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ABSTRACT

Credit Card Fraud Detection (CCFD) is an essential technology for banking institutions to control fraud risks and
safeguard their reputation. Class imbalance and insufficient representation of feature data relating to credit card
transactions are two prevalent issues in the current study field of CCFD, which significantly impact classification
models’ performance. To address these issues, this research proposes a novel CCFD model based on Multi-
feature Fusion and Generative Adversarial Networks (MFGAN). The MFGAN model consists of two modules:
a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified high-
dimensional feature space, and a balance module based on the generative adversarial network to decrease the class
imbalance ratio. The effectiveness of the MFGAN model is validated on two actual credit card datasets. The impacts
of different class balance ratios on the performance of the four resampling models are analyzed, and the contribution
of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.
Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of
recall, F1, and Area Under the Curve (AUC) metrics, which means that the MFGAN model can help banks find
more fraudulent transactions and reduce fraud losses.
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1 Introduction

With the development of digital banking and e-payment, credit cards have become one of the
most popular payment methods. More and more people prefer to pay with credit cards when shopping
online or offline. While the number of credit card transactions has increased significantly, so has the
amount of money lost due to fraud. The Nilson report predicted that by 2023, yearly global fraud losses
would amount to $35.67 billion [1]. Therefore, the CCFD system has become a crucial requirement for
financial institutions. Machine learning technology has been widely used in CCFD models. How to
improve the performance of CCFD models and reduce fraud losses has been the focus of this field [2].
Some researchers have used or enhanced classical machine learning algorithms to handle the problem
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in CCFD, such as logistic regression [3–5], decision trees [6,7], support vector machines [8–10], and
artificial neural networks [11,12]. In recent years, with the great success of deep learning techniques
in computer vision and natural language processing, some researchers have adopted Deep Neural
Networks (DNN) [13–15], Long Short-Term Memory networks (LSTM) [16,17], and other neural
networks to detect fraudulent transactions.

Even though research in the past has made significant progress and many algorithms or models
have worked well in practice, CCFD is still challenging for the following reasons:

(1) In general, the data related to cardholders can be divided into three types. First, the basic
information data, such as gender, age, marital status, occupation, etc. Second, the transaction
behavior data, such as transaction time, transaction amount, balance, the average number of
transactions within 30 days, etc. Third, the operation behavior data of cardholders in various
financial service channels of the card issuing bank, such as logging in to e-bank, purchasing
financial products through the bank counter, reading financial information in the mobile
banking app, etc. The basic information is called static features. The transaction and operation
behavior data are called dynamic features. In real-world scenarios, an effective CCFD model
should be built on the comprehensive analysis of heterogeneous multi-source feature data
instead of a single type of feature data. Due to user privacy protections and a lack of data,
most studies do not effectively use different types of credit card feature data. For example,
Carcillo et al. [18] and Forough et al. [19] only utilized transactional behavior features of
cardholders and ignored static features. In addition, Fiore et al. [20] and Gangwar et al. [21]
regarded different types of data as having equally essential features for learning, making it
difficult for classification models to obtain high-dimensional hidden features between different
types of data. This paper proposes a fusion method for heterogeneous feature data to tackle
this problem effectively. In addition to using static features and transaction behavior features,
this work also utilizes operation behavior features, which are helpful for generating a more
comprehensive feature representation of cardholders and enhancing the ability to detect
fraudulent transactions.

(2) In the actual credit card dataset, the proportion of fraudulent transactions is much lower than
the number of legitimate transactions. This phenomenon is known as class imbalance. The
supervised classification model for fraud detection is known to be negatively impacted by the
class imbalance problem. In an imbalanced dataset, the number of minority class examples may
be so small that the learning algorithm may discard them as noise and classify each example as a
member of the majority class [22]. This will cause the classification models to be biased toward
the majority class in the training dataset [23]. Previous studies [24,25] adopted upsampling
methods to address the class imbalance problem. Although the recall rate of these models
for fraudulent samples was improved, they also increased the false positive rate for legitimate
transactions, resulting in a large increase in investigation costs for banking institutions.

In this study, all the challenges and limitations mentioned above are considered and alleviated
to a certain degree. A novel CCFD model is presented to fuse multiple heterogeneous features and
effectively alleviate the problem of class imbalance. The MFGAN model includes both a fusion and a
balance module. Initially, a Feedforward Neural Network (FNN) is used to obtain the representation
of cardholders’ static features. Two distinct Bi-directional Long Short-Term Memory networks (Bi-
LSTM) are used to generate the representation of operation behavior features and transaction behavior
features, respectively. Then, these three types of features are integrated through a merge layer to
generate a unified, high-dimensional training set input for the classification model. In the balance
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module, some fraud samples are synthesized by a generative adversarial network and then merged with
the original training data, constructing an augmented training set that is more balanced to achieve the
desired effect by using a traditional classifier.

There are three main contributions to this work. Firstly, three distinct types of cardholder data are
fused into a unified feature space for representation. In addition to static data and transaction behavior
data, the operation behavior data of cardholders in various financial service channels is used for the
first time. Secondly, several fraud instances are synthesized based on the actual distribution of fraud
samples through the generative adversarial network and Borderline Synthetic Minority Oversampling
Technique (BSMOTE), which mitigates the class imbalance problem in CCFD. Lastly, a careful
experimental evaluation of two actual credit card datasets indicates that the proposed model can do
better, especially in terms of recall rate.

2 Related Works
2.1 Credit Card Fraud Detection

Machine learning techniques, particularly supervised learning techniques, are regarded as one of
the most efficient methods to solve the problem in CCFD. One of the first experiences in CCFD using
machine learning has been proposed by Dorronsoro et al. [26]. Bhattacharyya et al. [4] evaluated three
machine learning approaches—support vector machines, random forests, and logistic regression—as
part of an attempt to better detect credit card fraud. Several studies [2,11,15] introduced state-of-the-
art CCFD models, public datasets, performance evaluation matrices, advantages and disadvantages
of classical machine learning models, etc. Zhang et al. [14], Bahnsen et al. [27], and Lucas et al. [28]
proposed feature engineering strategies and methods for credit card transaction data, which could
provide more effective input data for fraud detection models. Soemers et al. [29] built a CCFD model
that minimizes fraud losses and investigation costs based on contextual bandits and decision trees.
Taha et al. [30] presented an approach for detecting fraudulent transactions using an optimized light
gradient boosting machine with a Bayesian-based hyperparameter optimization algorithm.

Several papers [13,15,31] have discussed deep learning for CCFD. Forough et al. [32] developed
a CCFD model using sequence labeling based on deep neural networks and probabilistic graphical
models. In a subsequent study [19], they also demonstrated that sequential models such as the LSTM
and Gate Recurrent Unit (GRU) performed better than other non-sequential models. In contrast
to the method proposed by Forough et al. [19], Li et al. [33] processed transaction data through a
convolutional neural network. They constructed a deep representation learning model with a new
loss function that considered distances and angles among features. The main shortcoming with most
models was that they only used cardholders’ time-based transaction behavior data and ignored their
static behavior data, or vice versa. Inadequate application of cardholders’ operation behavior features
resulted in a loss of recognition accuracy for fraudulent transactions. The method proposed in this
study can effectively fuse static features with dynamic features of cardholders to generate a unified,
high-dimensional feature representation, which can help classification models improve their overall
performance.

2.2 Imbalanced Data Learning Methods

Class imbalance is a prevalent issue in actual credit card datasets. If a standalone supervised
learning model is trained on a highly imbalanced dataset, the model may shift to the majority class,
thereby reducing the prediction accuracy of the minority class. In Jensen’s study [34], the technical
problems associated with the class imbalance in fraud detection were discussed. Resampling methods
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are commonly used to solve the class imbalance problem, including oversampling and undersampling.
Synthetic Minority Oversampling Technique (SMOTE) [35] and BSMOTE [36] are well-known
oversampling methods that can synthesize minority class samples using specific strategies and are
widely used in CCFD. Although the SMOTE method can improve the recall rate of the minority
class to a certain extent, it may also increase the false positive rate, hence increasing the investigation
expenses for banking institutions. One reason for this phenomenon is that the minority class samples
synthesized by SMOTE may not match the actual distribution of the minority class.

Some other approaches to address the class imbalance problem include cost-sensitive learning
methods [6,37] and ensemble learning methods [38,39]. Akila et al. [40] presented a cost-sensitive risk-
induced Bayesian inference bagging model and a cost-sensitive weighted voting combiner for CCFD.
The disadvantage of cost-sensitive learning methods is that the cost matrix cannot be accurately
calculated and must be estimated by business experts. Shen et al. [41] and Niu et al. [42] combined
resampling methods with ensemble learning methods, which simultaneously optimized the classifier
and the training data distribution. The downside was that the model needed more computing resources
and training time.

2.3 Generative Adversarial Networks

The Generative Adversarial Network (GAN) [43] was proposed by Goodfellow et al. in 2014. After
several years of development, GAN has been successfully applied in image processing, object detection,
video generation, and other fields. GAN consists of two competing neural networks, a generator G
and a discriminator D. G generates new candidates, while its competitor D evaluates the quality of the
candidates.

To address the class imbalance problem in CCFD, Fiore et al. [20] and Douzas et al. [44] tried to
synthesize minority samples by GAN and conditional GAN, respectively. Usually, their methods are
effective. However, when there are not enough minority instances in the training set, the performance
of their methods may significantly drop because the GAN model is easy to overfit and the generator
can’t be effectively trained. There may be a large difference between the distributions of simulated
minority samples and actual minority samples, which will affect the performance of classification
models.

In actual CCFD scenarios, obtaining minority samples is difficult and restricted. Therefore, this
study offers a strategy that combines BSMOTE with GAN to synthesize minority samples, improve
the balance rate of the training set, and ultimately improve the performance of models.

3 Methodology
3.1 Multi-Feature Fusion Module

The multi-feature fusion module (as shown in Fig. 1) is mainly used to fuse three distinct types
of features into a unified feature space and generate a high-dimensional feature representation
that describes static features and dynamic behavior features of cardholders. To obtain the feature
representation of the user’s static data, a FNN model is constructed, and two kinds of Bi-LSTM
models are adopted to get the feature representation of the user’s dynamic transaction behavior data
and operation behavior data, respectively. Finally, these three distinct features are concatenated to
generate a single, high-dimensional representation of features that classification models can use.
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Figure 1: Structure of the multi-feature fusion module

3.1.1 FNN for Static Features Fusion

The set B = (b1, b2, · · · , bk) represents a cardholder’s static features, where each element
b1, b2, · · · , bk in the set represents a static attribute of the cardholder, such as gender, occupation,
marital status, etc. Each static attribute bi is mapped as a one-hot vector. Then, a FNN model is built
with an input layer, an output layer, and three hidden layers with multiple neurons. The conversion and
computation procedure from n − th layer neurons to (n + 1) − th layer neurons is shown as Eq. (1).

xn+1 = fn+1

(
W n+1xn + ϕn+1

)
(1)

fn+1 is the activation function of the (n + 1) − th layer neurons, W n+1 is the weight matrix between
the n − th layer neurons and the (n + 1) − th layer neurons, and ϕ is the bias. By using the FNN
model, the set B is transformed into a feature vector p, which helps to build a high-dimensional hidden
representation between different static features. For example, a cardholder’s job may strongly correlate
with his or her gender.

3.1.2 Bi-LSTM for Transaction Behavior Features Fusion

Jha et al. [3] aggregated transactions to capture the purchasing behavior of consumers prior to
each transaction. This aggregated data was then used for model estimation to identify fraudulent
transactions. They found that aggregated transaction behavior features were more helpful than raw
transaction features. Referencing their research, this paper develops a Bi-LSTM model to capture the
dynamic payment behavior of users over time and obtain the hidden state q.

The set E = (e1, e2, · · · , eT) is used to represent the sequence of a cardholder’s credit card
transactions during a specific time period [1, T ], E ∈ R

K×T , where each element in E represents a
transaction record of the cardholder at a specific time. Each transaction record contains K attributes,
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including transaction type, transaction amount, counterparty, etc. Each attribute represents a feature.
h

′
t is the representation vector of transaction behavior features for the cardholder at time t, and its

calculation method is shown as Eq. (2), where
→
ht is the output of the forward LSTM network and

←
ht is

the output of the backward LSTM network. The operator ⊕ denotes concatenation.

h
′
t =

[→
ht ⊕

←
ht

]
, t ∈ [1, T ] (2)

At time t, et is the input data of the LSTM cell, ct is the value of the memory cell, ht is the output
of the LSTM cell, and ht−1 is the output of the LSTM cell at the previous moment. The formula for
the LSTM unit calculation method is as follows:

c̃t = tanh
(
W cet + U cht−1 + ϕc

)
(3a)

it = σ
(
W iet + U iht−1 + ϕ i

)
(3b)

f t = σ
(
W f et + U f ht−1 + ϕf

)
(3c)

ot = σ
(
W oet + Uoht−1 + ϕo

)
(3d)

ct = f t � ct−1 + it � c̃t (3e)

ht = ot � tanh (ct) (3f)

W c, W i, W f , and W o represent the weight matrix, while ϕc, ϕ i, ϕf , and ϕo represent the bias.

it, f t, and ot stand for the input gate vector, the forget gate vector, and the output gate vector of the
dynamic payment behavior feature at time t, respectively. Lastly, a pooling layer is adopted to integrate
the dynamic behavior features of all transactions for the cardholder in time T by the vector q.

q = 1
T

∑T

t=1
h

′
t (4)

3.1.3 Bi-LSTM for Operation Behavior Features Fusion

The majority of credit card products and services in China are provided by banking institutions.
Generally speaking, while using the credit card products of a bank, the cardholder will also use the
debit card, e-bank, mobile banking, and other financial service products provided by the same bank.
Therefore, in addition to the user’s credit card-related data, the issuing bank can also collect a large
amount of operation behavior data about the user in other financial service channels, such as the user’s
deposit and withdrawal records from Automated Teller Machines (ATM), transfer records through
the e-bank, records of browsing financial information via the mobile banking app, etc. By adding this
information about operations, the issuing bank can create a more accurate baseline for cardholders
and find fraudulent transactions more easily.

The set O = (
op1, op2, · · · , opT ′

)
is used to represent the operation behavior sequence of

cardholders in various financial service channels of the issuing bank within a specific time period
[1, T ′], O ∈ R

K′×T ′ , where each element in O represents an operation record of the cardholder. Each
operation record includes K ′ attributes (such as time, channel type, operation type, etc.). Each attribute



CMC, 2023, vol.76, no.3 2713

represents a feature. The operation behavior data is time series data, which is the same as transaction
behavior data. Therefore, as shown in Eq. (5), this research constructs a Bi-LSTM network similar to
the network structure described in Section 3.1.2 to embed the operation behavior sequence set O in a
feature vector r.

r = Bi-LSTM(O) (5)

Finally, the static feature vector p, the transaction behavior feature vector q, and the operation
behavior feature vector r are concatenated to form a unified high-dimensional feature representation
vector s that integrates three types of features for the cardholder. The calculation is depicted in Eq. (6).

s = p ⊕ q ⊕ r (6)

3.2 Balance Module

To reduce the negative effect of the class imbalance problem on the performance of CCFD models,
this paper presents a balance module based on BSMOTE and GAN to synthesize minority class
samples. The data flow diagram of the balance module is shown in Fig. 2.

Figure 2: Data flow diagram of the balance module

In contrast to most previous research, the MFGAN model does not use GAN alone in the
balance module, as experiments show that the performance of the resampling approach based on the
combination of BSMOTE and GAN is better than that of the resampling method using only GAN.
Details will be provided in the upcoming section on experiments and results.

3.2.1 BSMOTE

SMOTE and BSMOTE are famous resampling algorithms. The key steps of the SMOTE algo-
rithm are as follows:

Step 1: For each sample xi from the minority class set Smin, randomly select a sample xneighbor from
the k nearest neighbor samples from xi.

Step 2: Randomly select a point along the line connection samples xi and xneighbor to generate a new
sample xnew. The procedure for calculating xnew is shown as Eq. (7), where λ is a random number.
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Step 3: Repeat steps 1 and 2 until the desired number of minority samples have been synthesized.

xnew = xi +
(
xneighbor − xi

) × λ, λ ∈ (0, 1) (7)

The drawback of SMOTE is that the synthesized samples may weaken the boundary and increase
the possibility of overlap between different classes in the original dataset, which may cause the model
to misclassify boundary samples [36]. BSMOTE is optimized on the basis of SMOTE.

Firstly, BSMOTE divides the minority class into a “noise set,” a “safe set,” and a “dangerous
set.” For each sample xi from the minority set Smin, the k nearest neighbor samples from xi are picked
out from the training set S. xi is assigned to the “noise set” if the k samples are all majority samples.
xi is assigned to the “safe set” if the number of majority samples among the k samples is less than
k/2. Otherwise, xi is assigned to the “dangerous set.” Then, BSMOTE randomly selects x′

i from
the “dangerous set” alone, which is different from the SMOTE method. Finally, a new sample is
synthesized based on x′

i .

3.2.2 Generative Adversarial Networks

The generative adversarial network consists of two modules: the generator G and the discriminator
D. Typically, both G and D are deep neural networks [45]. G learns the probability distribution of actual
samples and generates new candidate samples through the random noise input z. D judges whether or
not a sample instance is synthesized by the generator. The goal of D is to distinguish actual samples
from synthetic samples as accurately as possible, while the purpose of G is to generate instances that
resemble actual samples to cheat D. In the procedure described above, G and D compete against each
other and continuously improve their learning ability until a balance is reached. The discriminator D
is trained to minimize its prediction error, and the generator G is trained to maximize the prediction
error of D. The competition between G and D can be formalized as a minimax game, shown as Eq. (8).

min
G

max
D

V (D, G) = Ex∼pdata(x) [logD (x)] + Ez∼pz(z) [log (1 − D (G (z)))] (8)

pdata represents the distribution of actual samples, and pz represents the distribution of noise
samples. In an ideal situation, after numerous iterations of training, each sample xg synthesized by the
generator can perfectly trick the discriminator. This means that the discriminator cannot accurately
distinguish whether xg is an actual sample or not. Maintaining a balance between the generator and
discriminator is crucial to training a GAN. If the discriminator’s performance improves early, the
generator will be unable to match the improved speed of the discriminator, resulting in the failure of
the GAN’s training. Therefore, training a GAN is known to not be an easy task [20,46].

3.2.3 Balance Algorithm Based on BSMOTE and GAN

To compensate for the fact that the GAN method does not work well when there are not enough
fraud samples, this work proposes a balance technique based on the combination of BSMOTE and
GAN (as shown in Fig. 2). The balance algorithm mainly includes three steps. Firstly, the BSMOTE
is used to synthesize a portion of instances to increase the number of fraud samples. Then, the actual
and synthesized fraud samples are merged and used to train the GAN. Finally, a part of the fraud
samples is generated by the GAN to make the training set class balanced. The detailed steps are as
follows:

Step 1: The original imbalanced training set T is preprocessed by the multi-feature fusion module
to produce the transformed training set T ′, which is then split into a fraudulent sample set Sfra and a
legitimate sample set Slegal.
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Step 2: Using the training set T ′ as input, the BSMOTE is utilized to synthesize Nb fraud samples,
which are represented by the set Sbsm, and Nb = |Sbsm|.

Step 3: Feeding the actual fraud sample set Sfra and the synthetic fraud sample set Sbsm into the
GAN, training the GAN until convergence, and then synthesizing Ng fraud samples by the generator
of the GAN, which is represented by the set Sgan.

Step 4: Merging Sfra, Sbsm, Sgan, and Slegal to create a new balanced training set T ′′.

The pseudo-code of the balance method is shown in Algorithm 1.

Algorithm 1: Balance method based on BSMOTE and GAN
Input: the training set T ′, the number of fraud samples that need to be synthesized (Ns), and the
proportion of samples synthesized by BSMOTE (δ).
Output: the new training set T ′′ after resampling.
1: divide T ′ into a fraud sample set Sfra and a legal sample set Slegal, calculate the number of samples
Nb and Ng that need to be synthesized by BSMOTE and GAN, respectively.
2: synthesize Nb samples with BSMOTE, represented by the set Sbsm, merge the set Sfra and Sbsm to get
a new set Sginput, Sginput = Sfra ∪ Sbsm.
3: for number of training iterations do
4: for m steps do
5: select n noise samples {z1, z2, · · · , zn} from the noise distribution pz (z).
6: select n samples {x1, x2, · · · , xn} from the set Sginput.
7: generate n samples

{
x′

1, x′
2, · · · , x′

n

}
, x′

i = G (zi).
8: update discriminator parameters θd to maximize:

9: Ṽd = 1
n

∑n

i=1 logD (xi) + 1
n

∑n

i=1 log
(
1 − D

(
x′

i

))
10: θd ← θd + η∇Ṽd (θd)

11: select n noise samples {z1, z2, · · · , zn} from the noise distribution pz (z).
12: update generator parameters θg to maximize:

13: Ṽg = 1
n

∑n

i=1 log (D (G (zi)))

14: θg ← θg − η∇Ṽg

(
θg

)
15: select j noise samples

{
z1, z2, · · · , zj

}
from the noise distribution pz (z), j = Ng.

16: generate j samples
{
x′

1, x′
2, · · · , x′

j

}
, x′

i = G (zi), merge the j samples into the set Sgan.
17: T ′′ = Sfra ∪ Sbsm ∪ Sgan ∪ Slegal, return the new training set T ′′.

4 Experiments
4.1 Dataset Description

This research compares the performance of the proposed model and state-of-the-art models on
two actual credit card datasets. The first is a public dataset from University of California, Irvine (UCI),
while the second is a private dataset from a bank in China. Due to concerns about trade secrets and
privacy, the provider of the private dataset did not explain in detail how the data was collected and how
fraudulent transactions were labeled. They also did not illustrate how many fraudulent transactions
actually happen in real business. Some statistical information about these two datasets is presented in
Table 1.
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(1) The UCI dataset [47]. This dataset contains 30000 instances, 6636 of which are fraudulent and
23364 of which are legitimate. The fraud rate of the dataset is 22.12%. Each payment record
has 23 features. There are five static features, like gender, education level, credit limit, etc., and
17 transaction behavior features, like the history of past payments, the amount of the billing
statement, etc.

(2) The private dataset. This dataset contains 34756 instances, including 2091 fraudulent instances
and 32665 legitimate instances. The fraud rate is 6.02%, which shows that the dataset is highly
imbalanced. Each instance of this dataset represents a customer’s credit card transaction
record. Each record has 40 features, including eight static features (like age, gender, marital
status, etc.) and 32 transaction behavior features (like the transaction amount, the number of
transactions in the past 30 days, the average transaction amount in the past 30 days, etc.). In
addition, the issuing bank provides 272584 records on cardholders’ operating behavior across
various financial service channels. Each record is comprised of six attributes (such as customer
ID, operation type, etc.). However, this part of the operation behavior data lacks labels, so it
needs to be processed by hand before classification models can utilize it.

Table 1: Dataset description

Dataset Instances Features Fraudulent
instances

Legitimate
instances

Fraud ratio

UCI dataset 30000 23 6636 23364 22.12%
Private dataset 34756 40 2091 32665 6.02%

4.2 Performance Measures

The AUC of the receiver operating characteristic is often used to evaluate the performance of
imbalanced classification models, such as in the studies by Douzas et al. [44] and Singla et al. [48].
In addition, AUC is usually applied in CCFD research. For example, Esenogho et al. [16] and
Fang et al. [49] used AUC as the key performance indicator for their proposed models. This research
adopted AUC, F1, recall, and precision as performance metrics to simplify comparisons with other
baseline models and state-of-the-art models. The calculation methods for Recall, Precision, and F1 are
depicted in Eqs. (9)–(11), where TP indicates a fraudulent transaction is predicted to be fraudulent,
FP denotes a legal transaction is predicted to be fraudulent, and FN means a fraudulent transaction
is predicted to be legal. Eq. (12) shows how to figure out AUC, where D+ and D− denote the collection
of fraudulent transactions and legitimate transactions, respectively.

Recall = TP
TP + FN

(9)

Precision = TP
TP + FP

(10)

F1 = 2 × Recall × Precision
Recall + Precision

(11)

AUC = 1 − 1
|D+| · |D−|

∑
x+∈D+

∑
x−∈D−

(
I
(
f
(
x+)

< f
(
x−)) + 1

2
I
(
f
(
x+) = f

(
x−)))

(12)
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4.3 Experimental Design

4.3.1 Baseline Methods

This paper constructs the following four baseline models based on the latest literature. It is well
known that the setting of hyperparameters significantly impacts the performance of classification
models. So, the grid search technique was used to set the hyperparameters of the model in this study
to ensure that these baseline models can achieve the highest AUC and F1 on the validation dataset.

(1) The DNN model. As the base classifier, a deep neural network model is built and combined
with different balance techniques, such as SMOTE, BSMOTE, etc. The number of deep net-
work layers is a basic hyperparameter. Models with too few layers are easy to be underfitting,
while models with too many layers are easy to be overfitting. Five network structures with
three to seven layers are evaluated, and the performance of the model is most stable when the
number of layers is set to four.

(2) The Support Vector Machine with Information Gain model (SVMIG). According to the
method proposed by Poongodi et al. [9], a SVMIG model is constructed in this work. The
input of the SVMIG model is the raw feature data without fusion.

(3) The LSTM model. This paper implements a LSTM model with an attention mechanism
according to the method presented by Benchaji et al. [17]. Then, the performance of the LSTM
model is compared with that of the DNN model. The LSTM model contains six layers, and its
input is the fused feature data.

(4) The GAN model. Following the method described in the study by Fiore et al. [20], a GAN-
based resampling module is constructed to replace the balance module of the MFGAN model.
The generator and discriminator of the GAN model contain three layers, respectively. Except
for the output layer, the number of neurons in other layers is 30 to 60.

4.3.2 Model Implementation and Experimental Details

(1) The multi-feature fusion module. The FNN model for static feature fusion consists of four
layers. There are five and seven layers in the Bi-LSTM models for transaction behavior and
operation behavior feature fusion, respectively. The number of neurons in each layer is less
than 100. Learning rates on a logarithmic grid (1 × 10−4, 5 × 10−3, and 1 × 10−3) are tested for
different datasets.

(2) The balance module. The generator G and the discriminator D are network structures with
three layers. The number of neurons in each layer varies slightly according to the datasets
used, but neither exceeds 80. Rectified Linear Unit (ReLU) and sigmoid are the activation
functions of G and D, respectively. The model optimizers are Adams, and the learning rates of
these two models are 1 × 10−4 and 5 × 10−3 on the UCI and private datasets, respectively. The
hyperparameter δ is tuned in the range of [0.05, 0.5].

(3) Dataset splitting. The original imbalanced dataset was split into two parts: 80% of it was
training data (Str), and 20% was test data (Ste). Firstly, the balance module was used to
optimize Str to generate a new training set (S′

tr). Secondly, the set S′
tr was used to train the

model and adjust its parameters. The five-fold cross-validation method was utilized to find the
best classification model hyperparameters. Finally, the performance of different classification
models is evaluated using the imbalanced set Ste.

(4) Hardware and software environments for experimentation. All experiments in this paper were
performed on a computer with 16 GB of RAM, a NVIDIA GeForce GTX 1080 Ti 11G GPU,
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and an Intel Core i7-9700 CPU @ 3.00 GHz running Windows 10 Professional with Python
3.6, Anaconda 4.5, and TensorFlow 2.4.

5 Experimental Results and Discussion
5.1 Comparative Analysis of the Results of MFGAN and Baseline Models

The experimental results are summarized in Table 2. DNN denotes that the raw data without
feature fusion is used as the DNN model’s input. DNN (fus) indicates that the fused features of the
dataset are obtained first, and then the fused features are used as the input of the DNN model. DNN
(SMOTE) means that SMOTE is adopted to balance the training set. The following observations can
be made based on the experimental outcomes of the UCI dataset:

(1) For the raw data without feature fusion, SVMIG achieved a slightly higher recall rate than
DNN, but its precision, F1 score, and AUC were lower than DNN’s (8.37% for precision,
4.57% for F1 score, and 2.6% for AUC). This indicated that DNN was better at fitting complex
features than SVMIG.

(2) The performance of DNN (fus) was better than that of DNN, in which the recall rate, precision,
F1 score, and AUC were increased by 3.31%, 0.91%, 2.14%, and 1.45%, respectively. The results
proved the effectiveness of the multi-feature fusion module from another aspect. For models
that used fused features as input, the performance of LSTM (fus) and DNN (fus) was basically
the same, and LSTM didn’t show a significant advantage.

(3) DNN (fus, SMOTE) and DNN (fus, BSMOTE) models performed better than DNN (fus).
When the SMOTE and BSMOTE algorithms were used to balance the training dataset, the
recall rate of the DNN model increased by 1.86% and 3.22%, respectively, while the F1 score
was not decreased. This indicated that the balance algorithm could help the classification
model learn from minority samples better and make it more accurate for the minority samples
to be identified.

(4) The GAN model achieved the best recall rate (62%) and AUC (76.64%) among baseline models.
Compared to DNN (fus, SMOTE) and DNN (fus, BSMOTE), the AUC of GAN improved by
1.46% and 1.22%, respectively, and the recall rate increased by 6.49% and 5.13%, respectively.
This indicated that the minority samples synthesized by the balance module based on GAN
were more consistent with the distribution of actual minority samples. In other words, the GAN
model generated better fraud samples.

(5) The accuracy of classification models decreased to varying degrees while resampling algo-
rithms were used. Compared to the DNN (fus), the precision of the DNN (fus, SMOTE) and
the DNN (fus, BSMOTE) decreased by 0.6% and 1.33%, respectively. Although the GAN and
MFGAN models lost 4.92% and 4.49% of their precision, their recall rates increased by 8.35%
and 11.41%, respectively. The direct and indirect reputational losses caused by misidentifying
fraudulent transactions are far greater than the increased investigation costs resulting from
misjudging legitimate transactions. Banks can accept a slight drop in precision while increasing
the recall rate for fraudulent transactions. The recall rate improvement of MFGAN is 2.5 times
that of the decrease in precision, which will help banks to reduce fraud losses.

(6) The MFGAN model proposed in this study integrated the advantages of GAN and BSMOTE,
alleviated the class imbalance problem in CCFD by synthesizing higher quality samples for
the minority class, and achieved a more stable and better performance. MFGAN improved the
recall rate, F1 score, and AUC by 3.06%, 1.34%, and 0.64% compared with the best baseline
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model. Compared with the classic balance algorithm SMOTE, it increased the recall rate, F1
score, and AUC by 9.55%, 1.38%, and 2.1%, respectively.

Table 2: Experimental results of MFGAN and baseline models (%)

Model UCI dataset Private dataset

Recall Precision F1 AUC Recall Precision F1 AUC

DNN 50.34 49.94 50.02 72.09 70.81 21.93 33.37 85.22
SVMIG [9] 50.41 41.57 45.45 69.49 66.99 13.32 22.12 71.77
DNN (fus) 53.65 50.85 52.16 73.54 75.12 24.63 36.98 87.12
LSTM (fus) [17] 53.58 51.59 52.51 73.68 75.36 22.65 34.71 85.55
DNN (fus, SMOTE) 55.51 50.25 52.60 75.18 79.14 29.69 43.10 89.38
DNN (fus, BSMOTE) 56.87 49.52 52.82 75.42 78.76 30.24 43.60 89.29
GAN [20] 62.00 45.93 52.64 76.64 80.57 30.61 44.30 90.22
MFGAN (ours) 65.06 46.36 53.98 77.28 82.30 33.04 47.06 91.08

The experimental results of the private dataset showed a similar situation to that of the UCI
dataset. The following points need to be noted:

(1) Compared to DNN, DNN (fus) increased the recall rate, precision, F1 score, and AUC by
4.31%, 2.7%, 3.61%, and 1.9%, respectively, denoting that the fusion of different types of
cardholder features contributed to improving the performance of the classification model. It
also showed that the multi-feature fusion module could help classification models get a better
and more unified representation of features than raw data.

(2) After the training dataset was processed by balance methods, the recall rate, precision, and F1
score of the classification model were improved to varying degrees. For example, compared
to DNN (fus), the recall rate, precision, and F1 score of the model with SMOTE increased
by 4.02%, 5.06%, and 6.12%, respectively; the model with BSMOTE increased by 3.64%,
5.61%, and 6.62%, respectively; and the model with GAN performed better than both of them,
reaching 5.45%, 5.98%, and 7.32%, respectively.

(3) The MFGAN model achieved the best values on all evaluation metrics. Its recall rate, precision,
F1 score, and AUC were 1.73%, 2.43%, 2.76%, and 0.86% higher than the GAN model, which
obtained the best performance among baseline models. Compared to the traditional DNN
model without feature fusion and class balance, the performance of MFGAN improved even
more, reaching 11.49%, 11.11%, 13.69%, and 5.86% on the recall rate, precision, F1 score, and
AUC, respectively.

5.2 Comparative Analysis of the Results with Different Numbers of Synthesized Samples

The balance module of MFGAN can create different training datasets with different balance
ratios. This is done by setting the number of minority samples that need to be synthesized. In general,
the balance ratios within the training dataset influence the performance of the classification model.
So, it would be beneficial for banks to figure out how many synthesized samples should be added to
the training set for the classification model to work best. For the UCI dataset, this work tested eight
different numbers of synthetic samples Ng based on the number of fraudulent samples Nt within the
training dataset, including 1/16, 1/8, 1/4, 1/2, 1, 3/2, and 2 times of Nt, and the number of samples
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that need to be synthesized to make classes balanced. The experimental results are shown in Tables 3
and 4. As shown in Fig. 3, the results are also presented as a line graph, which makes it easier to
compare them.

Table 3: Changes in AUC and F1 score as the number of generated examples (Ng) varies (%). The bold
values indicate the best value in the corresponding column

Ng AUC F1

SMOTE BSMOTE GAN MFGAN SMOTE BSMOTE GAN MFGAN

0 73.54 73.54 73.54 73.54 52.16 52.16 52.16 52.16
331 74.96 75.42 75.53 76.08 52.49 52.82 53.21 53.45
663 75.18 74.99 76.69 77.28 52.60 52.59 53.20 53.98
1327 75.04 75.02 76.48 77.21 52.18 52.27 52.41 53.19
2654 74.43 74.71 76.56 77.07 52.02 51.90 53.46 53.09
5309 73.82 73.97 76.52 77.01 50.70 50.88 53.44 53.81
7963 73.18 73.65 76.62 77.04 49.97 50.44 52.79 53.48
10618 72.94 73.31 76.73 77.12 49.55 50.03 53.39 53.62
13382 72.81 73.00 76.64 76.76 49.25 49.70 52.64 53.28

Table 4: Changes in recall and precision as the number of generated examples (Ng) varies (%). The
bold values indicate the best value in the corresponding column

Ng Recall Precision

SMOTE BSMOTE GAN MFGAN SMOTE BSMOTE GAN MFGAN

0 53.65 53.65 53.65 53.65 51.04 51.04 51.04 51.04
331 57.27 56.87 59.89 61.19 48.76 49.80 48.04 47.56
663 55.51 55.09 59.95 65.06 50.59 50.65 48.04 46.45
1327 55.24 54.83 61.16 62.43 49.88 50.30 45.97 46.52
2654 53.84 54.51 57.59 62.58 50.67 50.14 49.90 46.41
5309 55.12 53.93 59.22 64.66 47.05 48.56 48.88 46.39
7963 55.25 55.18 60.59 64.16 46.00 46.94 46.86 45.97
10618 56.08 54.00 59.62 62.82 45.17 47.14 48.50 46.97
13382 56.26 54.00 62.00 60.68 43.81 46.48 45.83 47.79

As shown in Fig. 3A, when an augmented training set was used, the AUC of GAN and MFGAN
increased rapidly and then remained stable. At the same time, the AUC of SMOTE and BSMOTE
began to decline after a slight increase. This indicated that the balance method based on generative
adversarial networks was more stable in terms of AUC. For the F1 score, as depicted in Fig. 3B, the
performance of models with SMOTE and BSMOTE grew slightly at first, then declined rapidly, and
was much lower than the original F1 score when the class was balanced. This may be due to the fact that
the balance algorithm synthesized a large number of noisy samples, which reduced the precision of the
classification model for detecting fraudulent samples. The F1 scores of GAN and MFGAN presented
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a wave-like shape, rising first and then falling, but they were generally better than the original F1 score.
As shown in Fig. 3C, the recall rate of the classification models was effectively improved when the
training set was preprocessed by the balance method. SMOTE and BSMOTE improved recall rates
less than MFGAN and GAN. In terms of precision, as shown in Fig. 3D, SMOTE and BSMOTE
first fluctuated slightly and then dropped sharply after Ng = 2654. The stability of MFGAN was the
best. After a significant decline in the initial phase, its precision tended to be stable and began to
increase gradually in the last phase. All four resampling methods drop the precision metrics, but to
different degrees. This may be because the original classification model shifted toward fraud samples
when synthetic fraud samples were added, increasing the misclassification rate of the model for fraud
transactions. It can be seen from Fig. 3 that the comprehensive performance of the MFGAN model
was better than the other three models, and the best value was achieved when Ng was set to 1/8 times
of Nt.

Figure 3: Performance with different numbers of samples generated: AUC (A), F1 (B), recall (C), and
precision (D)
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5.3 Ablation Study

This research analyzed the contributions made by each component of the MFGAN model by
performing ablation experiments on the UCI dataset and the private dataset. “(w/o) FNN” represents
that the FNN model was removed from the multi-feature fusion module. This means that the raw data
of cardholders’ static features was directly input into the classification model without fusing. “(w/o) Bi-
LSTM for transactions” indicates that the Bi-LSTM model used to fuse transaction behavior data of
cardholders was removed from the multi-feature fusion module; that is, the raw transaction behavior
data was directly fed into the classification model. “(w/o) Bi-LSTM for operations” means that the
operation behavior data of cardholders was not fused. This part of the raw data was not input into the
classification model because it was too large and lacked labels. “(w/o) balance module” specifies that
the balance module was removed from the MFGAN model, leaving the imbalanced training set to be
directly input into the classification model.

Table 5 shows the results of the ablation experiment. Because the UCI dataset doesn’t have any
information about cardholders’ operation behavior, “–” is used to indicate the result of this item in
the ablation experiment. The results of the experiments show that the balance module helped the
classification model improve its performance in a big way. For example, in terms of recall rate, the
model with the balance module was improved by 11.41% and 7.18% on the UCI and the private
datasets, respectively. In addition, fusing three different types of feature data could also improve the
model’s performance to varying degrees, proving that the multi-feature fusion module could help
the model extract advanced hidden features of cardholders from different data. For example, when
operational behavior data was integrated into the input data, the model’s recall rate, precision, F1
score, and AUC on the private dataset were improved by 3.59%, 0.91%, 1.53%, and 1.27%, respectively.

Table 5: Results of ablation experiments (%)

Model UCI dataset Private dataset

Recall Precision F1 AUC Recall Precision F1 AUC

MFGAN 65.06 46.36 53.98 77.28 82.30 33.04 47.06 91.08
(w/o) FNN 63.45 46.42 53.48 76.53 80.62 31.09 44.78 90.10
(w/o) Bi-LSTM for transactions 61.72 46.75 53.11 76.13 77.75 29.67 42.85 89.31
(w/o) Bi-LSTM for operations – – – – 78.71 32.13 45.53 89.81
(w/o) balance module 53.65 50.85 52.16 73.54 75.12 24.63 36.98 87.12

6 Conclusion

This paper proposed a novel credit card fraud detection model called MFGAN. The MFGAN
mode was made up of two modules: a fusion module for extracting advanced hidden features from
multi-source heterogeneous data and a balance module for alleviating the problem of class imbalance.
In the multi-feature fusion module, three neural network models were built to process the static and
dynamic features of cardholders, respectively. In addition, the operation behavior data of cardholders
in different financial service channels was also utilized in this study, which was rarely addressed in other
recent CCFD literature for reasons such as user privacy protection and a lack of data. In the balance
module, a resampling algorithm based on the generative adversarial network and BSMOTE was
proposed. Compared to state-of-the-art resampling methods, the proposed algorithm could synthesize
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better minority samples and help the classification model improve its performance. Lastly, experiments
were conducted on two real-world credit card datasets, and how the performance changes with the
number of synthesized minority samples were also investigated. The experimental results showed that,
compared to state-of-the-art models, the MFGAN model achieved a higher AUC and recall rate
without reducing the F1 score, which proved that the MFGAN model was feasible and effective.

There are some flaws in this paper. For example, the fusion module will diminish the interpretabil-
ity of the model, and the model doesn’t take into account the influence of concept drift problems [50],
like changes in fraudulent behavior over time. Therefore, the MFGAN model needs some targeted
improvements before it can be put into production as the bank’s anti-fraud system. In the future, an
adaptive module of concept drift will be designed to make the proposed approach more stable when
fraud behavior changes.

The main contributions of this study are as follows: First, a multi-feature fusion method is
proposed to address the issue of insufficient feature extraction and representation in CCFD. Second,
an upsampling method based on GAN and BSMOTE is proposed as a solution to the class imbalance
problem. Third, the effectiveness of the proposed model is validated using two real-world credit card
datasets.
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