow network architecture, and the evaluation dataset contains just two kinds of
malware. Narayanan et al. [1 1] presented a malware classification method, with the aid of ensemble
learning, that consists of recurrent and convolutional neural networks. They used assembly (ASM)
files as inputs to long short-term memory (LSTM) and BYTE compiled files as inputs to a CNN.
The system’s classification accuracy was 99.8% when tested against the BIG2015 dataset. The dataset
consists of ASM files and BYTE files containing malware from nine families. Yajamanam et al. [20]
noticed that deep learning algorithms and global descriptors (GIST) performed comparably in image-
based malware classification. The benefit of the deep learning strategy is that it does not require GIST
features to be extracted during training. The classification accuracy of this work needs to be further
improved, and the overhead time of the system is not considered.

Visualization analysis can identify malware that uses obfuscation, encryption, fuzzing, or other
evasion techniques without relying on domain expertise or reverse engineering techniques, and can
also avoid excessive time overhead. As a result, this research suggests a malware classification scheme
that utilizes image visualization (Table 1).

Table 1: Static analysis, dynamic analysis, and visualization analysis on malware

Year Authors Analysis methods Models Results
2001 Schultz et al. [16] Static analysis Naive bayes 97.11% (Accuracy)
2008 Moskovitch et al. [15]  Static analysis Boosting decision tree  99% (Accuracy)
2011 Nataraj et al. [14] Visualization K-nearest neighbors 97.18% (Accuracy)
analysis
2015 Afonso et al. [4] Dynamic analysis =~ Random forest 96.66% (Accuracy)
2015 Arefkhani et al. [24] Visualization PHash -
analysis
2016 Narayanan et al. [17]  Static analysis K-nearest neighbors 96.6% (Accuracy)
2016 Dash et al. [20] Dynamic analysis ~ Support vector 94% (Accuracy)
machine

(Continued)



4450 CMC, 2023, vol.75, no.2

Table 1: Continued

Year Authors Analysis methods Models Results

2017 David et al. [18] Static analysis MZ-PE -

2017 Choi et al. [23] Visualization CNN 95.66% (Accuracy)
analysis

2018 Pektas et al. [19] Dynamic analysis =~ Random forest 98% (Accuracy)

2018 Su et al. [25] Visualization CNN 94% (Accuracy)
analysis

2018 Yajamanam et al. [26] Visualization Machine learning -
analysis

2019 Caietal. [21] Dynamic analysis =~ Random forest 97.8% (F1-score)

2019 Gibert et al. [22 Visualization CNN-SVM 98.48% (Accuracy)
analysis

2020 Narayanan et al. [11]  Visualization LSTM + CNN 99.8% (Accuracy)
analysis

2.2 Transfer Learning for Malware Classification

Correlations between data are used to transfer knowledge from one domain to another, which is
known as transfer learning. It can considerably cut the model’s training time and assist in resolving the
issue of insufficient data without having to train the model from scratch. Researchers have successfully
used transfer learning technology to apply models such as ResNet50, MobilenetV1, MobilenetV2,
DenseNet121, Vggl9, and Xception to the field of malware classification [27-29]. Its common practice
to transfer the general weights trained on the source domain dataset (usually a natural image dataset)
to the malware domain for building an image classification model.

The residual neural network [30] (ResNet) was proposed by Microsoft Research in 2015 and is
widely used in malware image classification. It can alleviate the problem of gradients exploding or
vanishing in deep networks through the design of shortcut connections. Sudhakar et al. [31] proposed
a malware image classification system based on a fine-tuned deep CNN. The system improved the
optimizer of the ResNet50 model to NAdam and attained 98.63% accuracy on the Malimg image
dataset. Vasan et al. [32] transferred the initial weights trained on ImageNet to a fused malware
classification system utilizing ResNet50 and Vggl6. The system can effectively classify packed and
unpacked malware, with a classification accuracy of over 98%. Therefore, ResNet50 has the advantages
of fewer parameters and higher classification accuracy compared with traditional networks.

MobilenetV1 [33] s a lightweight neural network designed for mobile and embedded devices, pro-
posed by Google in 2017. It decomposes the conventional convolution into depthwise and pointwise
convolution using the depthwise separable convolutional structure to decrease the model parameters.
MobilenetV2 [34] adopts the inverted residual structure and the new Relu6 activation function,
which can improve the classification performance in small-sample scenarios. Bendiab et al. [35]
proposed a malware classification system employing MobilenetV1 and visualization techniques. It
attained a classification accuracy of 91.32% on a dataset that had a significant amount of zero-day
malware. Atitallah et al. [36] proposed a malware multi-classification approach based on transfer
learning combining DenseNet161, MobilenetV2, and ResNet18, which achieved 98.74% accuracy and
672 ms classification overhead on the MaleVis dataset. Due to the excellent classification abilities of
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MobilenetV1 and MobilenetV2, they have been used widely by researchers in the field of malware
classification.

2.3 Ensemble Learning for Malware Classification

To enhance classification performance, ensemble learning is frequently employed in malware
classification assignments. Narayanan et al. [11] presented a malware classification structure that
combines CNN, AlexNet, ResNet, Vggl6, and LSTM. The system has excellent classification per-
formance, achieving 99.8% classification accuracy on the BIG2015. Ahmed et al. [37] constructed
an integrated dynamic and static ransomware classification system with a weighted majority voting
strategy. Experiments’ findings demonstrate that the approach can successfully classify malware that
has not yet been recognized. Vasan et al. [32] proposed a system that fuses Vggl6, ResNet50, and
SVM, which achieved a 99.5% accuracy and a 99.46% recall on the Malimg dataset. Taha et al. [12]
adopted the Choquet fuzzy integral as an aggregation function to integrate the results of classifiers
such as extreme gradient boosting, random forest, decision trees, adaptive boosting, and light gradient
boosting machines. Its accuracy on a collection of 15,036 malware samples is 95.08%. Overall, the
performance of malware classification systems can be greatly enhanced by the fusion of multiple
classifiers.

3 The Proposed Malware Classification System

This section first briefly introduces the VMCTE malware classification system and then gives
a detailed description of the feature extraction, dimensionality reduction, and classification parts of
VMCTE, respectively.

3.1 Overview of the Proposed System

Fig. 1 depicts the system architecture of the proposed VMCTE. There are three primary parts to it:
feature extraction, dimensionality reduction, and classification. Feature extraction is performed using
the deep learning frameworks ResNet50, MobilenetV1, and MobilenetV2 to extract features from
malware images. Each framework adopts initial weights that were previously trained on the ImageNet
dataset, and ResNet50 needs to be fine-tuned. PCA is used to decrease the dimensionality of the
extracted feature vectors, removing irrelevant attributes, redundant features, and other unnecessary
information. For the classification component, the SVM-based ensemble learning models classify the
malware image samples into the appropriate families through the maximum probability algorithm.

3.2 Feature Extraction

Malware that uses obfuscation, fuzzing, encryption, and other evasion detection techniques
is difficult to classify using manually extracted features. Therefore, the system employs ResNet50,
MobilenetV1, and MobilenetV2 to extract high-dimensional features for classification from raw
malware image samples. Both MobilenetV1 and MobilenetV2 transfer the initial weights trained on
ImageNet and extract the features contained in the 1,024 and 1,280 neurons of their respective fully
connected layers on the Malimg dataset, which are used as the input for the next step. At the same time,
ResNet50 is initialized by transferring the weights trained on the ImageNet dataset. For the fine-tuning
stage, 25 neurons are employed to replace the original output layer composed of 1,000 neurons and
pass the multi-category cross-entropy loss, defined in Eq. (1), and the mini-batch stochastic gradient
descent, defined in Eq. (2), to tune the model weights. The features contained in the 2,048 neurons of
the fully connected layer of the fine-tuned ResNet50 model are used as the output. The batch size was
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32 and the learning rate was le-4. The learning rate can affect how quickly the model converges, and
a good learning rate can hasten the convergence of the model to the local minimum. We trained 100
epochs to customize the ResNet50 model. The Relu activation function was used in our experiments.

Fine-tuned ResNet50 Family-2
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Figure 1: Architecture of VMCTE

Here, L,.. represents the multi-category cross-entropy loss, NV is the total number of malicious
samples, > means to sum the losses of N samples in each batch, y; is the real family category of the ith
sample, w; - x; is the predicted category of the ith family, w, is the current weight value of the ResNet50
model, and w,,, is the updated model weight value. The learning rate « is utilized to adjust the weight
update speed of the ResNet50 model.

3.3 Dimensionality Reduction

Due to the advantages of low sensitivity to noise, low memory consumption, and easy deployment,
malware security researchers generally use PCA [38] to lessen the dimensionality of data. In VMCTE,
the PCA is utilized to lessen the dimensionality of the extracted high-dimensional features, as described
in Algorithm 1.

Algorithm 1: PCA
Input: Sample set D = {x®,x®,...,x"}, explained variance ratio EVR > 97%
Output:  The sample set X” after dimensionality reduction

1 A
1: Decentralize all samples: x{” < x{" — —>" x”
m

(Continued)
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Algorithm 1: Continued

2: Calculate the covariance matrix XX of the sample

3 Eigenvalue decomposition of the covariance matrix X X7

4. Take the eigenvectors w,, ws, . .., w, corresponding to the d' largest eigenvalues

5 Return the result X” of multiplying the original sample matrix X by the projection matrix

W = {M}la Wog ooy Wd/}

The high-dimensional feature dimensions extracted by the automatic feature extractors
MobilenetV1, MobilenetV2, and ResNet50 are reduced from 1,024, 1,280, and 2,048 to 205, 256,
and 205, respectively, by adjusting the explained variance ratio to retain more than 97% of the original
information. To keep the information loss as small as possible, the features most conducive to malware
classification are extracted as the input of the SVM classifiers.

3.4 Classification

SVM [39]is a well-known supervised learning algorithm that is extensively applied in malware clas-
sification tasks. Dash et al. [20] introduced a malware classification system that involved fusing SVM
and conformal prediction. The system is capable of effectively solving the data sparsity issue, according
to experimental results. Xiao et al. [40] proposed a system based on malware visualization. The system
visualized malware binary files as structural entropy graphs and achieved 100% classification accuracy
on the BIG2015 dataset using the SVM as a classifier. Liu et al. [41] built a malware classification
system by improving the SVM algorithm with kernel functions and parameter optimization. On the
CAIDA dataset, it has a 92.5% accuracy and a 5.527% false positive rate. Thus, the identification and
classification of malware can be effectively handled by the SVM algorithm. The SVM algorithm flow
is as follows:

Suppose the given datasetis 7 = {(x;, y1), (X2, 12) , ..., (xXy, ¥y)}, Where x; € R*and y; € {+1, —1}.
A positive sample has y, = +1, and a negative sample has y, = —1. SVM splits the dataset by finding
a separating hyperplane that maximizes the geometric margin. The separating hyperplane is described
by Eq. (3).

o -x+b"=0 3)

where w € R" and b € R are used to define the hyperplane. To obtain the optimal solution of w and b,

this problem is turned into an optimization problem as shown in Eqs. (4), and (5) is its constraint.
1 5 _

min 2||w|| +Ccy g @)

sty (w-x,+b)y>1-§6,§>0,i=1,2,...,N (5)

where ||w]||* is the L2 norm of w, &; is the slack variable, and C is the penalty parameter. The primal
optimization problem of SVM must be transformed into a dual problem through Eq. (6) to obtain the
optimal solution. Eq. (7) is the constraint.

mm Z“Z ayy; (X x;) Z o (6)

s.t.zizla,-y,=0,05a,-§C,i=1,2,...,N (7)
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where (0 < a < C) is the Lagrange multiplier vector. Suppose the solution of « is «* = (af, ¢, - -
- a5)"; wrand b* can then be obtained by Eqs. (8) and (9).

N
w' = Zi:l ol yix; ®)
N
b =y = ye(xi-x) ©)

The optimal separating hyperplane and classification decision function can then be derived from
w* and b*. As shown in Eqs. (10) and (11).

> amrx) b =0 (10)

F (x) = sign (Z: ayi(x-x;)+ b*) (11)

To handle linearly inseparable sample points, SVM introduces a slack variable & and a penalty
parameter C. This makes SVM resilient to outliers. Additionally, it offers special benefits when
resolving high-dimensional and small-sample issues. Therefore, SVM was chosen as the basic malware
classifier, which aims to find an optimal separating hyperplane to divide the dimensionally reduced
data. To improve performance, this paper combined three high-precision classification models. To
achieve ideal fusion performance, the maximum probability fusion strategy is used to compare the
decision probability values of different classifiers for the same malware image, to determine the family
category to which the malware corresponds. It means to compare the decision results of different
classifiers, and the corresponding family category with the highest probability in the decision result is
the predicted family category.

fr = argmax (max* (p,,,) ,max" (p,,) ,max" (p,.,)) (12)

where i represents different malware image samples, and ¢,, ¢,, and ¢; represent three SVM classifiers
with different structures. The operator max* indicates the maximum probability value (with family
category) of the classifier’s determination result for each malware image. argmax is the family category
corresponding to the classification probability with the largest value in the classification result. f;* is
the final predicted family of the ith sample.

4 Experiments

The datasets and assessment criteria utilized in the experiments are briefly introduced in this sec-
tion. The experimental findings are meticulously analyzed and compared in detail with existing work.

4.1 Dataset

In this research, the performance of VMCTE was assessed using the Vision Research Lab’s
Malimg dataset [14]. The dataset contains 9,339 grayscale images converted from malware binaries,
covering 25 families of malware. Malimg is a benchmark dataset for the classification of malware.
Table 2 provides a brief description of the dataset. An example image from each malware family is
displayed in Fig. 2.

4.2 Evaluation metrics

This paper used metrics of accuracy, recall, precision, and F1-score to assess the efficacy of
the suggested system. An ideal malware classification system generally has high accuracy, F1-score,
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precision, and recall. To unbiasedly evaluate the effectiveness of malware classification systems, these
assessment metrics have been widely employed in the research community [42—44].

Table 2: Description of the Malimg dataset

No. Family name  Type No. of No. Familyname  Type No. of
samples samples

1 Adialer.C Dialer 122 14 Lolyda.AA2 PWS 184

2 Agent.FYI Backdoor 116 15 Lolyda.AA3 PWS 123

3 Allaple. A Worm 2949 16 Lolyda.AT PWS 159

4 Allaple.L Worm 1591 17 Malex.gen!J Trojan 136

5 Alueron.gen!J  Trojan 198 18 Obfuscator., AD Trojan 142
downloader

6 Autorun.K Worm:AutoIT 106 19 Rbot!gen Backdoor 158

7 C2LOP.gen!g  Trojan 200 20 Skintrim.N Trojan 80

8 C2LOPP Trojan 146 21 Swizzor.gen!E  Trojan 128
downloader

9 Dialplatform.B Dialer 177 22 Swizzor.gen!l  Trojan 132
downloader

10 Dontovo.A Trojan 162 23 VB.AT Worm 408

downloader

11 Fakerean Rogue 381 24 Wintrim.BX Trojan 97
downloader

12 Instantaccess  Dialer 431 25 Yuner.A Worm 800

13 Lolyda.AA1 PWS 213

Accuracy is the most commonly used evaluation metric and is easy to understand. The accuracy
is calculated as the number of samples that were accurately predicted divided by the total number of
samples. The model’s capacity for classification improves with increasing accuracy.

TP+ TN
A = 13
Y= TP Y TN + FP+ FN (13)
Another typical evaluation metric is precision. It shows the percentage of samples that were
expected to be positive but were really positive.

TP
Precision = —— (14)
TP+ FP

The recall is a measurement of the proportion of all positive samples that were actually identified
as such. It assesses the model’s capacity to recognize positive samples.

TP
Recall = ——— (15)
TP + FN
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Figure 2: Grayscale images of different malware families

A comprehensive evaluation metric known as the Fl-score is defined as the harmonic mean of
recall and precision. When recall and precision greatly diverge, the F1-score provides a compromise
value.

Fl—2 Recall x Precision (16)

*

Recall + Precision
where TP, TN, FP, and FN represent the corresponding totals for true positives, true negatives, false
positives, and false negatives.

4.3 Experimental Results and Analysis

Malware researchers have had success classifying malware using techniques from the field of com-
puter vision. This section describes system fusion experiments that were carried out based on six well-
known neural network structures in the field of computer vision; they include ResNet50, DenseNet121,
MobilenetV1, MobilenetV2, Vggl9, and Xception as feature extractors. This paper used classification
systems based on fine-tuned and non-fine-tuned network structures (FT for fine-tuning, TL for
transfer learning only) for efficient fusion. In classification precision, accuracy, recall, and F1-
score for all 25 families, MobilenetV1_TL_SVM, MobilenetV2_TL_SVM, DenseNet121_TL_SVM,
Vggl9_TL_SVM, Xception_TL_SVM, and ResNet50_FT_SVM all perform well, as shown in Fig. 3.
Although ResNet50_TL_SVM has poor classification performance for the Autorun.K family, it
can distinguish the Swizzor.gen!l and Swizzor.gen!E families, which have high structural similarity,
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more effectively than the other five systems, with all indicators higher than 75%. Therefore, in
this experiment, ResNet50_TL_SVM was effectively fused with five systems to improve the overall
classification ability of the system for all families.
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Based on ResNet50_TL_SVM, a system fusion experiment was carried out using the max-
imum probability strategy. Table 3 lists the experimental results of the six fusion systems with
the highest accuracy. Among them, R, D, M1, M2, V, and X represent ResNet50_FT_SVM,
DenseNet121_TL_SVM, MobilenetV1_TL_SVM, MobilenetV2_TL_SVM, Vggl9_TL_SVM, and
Xception_TL_SVM, respectively. R+M14+-M2 combines the classification advantages of the respective
systems for several malware families and can obtain the best performance of 99.64%, 99.66%, 99.64%,
and 99.64%, respectively, in terms of accuracy, precision, recall, and F1-score.

Table 3: Comprehensive performance comparison of different fusion models

Ensemble Accuracy Precision Recall F1-score
R + D + Ml 99.53% 99.56% 99.53% 99.53%
R+ D+ M2 99.46% 99.50% 99.46% 99.45%
R + M1 + M2 99.64% 99.66% 99.64% 99.64%
R+MI1+V 99.50% 99.53% 99.50% 99.49%
R+M2+V 99.57% 99.59% 99.57% 99.56%
R+V+X 99.43% 99.44% 99.43% 99.42%
R+D+V 99.43% 99.45% 99.43% 99.42%
R+D+X 99.35% 99.38% 99.36% 99.34%
R+ M1+ X 99.46% 99.49% 99.46% 99.45%
R+M2+X 99.46% 99.49% 99.46% 99.45%

Note: R = ResNet50_FT_SVM; D = DenseNetl2l_TL_SVM; M1 = MobilenetV1_TL_SVM; M2 = MobilenetV2
_TL_SVM; V = Vggl9_TL_SVM; X = Xception_TL_SVM.

As shown in Fig. 4, the classification accuracy of VMCTE for both Swizzor.gen!l and Swiz-
zor.gen!E exceeded 84%, especially for families such as Dialplatform.B, C2LOP.gen!g, Allaple.L,
Adialer.C, Agent.FYI, and Wintrim.BX, where the classification accuracy reaches 100%. Notably,
the fusion of the three systems can improve the classification accuracy of ResNet50_TL_SVM on
the Autorun.K family while inheriting the ability to recognize the Swizzor.gen!l and Swizzor.gen!E
families.

The performance of the proposed VMCTE system and its three subsystems are contrasted in
Table 4. It can be seen that the system built through transfer learning has superior precision, accuracy,
recall, and F1-score. M2 is capable of achieving 98.85% classification accuracy. The proposed VMCTE
combines the classification advantages of each subsystem; it is also 0.74%, 0.79%, 0.79%, and 0.77%
higher than the best subsystem M2 in terms of precision, accuracy, recall, and F1-score, respectively.
Compared with the three subsystems, VMCTE significantly improves the classification ability of
C2LOP.P, Swizzor.gen!E, Lolyda.AA1, Swizzor.gen!l, Malex.gen!J, and Autorun.K families. Most of
the existing systems have low classification accuracy for Swizzor.gen!l and Swizzor.gen!E families. The
classification accuracy of VMCTE for these two families can reach 84.62% and 94.74%, respectively.
Therefore, ensemble learning can enhance the performance of malware classification systems.

4.4 Comparison with Existing Work

As indicated in Table 5, the proposed VMCTE system is contrasted with a few previously
conducted research that used the Malimg dataset. To demonstrate the advantages of the suggested
system, the previous work is analyzed and summarized in detail.
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Figure 4: Classification results of VMCTE

Table 4: Comparison of classification performance for VMCTE and its subsystems

Model Accuracy  Precision  Recall F1-score
R 97.56% 96.68% 97.56%  97.05%
Ml 98.75% 98.73% 98.75%  98.73%
M2 98.85% 98.92% 98.85%  98.87%

VMCTE 99.64% 99.66% 99.64%  99.64%

Table 5: Performance comparison of different classification systems based on the Malimg dataset

Authors Year  Dataset  Models Accuracy  Precision Recall
Nataraj et al. [14] 2011  Malimg KNN 97.18% - -
Kalash et al. [45] 2018  Malimg M-CNN 98.52% - -

Cui et al. [40] 2018  Malimg IDA+DRBA  94.50% 94.60% 94.50%
Bhodia et al. [47] 2019  Malimg  ResNet34 94.80% - -

Cui et al. [48] 2019  Malimg NSGA-II 97.60% 97.60% 88.40%
Vasan et al. [49] 2020 Malimg IMCFN 98.82% 98.85% 98.81%
Naeem et al. [50] 2020 Malimg DCNN 98.79% 98.79% 98.79%
Vasan et al. [32] 2020 Malimg CNN-SVM 99.50% 99.50% 99.46%

(Continued)
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Table 5: Continued

Authors Year Dataset Models Accuracy Precision Recall

Kumar et al. [51] 2021  Malimg MTIS 98.71% 99.00% 99.00%
Sudhakaretal. [31] 2021 Malimg MCFT-CNN 99.18% 97.72% 97.76%
Proposed system - Malimg VMCTE 99.64% 99.66% 99.64%

Nataraj et al. [14] converted malware binary files into grayscale images for the first time and
established the Malimg dataset, on which the KNN algorithm was used and had a 97.18% accuracy.
Kumar et al. [51] proposed a proactive analysis system, called a malware threat intelligence system
(MTIS), capable of collecting and classifying malware. The system used local descriptors, which
included gray level co-occurrence matrix, dense scale-invariant feature transform, local binary pattern,
and global descriptors to extract global and local texture features, and achieved a classification
accuracy of 98.71%.

Vasan et al. [49] introduced a CNN-based malware multi-classification system. The system
used data augmentation techniques such as rotation, reflection, flipping, zooming, shifting, scaling,
contrast, noise, and color transformation to lessen the effect of unbalanced data on classification
performance; it obtained a 98.82% accuracy on the Malimg dataset. Cui et al. [46] presented a malware
variant classification system based on visualization methods. The system used the CNN algorithm to
classify malware images and the Bat algorithm to balance the data across several malware families;
the accuracy, precision, and recall on the Malimg dataset were 94.5%, 94.6%, and 94.5%, respectively.
Subsequently, Cui et al. [48] proposed a high-accuracy and low-loss malware classification scheme
utilizing image visualization. To address the imbalance in malware family data, the system employed
the non-dominated sorting genetic algorithm IT (NSGA-II). The outcomes of the experiment proved
the algorithm’s efficacy; the classification accuracy on the Malimg dataset reached 97.6%. In contrast
to the aforementioned work, the family imbalance issue on the Malimg dataset was alleviated in
this research by transferring the model’s starting weights learned on ImageNet. The classification
accuracy, precision, and recall of VMCTE using transfer learning reached 99.64%, 99.66%, and
99.64%, respectively, indicating that the system alleviates the data imbalance problem to some extent.

Sudhakar et al. [31] proposed a system based on fine-tuned CNNs. On the Malimg image
dataset, this system, which was based on the transfer learning ResNet50 model, had an accuracy
of 99.18%. Kalash et al. [45] presented a Vggl6-based malware classification system based on the
image representation of malware binaries. The system had a classification accuracy of 98.52%.
Bhodia et al. [47] built a malware classification system by transferring the ResNet34 model and
achieved a classification accuracy of 94.8%. Naeem et al. [50] developed a hybrid malware classification
system based on color image visualization and deep CNNs that had a classification accuracy of
98.79%. VMCTE significantly improves the classification performance by combining the respective
advantages of classification systems based on three neural network models, ResNet50, MobilenetV1,
and MobilenetV2, as feature extractors. Vasan et al. [32] proposed a system based on transfer learning
that fuses ResNet50, Vggl6, and SVM. The system’s accuracy, precision, and recall were 99.50%,
99.50%, and 99.46%, respectively. Compared with the integrated classification system, VMCTE still
shows certain advantages in classification performance.

To summarize, VMCTE adopts automatic feature extractors to directly extract effective features
from malware images without addressing the concerns of executable file decryption, feature extraction,
and fusion. The Malimg dataset has some families with few samples, therefore starting from scratch
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will have an effect on the system’s classification performance. The use of transfer learning mitigates the
impact of malware family imbalance on classification performance to some extent. The experimental
findings demonstrate that the VMCTE based on ensemble learning has improved classification
performance compared with a single model; the accuracy, precision, and recall can reach 99.64%,
99.66%, and 99.64%, respectively.

Fig. 5 displays the confusion matrix for VM CTE using the Malimg dataset. Due to the imbalance
of the Malimg dataset, the entries in the confusion matrix are expressed as percentages. The structural
composition of the Swizzor.gen!E and Swizzor.gen!l families have a high degree of similarity, so
most methods cannot effectively distinguish them. The confusion matrix confirms that the presented
approach is effective (94.74% and 84.62%) in differentiating the two malware families. Additionally,
Allaple.L and Allaple.A are malware families with multiple layers of encryption. The confusion matrix
demonstrates 100% classification accuracy for Allaple.L and Allaple.A, which shows that VMCTE is
resilient to code obfuscation in this case.
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Figure 5: Confusion matrix for VMCTE on the Malimg dataset
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5 Conclusion

The rapid growth of malicious software means that the technology for malicious code classifica-
tion in the existing external security protection system is inadequate. Therefore, this paper presents a
visualization-based malware classification system utilizing transfer and ensemble learning. Therefore,
this research suggests a transfer and ensemble learning-based malware classification system. The
system can accurately classify malicious samples into their appropriate families, which is required
to safeguard both business and individual digital properties from infringement. Experiments showed
that VMCTE has greater precision, accuracy, recall, and F1-score than existing methods; it can attain
99.66%, 99.64%, 99.64%, and 99.64%, respectively. Therefore, the system can be used to accurately
identify and classify malware on a large scale. In the future, we will further develop and optimize the
classifier on real malware samples collected in the real world to enhance the generalization ability of
the classification system. We will also consider the time complexity of the system to further improve
the classification speed for malicious samples.
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