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Abstract: Plant diseases have become a challenging threat in the agricultural
field. Various learning approaches for plant disease detection and classifica-
tion have been adopted to detect and diagnose these diseases early. However,
deep learning entails extensive data for training, and it may be challenging
to collect plant datasets. Even though plant datasets can be collected, they
may be uneven in quantity. As a result, the problem of classification model
overfitting arises. This study targets this issue and proposes an auxiliary
classifier GAN (small-ACGAN) model based on a small number of datasets
to extend the available data. First, after comparing various attention mech-
anisms, this paper chose to add the lightweight Coordinate Attention (CA)
to the generator module of Auxiliary Classifier GANs (ACGAN) to improve
the image quality. Then, a gradient penalty mechanism was added to the loss
function to improve the training stability of the model. Experiments show
that the proposed method can best improve the recognition accuracy of the
classifier with the doubled dataset. On AlexNet, the accuracy was increased by
11.2%. In addition, small-ACGAN outperformed the other three GANs used
in the experiment. Moreover, the experimental accuracy, precision, recall, and
F1 scores of the five convolutional neural network (CNN) classifiers on the
enhanced dataset improved by an average of 3.74%, 3.48%, 3.74%, and 3.80%
compared to the original dataset. Furthermore, the accuracy of MobileNetV3
reached 97.9%, which fully demonstrated the feasibility of this approach.
The general experimental results indicate that the method proposed in this
paper provides a new dataset expansion method for effectively improving the
identification accuracy and can play an essential role in expanding the dataset
of the sparse number of plant diseases.
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1 Introduction

Plant diseases are a common natural phenomenon that compromises plants’ survival and repro-
duction. According to the Food and Agriculture Organization (FAO), up to 40% of food crops are
destroyed by plant pests and diseases each year, costing the global economy more than $220 billion
[1]. For example, as a widely and efficiently cultivated and valuable crop with rich nutritional and
economic value, tomatoes might be infected with different diseases, thus negatively impacting the
yield and quality of their fruits [2]. Accurate identification of tomato diseases is a critical step for
early prevention and control of such damage.

With the progress in artificial intelligence, deep learning for data analytics and image processing
has become a rapidly growing field. As an integral branch of deep learning, Convolutional neural
networks have made even more significant breakthroughs in detecting and classifying plant leaf
diseases [3]. For example, Mohanty et al. [4] used GoogLeNet [5] to identify 26 species with a total of
54,306 leaves and an accuracy of 99.35% on a held-out test set but poor accuracy on another dataset.
Ghosal et al. [6] proposed a VGG-16 [7] based CNN architecture, which led to an accuracy of 92.46%
on a dataset of rice leaf diseases with a total of 2,156 images in four classes. Jiang et al. [8] used the
CNN model ResNet50 and achieved an accuracy of 98.0% on a total of 3,000 datasets for three tomato
diseases. However, to improve their accuracy and generalization ability, such networks require a large
amount of well-labeled data to train models. Unfortunately, many plant datasets have solid issues, such
as uneven distribution or small quantity of leaves per plant type [9]. The main reason is that leaf images
are not easy to collect in the case of plant leaf diseases. This results in insufficient datasets to accurately
reflect the actual situation. In addition, identifying diseases also requires expertise since it is a highly
challenging part of the process. All of those potential issues reflect that research into improving
identification accuracy based on small datasets with existing labels is a topic worth exploring within
the academic community.

Due to the difficulties in acquiring data samples, some researchers use rotation, blurring, contrast,
scaling, illumination, and projection transformations [10] on images to expand datasets and avoid
overfitting and low generalization due to insufficient data. However, these results are still simple
changes to the original images, making no remarkable improvement to identification accuracy. In
order to solve such problems, this paper proposes a novel small-ACGAN model through which data
enhancement of plant disease leaves is performed to generate higher-quality images than ACGAN [11]
to solve the minor sample recognition problems. The main contributions of this study are summarized
as follows:

1) The proposal of a small ACGAN that can effectively expand the dataset based on several
datasets. First, CA [12] is used in the generator to make the generated images better and the
model relatively small. Secondly, the loss function of the discriminator is optimized, and a
gradient penalty is added to it to make the training process more stable, improve the model’s
generalization ability and alleviate the overfitting problem.

2) The dataset is doubled by Generative Adversarial Network (GAN) [13], and the generated
images are mixed with the original images as the training set. The results proved that the
doubled dataset obtained higher accuracy in the recognition performance of the classification
model of CNN, and both exceeded the initial dataset.

3) By comparing the accuracy of Deep Convolution GAN (DCGAN) [14], Wasserstein GAN
with gradient penalty (WGAN-GP) [15], conditional GAN (CGAN) [16], Faster and Stabilized
GAN (FastGAN) [17], and small-ACGAN on three CNN models, it is proved that the method
proposed in this paper is indeed more efficient.
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4) Grape and apple datasets were used to validate the effectiveness and generalizability of small-
ACGAN after augmentation.

This paper is structured as follows. Section 1 introduces plant diseases and the need for timely
detection; Section 2 presents a literature review on data amplification; Section 3 describes the methods
used in this paper; Section 4 describes the experiments and analyzes the results; and Section 5 gives
the conclusions.

2 Related Work
2.1 Data Expansion

In the field of deep learning in agriculture, a considerable number of datasets is necessary to
improve the performance of network models. However, what we do occasionally notice is that the
data available are not sufficient. To address this problem, some researchers have tried to expand their
datasets and have obtained better accuracy.

Al-Wesabi et al. [18] proposed an efficient Artificial Intelligence Enabled Apple Leaf Disease
Classification (AIE-ALDC) technique, which expanded the dataset by four times using mirror
symmetry and rotation transformation based on a random point of the image. They applied a Gaussian
function to enhance the image quality, followed by feature extraction with the water wave optimization-
capsule network (WWO-CapsNet) [19,20], and then classification with the bidirectional long short-
term memory (BiLSTM) [21]. Finally, this method resulted in an accuracy of 99.2% for apple leaf
disease identification.

Elaraby et al. [22] improved the optimizer using stochastic gradient descent dynamics (SGDM).
Then, with random cropping, rotation, mirroring, and color conversion, 759 images were enhanced
to 12,211 with a maximum accuracy of 94.3%. Taking a multi-scale residual learning module,
Wu et al. [23] extracted leaf features and integrated a dense connectivity strategy into Adversarial
Variational Auto-Encoder (Adversarial-VAE), aiming to generate better-performing tomato disease
images.

2.2 Data Expansion Based on GAN

Data augmentation methods generally adopt GAN, which can well illustrate the great advantage
of GAN networks in image generation. Overall, a GAN network means two models: one is a generator,
and the other is a discriminator. The former creates a near-real image, while the latter determines
the image’s authenticity, and they do confrontation training together. In addition, the former has to
continuously optimize the generated images so that the latter cannot judge them. The latter, on the
other hand, has to optimize itself to make its judgments more accurate. Along with the adversarial
training, the two models would become more vital, finally reaching smoothness [13].

Zhu et al. [24] modified conditional deep convolutional GAN (cDCGAN) by adding bypass
connections and then strengthened the orchid dataset based on the specified category labels resulting in
high-quality fine-grained RGB orchid images. The method expanded the dataset to different multiples
and eventually found that the best results were achieved when the number of images increased to 800.
The F1 scores for the two datasets increased by 0.23 and 0.09, respectively, with an accuracy of up to
97.5%.

Liu et al. [25] designed a channel-decreasing generator model to derive images. This approach
extended twice for a grape dataset with the average Fréchet Inception Distance (FID) [26] of 235.81,
which was 25.6 lower than the original dataset. The highest accuracy of the generator reached 98.7%.
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Abbas et al. [27] generated synthetic images of tomato leaves by using CGAN and trained a
DenseNet121 [28] model based on migration learning. After generating 4,000 images in his way,
he mixed them into a tomato training set and classified the leaf images into 5, 7, and 10 classes
for each experiment. We also find that the accuracy, recall, and F1 scores are increased compared
to the original dataset, with the final precision reaching 99.51%, 98.65%, and 97.11%, respectively.
Zhou et al. [29] proposed a grained-GAN to improve Faster Region-based Convolutional Network
(Faster R-CNN) [30]. The model generated 1,000 local speckle region sub-images for each category,
all of which showed lower FIDs than the GANs of other categories. All five network models finally
showed high identification accuracy, with the highest reaching 96.72%.

Zhao et al. [31] proposed DoubleGan by incorporating two GANs. First, WGAN inputted healthy
leaves to obtain a pre-trained model; then, the sick leaves were through the pre-trained model for
elimination. Later, it applied Self-Attention-GAN (SAGAN) [32] to generate images to expand the
dataset. It scaled up to 5,357 leaves of each type and compared them with the original and flipped
extended datasets. The experimental results showed a higher accuracy than the original dataset, except
for one category, which delivered a slightly lower accuracy. Moreover, the confusion matrix was also
influential, with an accuracy of 99.53%.

Table 1 summarizes the methods, the number of generated images, and the accuracy of the
expanded plant datasets acquired in the literature above. It is evident from the dataset and generated
image columns in Table 1 that all of these methods have a common issue with the need for a large
dataset. However, this paper relies on a small dataset for experiments. Moreover, by reading the
previously mentioned papers, we found that the expansion multiples of the datasets also differed.
Al-Wesabi et al. [18] expanded the dataset four times, Zhu et al. [24] and also Liu et al. [25] expanded
it twice, and Abbas et al. [27] expanded it 0.25 times. One of the main focuses of this paper is the
frequency of the extension process.

Table 1: A literature review of extended dataset methods for plant diseases

Author Expansion method Dataset Generate images Evaluation indicators Accuracy

Al-Wesabi et al. Mirror symmetry
Rotation transformation

Apple
4 classes
9,714 images

38,856 images AIE-ALDC technique
has surpassed all the
other techniques.

99.20%

Elaraby et al. Random cropping
Rotation
Mirroring
Color shifting

Fruit and leaf
10 classes
759 images

12,211 images Precision, recall, and
F1-score all improved.

94.3%

Wu et al. Adversarial-VAE
Multi-scale residual
Dense connectivity strategy

PlantVillage
Tomato
10 classes
18,126 images

21,784 images The average FID score
decreased by 4.81.

88.43%

Zhu et al. cDCGAN
Bypass connections

Orchid
2 classes
1,700 images

200–900 images F1-score increased by
0.23 and 0.09,
respectively.

97.5%

Liu et al. Leaf GAN
dense connectivity strategy
Instance normalization
Gradient penalty

PlantVillage
Grape
4 classes
4,062 images

8,124 images The average FID was
25.6, lower than the
original dataset.

98.70%

Abbas et al. C-GAN
DenseNet121

PlantVillage
Tomato
5, 7, 10 classes

4,000 images Precision, recall, and
F1-score all improved.

99.51%
98.65%
97.11%

(Continued)
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Table 1: Continued
Author Expansion method Dataset Generate images Evaluation indicators Accuracy

Zhou et al. Grained-GAN
Faster R-CNN

AI challenger
Grape
3 classes
1,500 images

3,000 images FID was 72.7, lower
than other types.

96.27%

Zhao et al. DoubleGAN
WGAN
SAGAN

PlantVillage
Healthy leaves
5 classes
Tomato
10 classes

5,357 images per
class

The confusion matrix
and accuracy were
better than the original.

99.53%

3 Materials and Methods
3.1 Dataset

This paper focused on the tomato dataset publicly available in PlantVillage [33] as the object of
study. The dataset contains 18,159 images in ten categories, covering nine types of diseased leaves and
one type of healthy leaves. As shown in Table 2, its dataset distribution is still very uneven, with the
number of TYL images 14 times more than that of TMV, which can impact the training of the network.
Therefore, many studies tend to eliminate datasets with few images to improve accuracy.

Table 2: Tomato category image distribution and abbreviations in the PlantVillage dataset

Category Abbreviation Number of images

Tomato bacterial spot BAS 2,127
Tomato early blight EAB 1,000
Tomato healthy HEA 1,590
Tomato late blight LAB 1,909
Tomato leaf mold LEM 952
Tomato septoria leaf spot SLS 1,771
Tomato two-spotted spider mite SPT 1,676
Tomato target spot TAS 1,404
Tomato mosaic virus TMV 373
Tomato yellow leaf curl virus TYL 5,357

A category of plant leaves may contain only a few dozen or a few hundred images in many datasets.
This paper is divided into a training set, a validation set, and a test set in the ratio of 1:1:1 for 300 images
selected from each disease category in order to demonstrate that the proposed method can effectively
enhance the recognition ability of the network even with a minimum number of data sets. For the
convenience of reading and understanding, the names of the tomato leaf diseases are abbreviated, as
shown in the second column of Table 2.

3.2 ACGAN

ACGAN is used to extend the dataset in this paper to prevent network overfitting. There are many
GAN networks available for data augmentation. For instance, Abbas and Zhu [24,27] used C-GAN
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and DCGAN, respectively, for data augmentation. However, ACGAN used in this study combined
the advantages of them. As to the time of input, compared to C-GAN, ACGAN can make training
with labels and reconstruct labels, in addition to generating specific labeled data; moreover, labels can
be submitted as feedback to the learning ability of the discriminative network at the time of judgment.
Regarding feature extraction, ACGAN resembles DCGAN. It takes a deep convolutional network to
perform better extraction of feature values of images, and yet it differs from DCGAN in that it adds
image labels.

The architecture diagram of the optimized small-ACGAN in this paper is shown in Fig. 1. The
small-ACGAN consists of two kinds of adversarial networks: the generator and discriminator models.
The former is mainly to generate fake data as accurately as possible, while the latter is mainly to
distinguish the real and fake datasets and determine the categories. If the model is well-trained, the
generator will create near-realistic fake images that could scale the dataset nicely. In contrast to CGAN,
the loss function of ACGAN is divided into two parts: true-false LS and classification loss LC. Eqs. (1)–
(4) are from ACGAN [11].

In the aspects of true and false losses:

LS = E [log P (S = real|Xreal)] + E
[
log P

(
S = fake|Xfake

)]
(1)

In the aspects of classification loss:

LC = E [log P (C = c|Xreal)] + E
[
log P

(
C = c|Xfake

)]
(2)

Eq. (3) is the overall loss of the generator. In order to increase the realism of the image, this method
must maximize LC and minimize LS. Eq. (4) is the overall loss of the discriminator. In order to increase
the classification accuracy of the discriminator, LD needs to be maximized. The two models become
more robust than each other.

LG = LC − LS (3)

LD = LC + LS (4)

3.3 Coordinate Attention

Aiming to investigate the effect of the attention mechanism on the performance of ACGAN,
this section conducts comparative experiments on three attention mechanisms, namely Squeeze-and-
Excitation Networks (SENet) [34], Convolutional Block Attention Module (CBAM) [35], and CA. It
is worth mentioning that all three models are the same except for the attention mechanism. Table 3
shows the comparative results. SENet occupies the little memory and takes the longest time to run,
CBAM occupies the most significant memory but takes the shortest time, and CA is in the middle
regarding memory size and running time. In classification models, ShuffleNet V2 [36], MobileNetV3
[37], and ConvNeXt [38] all had high accuracy on CA. Therefore, it was suitable to use CA as the
primary attention mechanism.

In Fig. 1b, the red box circled is the CA module in small-ACGAN. It decomposes channel
attention into two parallel 1D feature encoding processes to efficiently integrate spatial coordinate
information into the generated attention maps. One method captures long-range dependencies along
one spatial orientation, and the other retains accurate location information. The generated feature
maps are then encoded separately to form a pair of direction-aware and location-sensitive feature
maps. These can be complementarily applied to the input feature maps to enhance the representation
of the targets of interest. Eqs. (5)–(10) are from CA [12].
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Figure 1: Architecture diagram of small-ACGAN. (a) Discriminator (b) generator
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Table 3: Performance of different attention mechanisms in ACGAN
Attention mechanism Video memory usage Running time (minute) ShuffleNet V2 MobileNetV3 ConvNeXt

Val Test Val Test Val Test

SENet 23451 MB 559 96.6% 95.8% 97.0% 96.9% 97.8% 96.8%
CBAM 24079 MB 531 97.2% 96.2% 96.7% 96.8% 97.6% 97.7%
CA 23995 MB 538 97.7% 97.7% 97.9% 97.9% 97.7% 96.9%

Specifically, the input feature map X is encoded along the horizontal and vertical coordinate
directions using average pooling to obtain feature maps in both the width and height directions, as
shown in Eqs. (5) and (6):

zh
c (h) = 1

W

∑
0≤i<W

xc (h, i) (5)

zw
c (w) = 1

H

∑
0≤j<H

xc (j, w) (6)

Then, the global perceptual field feature maps obtained from Eqs. (5) and (6) are stitched together
and fed into the convolution module with a convolution kernel of 1 ∗ 1 to reduce its dimension to the
original C/r. Then, the batch-normalized feature map F1 is input into the Sigmoid activation function
to obtain the feature map f, as shown in Eq. (7).

f = δ
(
F1

([
zh, zw

]))
(7)

The feature map f is convolved with a 1 × 1 kernel by the original height and width to obtain the
feature maps f h and f w with the same number of channels as the original feature map, respectively.
Then, the attention weights gh and gw for the height and width directions of the feature map are
obtained by the Sigmoid activation function, shown in Eqs. (8) and (9).

gh = σ
(
Fh

(
f h

))
(8)

gw = σ (Fw ( f w)) (9)

After the above calculation, the attention weights of the input feature map in the height direction
and the attention weights in the width direction are obtained. Finally, multiplying and weighting the
original feature map will obtain the final feature map with attention weights in the width and height
directions, as shown in Eq. (10).

yc (i, j) = xc (i, j) × gh
c (i) × gw

c ( j) (10)

3.4 Optimizing the Loss Function

In order to prevent the problem of model collapse and gradient explosion during training, this
paper adds a gradient penalty to the loss function of the discriminator of small-ACGAN. This
method can link the problem of gradient explosion and make weight correction adaptively, making
the training process more stable. In addition, it allows the model to converge faster, improves its
generalization ability [15], alleviates the overfitting problem, and produces higher-quality graphs.
Algorithm 1 describes the ACGAN with a modified loss function procedure.

Eq. (11) shows the loss calculation for the gradient penalty module. ∇xD (x) denotes the gradient
of the discriminator output value in the x-direction. Ex−x̂ denotes the mathematical expectation when
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the input to the discriminator is a randomly interpolated sample x̂.

LGP = Ex−x̂

[
(‖∇xD (x)‖2 − 1)

2
]

(11)

The loss of small-ACGAN in this study is shown in Eq. (12). With the adoption of the gradient
penalty mechanism, LD can be updated as follows:

LD = (LC + LS) ∗ 0.5 + lam_gp ∗ LGP (12)

where lam_gp is the hyperparameter and is set to 10 in all experiments.

Algorithm 1 ACGAN with gradient penalty. We use default values of λ = 10, λ1 = 0.5, ncritic =
5, nclass = 10, α = 0.0002, β1 = 0.5, β2 = 0.999, m = 64
Require: The gradient penalty coefficient λ, the number of critic iterations per generator iteration ncritic,
the batch size m, number of classes nclass, Adam hyperparameters α, β1, β2

Require: initial critic parameters ω, initial generator parameters θ.
While θ has not converged do

for t = 1, . . . , ncritic do
for i = 1, . . . , m do

Sample actual data and label {x, lreal} ∼ Pr, latent variable z ∼ p (z),
a random label lfake ∈ {1, 2, . . . , nclass}, a random number η ∼ U [0, 1] .
x̃ ← Gθ

(
z, lfake

)
,

x̂ ← ηx + (1 − η) x̃,
L (i) ← λ1

(
Dd

ω

(
x̃
) − Dd

ω
(x) + nll_loss

(
Dl

ω
(x) , lreal

)) + λ
(‖∇x̂Dd

ω

(
x̂
)‖

2
− 1

)2

end for

ω ← Adam
(

∇ω

1
m

∑m

i=1L (i) , ω, α, β1, β2

)
end for
sample a batch of latent variables {z (i)}m

i=1 ∼ p (z) and label lfake

θ ← Adam
(

∇θ

1
m

∑m

i=1

{−Dd
ω
(Gθ (z)) + nll_loss

(
Dl

ω

(
x̃
)

, lfake

)}
, θ, α, β1, β2

)
end while

4 Results
4.1 Experimental Environment

In the experimental section, this paper has used Python 3.8, and the experiment was performed on
ubuntu18.04, accelerated by GPU RTX 3090 24G. Table 4 shows the specific parameters used during
the experiment, divided into two main experimental sections. One part is assigned to train small-
ACGAN. The other part specializes in image classification and utilizes the same parameters in the
training and testing of the AlexNet, VGG-16, MobileNetV3, ShuffleNet V2, and ConvNeXt models
used in this paper. The same data enhancements, such as panning, rotating, flipping, and scaling, are
applied to all images during training and testing.

The learning rate is one of the most critical hyperparameters in deep learning. The SGD optimizer
works for image classification, so the weight_decay and learning rate are available to calculate the loss
value for each batch of samples. Then, the learning rate is updated by the average gradient of the batch.
Furthermore, this paper set the momentum [39] to 0.9 so that the update retains the direction of the
previous update to a certain extent, which increases the stability and makes the model learn faster with
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the ability to get rid of the local optimum. Fig. 2 shows the change in the learning rate as the number
of training sessions of MobileNetV3 increases.

Table 4: The parameters of the algorithms

Parameter Model Value
Optimizer Small-ACGAN Adam, learning rate (lr) = 0.0002, betas = (0.5, 0.999)

Image classification SGD, learning rate (lr) = 0.01, momentum = 0.9, weight_decay = 4E-5
Epoch Small-ACGAN 500

Image classification 100
Batch_size Small-ACGAN 64

Image classification 64
Loss Small-ACGAN Val: BCELoss, label: nll_loss, gradient_penalty

Image classification CrossEntropyLoss
Dataset Small-ACGAN Train:1000

Image classification Train:1000, val:1000, test:1000
Img_size Small-ACGAN 3 ∗ 224 ∗ 224

Image classification 3 ∗ 224 ∗ 224

Figure 2: Learning rate change in MobileNetV3

4.2 Evaluation

This study employed the metrics commonly adopted in classification tasks to evaluate the
method’s performance. Some methods used were: Accuracy, Precision, Recall, F1 Score, Precision-
Recall Curve (P-R Curve), Receiver Operating Characteristic Curve (ROC), Area Under Curve (AUC),
and Confuse Matrix. Performance measures can be calculated using the equations from Eqs. (13)–(16).

Accuracy = TP + TN
TP + TN + FP + FN

(13)
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Precision = TP
TP + FP

(14)

Recall = TP
TP + FN

(15)

F1 − score = 2Precision ∗ Recall
Precision + Recall

(16)

where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative.

The ROC is a performance evaluation curve with sensitivity (true positive rate) as the vertical
coordinate and specificity (false positive rate) as the horizontal coordinate. The ROC curves of
different models for the same data set can be plotted in the same Cartesian coordinate system. The
closer the ROC curve is to the upper left corner, the more reliable its corresponding model is. The AUC
enables the evaluation of the model, which is the area under the ROC curve: the larger the AUC, the
more reliable the model.

4.3 Small-ACGAN Performance

Fig. 3 presents a comparison between the false image and the original image generated based on
the method here, and it reveals that the image generated by small-ACGAN works better. Fig. 4 depicts
the loss curves of the generator and discriminator during the training of small-ACGAN. Under the
gradient penalty mechanism, the generator and discriminator converge rapidly, with neither gradient
disappearance nor derivative explosion, and the model has plateaued at the 50th epoch.

Figure 3: Comparison of original images and small-ACGAN generated images for each category: row 1
is the original image of five categories (Bacterial Spot, Early Blight, Healthy, Late Blight, Leaf Mold),
row 2 is the corresponding generated image; row 3 is the original image of five categories (Septoria
Leaf Spot, Two-spotted Spider Mite, Target Spot, Mosaic Virus, Yellow Leaf Curl Virus), row 4 is the
corresponding generated image
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Figure 4: Generator and discriminator loss during training

4.4 Classification Model Performance
4.4.1 Expanded Dataset

In order to explore whether the number of images generated by small-ACGAN affects the
performance of the classification model, this paper evaluates the performance of the classifier in four
cases (0.25 times, 0.5 times, one time, and two times the extended data of the original training set).

Since the accuracy rate fluctuates during training, the images cannot be judged clearly. That is why
using TensorBoard’s smoothing formula facilitates observing performance improvement in various
cases, as shown in Eqs. (17) and (18). It is also noticeable from Fig. 5 that the performance of the
network model during training is better for the doubled dataset than for the other datasets.

Px−new = (Px−1 ∗ weight + Px)/(weight + 1) (17)

weight = (weight + 1) ∗ smooth (18)

where Px denotes the accuracy of the network at the x-th training; weight indicates the dynamic weight;
smooth is the smoothing factor; and Px−new stands for the accuracy of the network at the x-th training
after smoothing.

Table 5 shows the effect of expanding the dataset with different multiples on the accuracy of the
validation and test sets under the four CNN identification networks. Dataset original means 1000
images from the original dataset, 0.25 times means 1000 original images and 250 generated images,
0.5 times means 1000 original images and 500 generated images, one time means 1000 original images
and 1000 generated images, and two times means 1000 original images and 2000 generated images.

From Table 5, it can be concluded that among the four identification networks, the accuracy of
both validation and test sets is the highest when doubling the dataset. Notably, the improvement is
more evident for older networks, and there is also about 1% of progress in accuracy in newer networks.
Based on the best results after doubling the expansions derived from the experiments in this chapter,
this paper chose to double the expansions in the upcoming experiments.
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Figure 5: Smoothing curves of the validation set accuracy in MobileNetV3 network for different
numbers of expanded datasets

Table 5: The effect of the number of expansions on the accuracy of the validation set and test set under
different model

Datasets AlexNet VGG-16 MobileNetV3 ShuffleNet V2 ConvNeXt

Val Test Val Test Val Test Val Test Val Test

Original 83.5% 81.6% 93.2% 90.7% 96.9% 96.5% 97.5% 97.2% 98.1% 97.3%
0.25 times 85.1% 83.3% 94.4% 94.2% 97.0% 96.7% 97.0% 96.6% 97.9% 96.8%
0.5 times 86.4% 85.8% 95.8% 94.4% 97.1% 96.7% 96.8% 97.4% 98.3% 97.6%
One time 94.7% 93.9% 96.3% 94.6% 97.9% 97.9% 97.7% 97.7% 98.2% 97.9%
Two times 88.4% 87.3% 94.9% 93.4% 97.2% 97.3% 96.6% 96.8% 97.6% 97.2%

4.4.2 Test Performance

The experiments in this section are mainly to verify the performance of the proposed method
and the original and doubled images based on four CNN recognition models for evaluation. Their
accuracy, precision, recall, and F1 scores are listed in the Table 6. As shown, compared to the original
dataset, each metric improved by 12.23% on average for the AlexNet model, 3.77% for the VGG-16
model, 1.38% for the MobileNetV3 model, and 0.48% for the ShuffleNet V2 model. The fact that the
F1 scores are higher than the original ones is also a good indication that small-ACGAN prevents the
overfitting of the network and enhances the network model recognition ability.

Table 7 compares the precision, recall, and F1 scores for different tomato diseases in the original
and extended datasets. The data indicate that the scores of at least 8 of the ten leaf disease classes in
the extended dataset are higher than the original ones, and the average values are all higher than the
original ones, indicating that the method proposed in this paper is effective for each class of diseases.

Figs. 6 and 7 show the confusion matrix and ROC curves of the images generated by the proposed
method in the MobileNetV3 model. In Fig. 6, most of the ten ROC curves lie in the upper left corner,
and the AUC area is close to 1. In addition, from the comparison of the confusion matrix of the original



188 CMC, 2023, vol.76, no.1

dataset and the small-ACGAN dataset in Fig. 7, it can be seen that the proposed method in this paper
produces very few false positives and false negatives.

Table 6: Accuracy, precision, recall, and F1-score of the original dataset and the doubled dataset with
different models

Model Dataset Accuracy Mean precession Mean recall Mean F1-score
AlexNet Original 81.6% 82.5% 81.6% 81.3%

Original + Generate 93.9% 94.2% 93.9% 93.9%
VGG-16 Original 90.7% 91.4% 90.7% 90.7%

Original + Generate 94.6% 94.8% 94.6% 94.6%
MobileNetV3 Original 96.5% 96.6% 96.5% 96.5%

Original + Generate 97.9% 97.9% 97.9% 97.9%
ShuffleNet V2 Original 97.2% 97.3% 97.2% 97.2%

Original + Generate 97.7% 97.7% 97.7% 97.7%
ConvNeXt Original 97.3% 97.4% 97.3% 97.3%

Original + Generate 97.9% 98.0% 97.9% 97.9%

Table 7: Comparison of precision, recall, and F1-score of different diseases of tomato in the original
and expanded datasets

Type Precession Recall F1-score

Original Expanded Original Expanded Original Expanded

BAS 95.1% 96.2% 98.0% 100.0% 96.5% 98.1%
EAB 94.1% 95.0% 95.0% 95.0% 94.5% 95.0%
HEA 94.3% 99.0% 100.0% 100.0% 97.1% 99.5%
LAB 97.9% 100.0% 92.0% 95.0% 94.9% 97.4%
LEM 99.0% 99.0% 98.0% 98.0% 98.5% 98.5%
SLS 95.1% 96.0% 98.0% 97.0% 96.5% 96.5%
SPT 100.0% 99.0% 90.0% 99.0% 94.7% 99.0%
TAS 90.6% 96.0% 96.0% 97.0% 93.2% 96.5%
TMV 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
TYL 100.0% 99.0% 98.0% 98.0% 99.0% 98.5%
Mean 96.6% 97.9% 96.5% 97.9% 96.5% 97.9%
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Figure 6: ROC curves based on the expanded dataset and MobileNetV3

Figure 7: Confusion matrix based on the expanded dataset and MobileNetV3

4.5 Ablation Experiments

With a focus on improving the ACGAN model, this paper added CA to the ACGAN generator
models and applied a gradient penalty mechanism to the discriminator loss while setting up ablation
experiments to verify the effectiveness of the fused module. Experiments were conducted separately
for ACGAN by adding CA and gradient penalty models. The results are suitable in Table 8, and
ACGAN + CA + GP is the small-GAN in this paper. As can be seen from the table, the highest
average Accuracy, average Precession, average Recall, and average F1-Score among the five CNN
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recognition networks is the ACGAN + CA + GP model, the lowest is ACGAN+GP, and the second
to last is ACGAN + CA. The outcomes without adding but keeping the two models alone were not
very effective; instead, the network model’s accuracy would reach the best level only when combined.

Table 8: Small-ACGAN model ablation experiment

Model Add module Accuracy Mean precession Mean recall Mean F1-score
AlexNet ACGAN 89.5% 89.7% 89.5% 89.4%

ACGAN + GP 83.8% 84.1% 83.8% 83.5%
ACGAN + CA 89.5% 90.1% 89.5% 89.5%
ACGAN + CA + GP 90.4% 90.6% 90.4% 90.3%

VGG-16 ACGAN 93.9% 94.2% 93.9% 93.9%
ACGAN + GP 93.0% 93.3% 93.0% 93.0%
ACGAN + CA 89.8% 90.6% 89.8% 89.8%
ACGAN + CA + GP 94.6% 94.8% 94.6% 94.6%

MobileNetV3 ACGAN 97.3% 97.3% 97.3% 97.3%
ACGAN + GP 96.8% 96.8% 96.8% 96.8%
ACGAN + CA 97.2% 97.2% 97.2% 97.2%
ACGAN + CA + GP 97.9% 97.9% 97.9% 97.9%

ShuffleNet V2 ACGAN 96.2% 96.3% 96.2% 96.2%
ACGAN + GP 91.9% 92.4% 91.9% 91.8%
ACGAN + CA 95.0% 95.0% 95.0% 95.0%
ACGAN + CA + GP 97.7% 97.7% 97.7% 97.7%

ConvNeXt ACGAN 97.3% 97.4% 97.3% 97.3%
ACGAN + GP 97.8% 97.9% 97.8% 97.8%
ACGAN + CA 96.9% 96.9% 96.9% 96.9%
ACGAN + CA + GP 97.9% 98.0% 97.9% 97.9%

4.6 Comparison Experiments

In order to evaluate the effectiveness of the proposed model, this paper compared small-ACGAN
with several currently popular GANs. Table 9 indicates the results of these procedures, where the
datasets produced by the proposed method outperform the datasets produced by the other GANs
in the three CNN classification models. Although small-ACGAN and CGAN consume more video
memory, they are convenient because they add classification information to the generator. DCGAN,
WGAN-GP, and FastGAN can only be trained and generated one category at a time because they do
not have classification information. While WGAN-GP and small-ACGAN take longer to run, mainly
because these two GANs have a gradient penalty in the loss function, requiring additional time.

Table 9: Accuracy of augmented datasets with different GAN models on three CNNs

Extended model Video memory usage Running time (minute) Mobilenet-V3 ShuffleNet V2 ConvNeXt

Val Test Val Test Val Test

DCGAN 20735 MB 407 97.2% 97.3% 96.8% 95.8% 97.7% 96.4%
WGAN-GP 19721 MB 637 97.6% 97.8% 96.9% 95.9% 97.5% 96.6%
CGAN 24081 MB 414 96.5% 96.2% 96.2% 94.8% 97.0% 96.3%
FastGAN 23628 MB 505 97.7% 97.4% 97.1% 95.9% 98.2% 96.9%
Small-ACGAN 23995 MB 538 97.9% 97.9% 97.7% 97.7% 98.2% 97.9%
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4.7 General Experiments

The experiments in this section choose grapes and apples [33] to verify the generality of small-
ACGAN in data scaling. Both datasets have four classes, and each of the four CNN recognition
networks was trained with 50 epochs, with other parameters referring to the Image Classification
section in Table 4. As can be seen from Table 10, the results of both grape and apple datasets after
the expansion using small-ACGAN were better than the original datasets, with an average 2% of
improvement in accuracy under the four recognition networks in the grape dataset and an average
of 4% of progress in the apple dataset. Fig. 8 illustrates the training accuracy smoothing curves for the
original and expanded datasets of grapes under different models. The figure shows that the accuracy
of the extended dataset is consistently higher than the original dataset during the training process.
Consequently, this section concludes that small-ACGAN applies to the extension of other datasets.

Table 10: Accuracy of original and expanded datasets of grapes under different models

Grape Apple

Type Original Small-ACGAN Original Small-ACGAN

Val Test Val Test Val Test Val Test

AlexNet 89.0% 87.0% 93.0% 90.0% 89.3% 80.3% 90.5% 83.3%
VGG-16 93.5% 94.3% 96.3% 96.5% 90.5% 92.0% 95.3% 96.0%
MobileNetV3 99.5% 99.5% 100.0% 99.5% 99.8% 99.8% 100.0% 99.8%
ShuffleNet V2 96.3% 96.5% 98.0% 98.5% 88.5% 89.8% 98.3% 98.8%

Figure 8: Training accuracy smoothing curves for original and expanded datasets of grapes under
different models
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5 Conclusion

This paper proposes a small ACGAN based on improving the ACGAN model used for plant
disease identification in small samples. The main enhancements of this paper lie in two aspects:
network structure and loss function. The experiments compare various attention mechanisms and
incorporate CA into the generator of ACGAN to enhance image quality and highlight diseases.
Furthermore, this paper adopts a gradient penalty to optimize the discriminator’s loss function for
enhancing the training’s stability.

Following the contrast of the data with 0.25 times, 0.5 times, one time, and two times expansions,
this paper observed that the best results resulted from doubling the expansion. In addition, the
experimental accuracy, precision, recall, and F1-score of the five CNN classifiers on the enhanced
dataset improved by an average of 3.74%, 3.48%, 3.74%, and 3.80% compared to the original dataset.
In CNN classifier recognition, the dataset expanded by small-ACGAN achieves 94.2% accuracy
on AlexNet, 94.8% on VGG-16%, 97.9% on ConvNeXt, 97.7% on ShuffleNet V2%, and 97.9% on
MobileNetV3 with AUC close to 1, effectively improving the accuracy of CNN classifier recognition.
Moreover, the overall performance of small-ACGAN was better than DCGAN, WGAN-GP, CGAN,
and FastGAN.

However, the dataset used in this paper was pre-processed, so the results are pretty good. If the
dataset is captured randomly, the generated results will be unsatisfactory. It is also challenging to create
images with the current diseases for some datasets that are diseased but not diseased. Another point is
that the training time of the method in this paper is slightly longer compared to the random cropping
method.

In terms of further efforts, it is desirable to optimize the structure and related parameters of small-
ACGAN to reduce the time spent on training and the utilization of video memory during training.
There is also a desire to extend small-ACGAN to identify diseases in other parts of the plant, not only
leaf diseases.
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