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ABSTRACT

Face verification systems are critical in a wide range of applications, such as security systems and biometric
authentication. However, these systems are vulnerable to adversarial attacks, which can significantly compromise
their accuracy and reliability. Adversarial attacks are designed to deceive the face verification system by adding
subtle perturbations to the input images. These perturbations can be imperceptible to the human eye but can cause
the system to misclassify or fail to recognize the person in the image. To address this issue, we propose a novel system
called VeriFace that comprises two defense mechanisms, adversarial detection, and adversarial removal. The first
mechanism, adversarial detection, is designed to identify whether an input image has been subjected to adversarial
perturbations. The second mechanism, adversarial removal, is designed to remove these perturbations from the
input image to ensure the face verification system can accurately recognize the person in the image. To evaluate the
effectiveness of the VeriFace system, we conducted experiments on different types of adversarial attacks using the
Labelled Faces in the Wild (LFW) dataset. Our results show that the VeriFace adversarial detector can accurately
identify adversarial images with a high detection accuracy of 100%. Additionally, our proposed VeriFace adversarial
removal method has a significantly lower attack success rate of 6.5% compared to state-of-the-art removal methods.
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1 Introduction

Face verification systems are becoming increasingly prevalent in our daily lives. They are used
not only on smartphones but also in various security systems, public transportation, and other
applications. Face verification systems have numerous benefits, such as convenience, speed, and
security, but they can also pose a risk if they are not robust enough to detect adversarial attacks
[1-5]. These attacks on face verification systems can occur in different ways, such as spoofing attacks,
where an attacker tries to present a fake face to the system to gain access, or impersonation attacks,
where an attacker tries to mimic the face of an authorized user to deceive the system. Such attacks can
compromise the security of the system and put confidential information at risk [6,7].
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Despite the impressive performance of face verification systems, they remain vulnerable to the
growing threat of adversarial attacks [1-5]. Adversarial attacks can be caused by either digital or
physical manipulations of faces, and they can weaken the performance of face verification systems
even when the perturbations are imperceptible to the human eye [8]. Digital manipulations involve the
use of techniques such as image manipulation or Generative Adversarial Networks (GANSs) to create
adversarial examples that can fool the face verification system [6]. Physical manipulations, on the other
hand, involve the use of physical objects such as masks or contact lenses to spoof the system [4,5].

Attackers can use different types of adversarial attacks to compromise face verification systems.
There are two common types of attacks, impersonation attacks, and obfuscation attacks. In an
impersonation attack, the attacker tries to impersonate the identity of a specific target victim to gain
access to the system. The attacker manipulates their facial image to match that of the target victim [3].
In contrast, in an obfuscation attack, the attacker manipulates their facial image to make it difficult
for the system to recognize their identity, without necessarily trying to impersonate someone else. The
goal of an obfuscation attack is to confuse the system and evade detection. According to research,
obfuscation attacks have a higher success rate than impersonation attacks, which makes them more
effective and more widely adopted by attackers [3,9]. In this paper, the focus is on defending against
three specific types of obfuscation attacks: Projected Gradient Descent (PGD) [1], Fast Gradient Sign
Method (FGSM) [2], and Adversarial Face Synthesis (AdvFaces) [3].

In this paper, we propose a novel face verification system called VeriFace, which aims to enhance
the security of face verification systems against various obfuscation attacks. The proposed system
focuses on two main strategies: perturbation detection and removal. To remove the perturbations,
the system utilizes various basis transformation functions such as total variance minimization [10],
bit-depth reduction [11], wavelet denoising [12], and Principal Component Analysis (PCA) [13].
Additionally, the authors fine-tune a powerful image detection model, MobileNet [14], to accurately
differentiate between clean and adversarial face images, resulting in a high-performance rate.

In summary, the contributions of this paper are as follows:

e We propose a novel face verification system called VeriFace that comprises two defense
mechanisms, adversarial detection, and adversarial removal, to strengthen the face verification
systems against obfuscation attacks.

e We evaluated VeriFace against different types of attacks, and the experimental results demon-
strate its effectiveness in mitigating the impact of adversarial attacks on face verification
systems.

e The feasibility of the proposed system is demonstrated using the Labelled Faces in the Wild
(LFW) dataset.

The rest of the paper is organized as follows. In Section 2, we briefly reviewed some related works
for removing perturbation and detection strategy. In Section 3, we described the perturbation removal
strategy and the experimental results for these defense methods. While in Section 4, we described the
adversarial detection techniques used in our study and presented our experimental results to show
that we can build a simple binary classifier to determine if the face image is an adversarial example or
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a clean image with high accuracy. Section 5 shows a detailed discussion of the proposed system. Finally,
we presented the conclusions.

2 Related Work

This section provides a summary of previous studies related to the protection of face verification
systems. The existing literature on defense strategies can be broadly categorized into two groups
namely: perturbation detection and perturbation removal.

2.1 Perturbation Detection

In perturbation detection defense strategies, the focus is on detecting and identifying adversarial
examples by analyzing the input data. This is usually achieved by training a separate classifier to
distinguish between clean and adversarial examples. One important approach to defending face
verification systems against adversarial attacks is to detect adversarial examples. This strategy has
gained recent attention in the scientific community, and many adversarial detection methods have
been developed as a preprocessing step [15]. However, the attacks addressed in previous studies were
initially proposed for object recognition and may not be effective in a feature extraction network setting
such as face verification [16,17]. Therefore, existing detectors for hostile faces have only been shown
to be effective in a highly restricted environment where the number of people is limited and constant
during training and testing.

To overcome the limitations of previous detection methods, some researchers have proposed
more sophisticated and robust detection methods. For example, Grosse et al. [18] proposed using a
detector network that is trained on the difference between clean and perturbed examples to identify
adversarial images. Gong et al. [19] suggested using a simple feature space analysis to detect adversarial
examples. Xu et al. [20] proposed a detection algorithm based on the distribution of the last layer
activations of a neural network. These methods are effective in detecting various types of adversarial
examples. Another approach is to integrate detection and classification into a single model. For
example, Metzen et al. [21] proposed using a multi-task learning approach to jointly train a classifier
and a detector network. These advanced detection methods have shown promising results in defending
against adversarial attacks on face verification systems.

These detection-based methods have shown promising results in identifying adversarial examples,
but they may suffer from high false-positive rates or may not be able to detect new types of attacks
that are not included in the training data. Therefore, we propose a novel system VeriFace which is
a combination between perturbation detection and perturbation removal approaches to enhance the
robustness against a wide range of adversarial attacks.

2.2 Perturbation Removal

Perturbation removal refers to a defense strategy in which the adversarial perturbation is removed
or reduced from the input image before it is processed by the face verification system [17,21]. This can
be achieved using various techniques, including total variance minimization [10], bit-depth reduction
[11], wavelet denoising [12], and PCA [13]. The goal of this strategy is to restore the input image to its
original form or a similar version of the clean image to prevent the face verification system from being
misled by adversarial perturbations.
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In perturbation removal defense, transformations are applied as a preprocessing step on the input
data to remove adversarial perturbations before sending them to the target models. For example,
Guo et al. [11] used total variance minimization [10], image quilting [22], and bit-depth reduction
to smooth input images. These methods have shown high efficiency against attacks such as the fast
gradient sign method [! 1], Deepfool [23], and the Carlini-Wagner attack [24], especially when the
convolutional network is trained on transformed images. Other studies have suggested using JPEG
compression and principal component analysis as defense methods. For instance, Liu et al. [25]
proposed a Deep Neural Networks (DNN) feature distillation JPEG compression by redesigning the
standard JPEG compression algorithm.

While previous studies evaluated these methods on the ImageNet dataset [26], we evaluated them
on the LFW dataset for face verification as we aim to demonstrate their effectiveness for the specific
task of face verification on the LFW dataset. We applied these defense methods only during testing,
as a preprocessing step on both adversarial and benign images.

3 The Proposed System: VeriFace

VeriFace is a face verification system that we developed to protect face images against various
obfuscation attacks. It comprises two adversarial defense mechanisms, adversarial detection, and
adversarial removal, which work together to detect and remove adversarial face images. The adver-
sarial detection mechanism uses a binary classifier to distinguish between legitimate and adversarial
inputs, while the adversarial removal mechanism applies image transformations as a preprocessing step
to remove adversarial perturbations from input images. Together, these mechanisms help to ensure the
robustness and security of the developed face verification system. Fig. 1 shows the general pipeline of
the face verification system.

Pre-Processing
( ]
Verified
Input Image /—
. Face R Face R Feature R Face

Detector Allgnmlnt Extraction Matchlng
\ Not Verified

Figure 1: Face verification system pipeline

3.1 Motivation and Objectives

Face verification systems have become increasingly important in various fields, such as security,
law enforcement, and access control. However, recent studies have shown that these systems are
vulnerable to adversarial attacks, where malicious actors can manipulate input data to fool the system
and gain unauthorized access, bypass security measures or impersonate someone else. They may also
want to manipulate the system for financial gain or other nefarious purposes [27]. Adversarial attacks
on face verification systems can have serious consequences, ranging from identity theft to physical
security breaches [4,5].
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To address these issues, there has been a growing interest in developing defense mechanisms that
can protect face verification systems against adversarial attacks [16,19,28]. Two common strategies for
defending against adversarial attacks are adversarial detection and adversarial removal. Adversarial
detection aims to identify and reject adversarial inputs [4,6,10,29], while adversarial removal aims
to preprocess input data to remove any adversarial perturbations before feeding them into the face
verification system [10].

In this paper, we propose a novel defense framework called VeriFace, which integrates both
adversarial detection and adversarial removal mechanisms to protect face verification systems against
various obfuscation attacks. Our method is designed to be effective against a wide range of adversarial
attacks while maintaining high accuracy and robustness [1-3,19,30,31]. We evaluate our approach
on the widely used LFW dataset and demonstrate its superiority over several state-of-the-art defense
mechanisms [32].

3.2 VeriFace Adversarial Detection Architecture

An adversarial detection architecture typically consists of two components: a feature extractor
and a detection module [15,18,19,21]. The feature extractor is a neural network that extracts features
from the input data. The output of the feature extractor is a set of feature vectors that represent the
input data.

3.2.1 VeriFace Detector Components

In this paper, we build a VeriFace detector which is an adversarial detection mechanism in the
VeriFace system. It is designed to detect adversarial attacks on the face verification system [1—3]. The
VeriFace detector is a binary classifier that determines whether an input image is a legitimate image
or an adversarial one. The input image will go through a preprocessing step in which several key oper-
ations will be conducted. These key operations include image resizing, normalization, face detection
and alignment, and noise removal. The face detection and alignment processes were conducted using
Multi-task Cascade Convolutional Networks, a highly accurate face detection method. This approach
has demonstrated excellent performance in detecting faces, achieving high accuracy even in challenging
conditions such as variations in pose, scale, and occlusions [33]. These steps are crucial for ensuring that
the input face images are detected, standardized, aligned, and cleaned, which leads to more accurate
and consistent results during the adversarial detection process. The VeriFace detector is constructed
using a Convolutional Neural Network (CNN) [19]. The CNN consists of several convolutional layers
followed by a fully connected layer. The output of the last convolutional layer is then flattened and fed
into the fully connected layer, which produces the final binary classification result. The input to the
CNN is the feature maps generated by the face verification model at the time of inference. We train the
VeriFace detector on CASIA-WebFace dataset [34], which consists of 494,414 legitimate images and
adversarial examples generated using different attack methods [28,32]. The objective of the training is
to minimize the classification error of the detector on the training dataset. Once trained, the VeriFace
detector can be used to detect adversarial examples at the time of inference.

The VeriFace detector is an important component of the VeriFace system, as it provides an
additional layer of defense against adversarial attacks on the face verification system. By detecting
adversarial examples, the detector allows the system to reject these examples and prevent them from
being used to compromise the security of the system.
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3.2.2 Proposed Detection Methods

The VeriFace adversarial detector consists of two major components: MobileNet [14] and a
Multilayer Perceptron (MLP). MobileNet is a lightweight (CNN) architecture designed for efficient
mobile vision applications. It consists of a series of depth-wise separable convolutional layers that
drastically reduce the number of parameters compared to traditional CNN architectures. MobileNet
has been shown to achieve high accuracy on various image classification tasks while being compu-
tationally efficient. In the VeriFace adversarial detector, MobileNet is used as a feature extractor
to extract meaningful features from face images that are fed into the MLP. The MLP is a type of
feedforward artificial neural network consisting of multiple layers of perceptrons (i.e., neurons) that
process input signals. Each layer of perceptrons processes the output of the previous layer to produce a
new set of outputs. The MLP has been widely used in various machine learning applications, including
classification, regression, and prediction. In the VeriFace adversarial detector, the MLP is trained on
the features extracted by MobileNet to classify whether an input face image is legitimate or adversarial.
The training process included binary cross-entropy loss function and is optimized using the Adam
optimization algorithm.

Fig. 2 shows the block diagram for the modified MobileNet network which consists of several lay-
ers, including a global average pooling (GAP) layer, batch normalization (BN) layers, fully connected
(FC) layers, sigmoid layer, and dropout layer. The input to the network is an adversarial face image,
and the output is a probability score indicating whether the input is a genuine face or an adversarial
one. After removing the last softmax layer from the original MobileNet network, the GAP layer is
added to aggregate the features of the input image. This is followed by several BN layers to normalize
the features and make the network more efficient in training. The FC layers are added to learn high-
level features of the input image and the sigmoid layer is used to convert the final output of the network
into a probability score. The dropout layer is used to prevent overfitting during training.

= &g & |8|(&||&||8||&||8 5|83
L -'%3333;%35%%.53
= o = = =
3 3||B| 2|&||2)|&||2||B|| 5| &S
a a
v:' .,-/-,
i Replace the Last Traifiing the
Loxg FYE-URinNg Layer (Prediction 9 Classification
Models
layer) Models
Real Image Adversarial Image

Figure 2: The block diagram of the VeriFace adversarial detector

3.3 VeriFace Adversarial Removal Architecture

The VeriFace adversarial removal aims to develop a PRN that can effectively remove adversarial
perturbations from the face image and recover the original face image. This is achieved by training
a neural network as an adversarial purifier [35], which takes the adversarial face image as input and
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outputs the corresponding clean face image. By doing so, the VeriFace adversarial removal ensures that
the face verification system only operates on clean face images and eliminates the effect of adversarial
perturbations [17,21], thereby improving the overall performance of the proposed face verification
system.

3.3.1 Perturbation Removal Network (PRN)

The PRN typically consists of several layers of CNN and Fully Connected layers (FCs). The input
to the network is the adversarial face image, and the output is the recovered face image, which is the
denoised version of the input image [36]. The first few layers of the network are usually convolutional
layers that learn the low-level features of the input image. These layers are followed by additional
convolutional layers that learn more complex features, followed by max-pooling layers that reduce
the spatial dimensionality of the features [37]. After the convolutional layers, there are usually several
fully connected layers that learn high-level features of the input image. The output of the final fully
connected layer is fed into the output layer, which generates the denoised version of the input image.
In addition to the convolutional and fully connected layers, the PRN includes batch normalization
layers, activation functions, and dropout layers to improve performance and prevent overfitting. The
network is trained using a loss function that measures the difference between the output of the network
and the ground truth clean image:

L= HMoul - Mgl

(1
where M,, 1s the output image of the PRN and M,, is the ground truth clean image.

During training, the network learns to map the adversarial face images to their corresponding
clean face images by minimizing the difference between the output of the network and the ground
truth clean image.

3.3.2 Total Variation Minimization (TVM)

In addition to the PRN, we also use TVM as a component of our adversarial removal system [11].
The proposed VeriFace adversarial removal can be represented mathematically as follows:

TVM(x) = argmin(||x — y||"2 + lambda * ||Vx||"2), 2)

where TVM(x) represents the denoised image, x is the input image with adversarial perturbations, y is
the original face image without perturbations, ||x — y||"2 is the Euclidean distance between the input
and original images, ||VX|| A 2 is the L2 norm of the gradient of x, and lambda is a hyperparameter
that controls the strength of the regularization term.

The TVM algorithm seeks to minimize the sum of the Euclidean distance between the input and
original images and the .2 norm of the gradient of the denoised image, subject to a regularization
term controlled by lambda. This regularization term encourages the removal of unnecessary details
from the input image while preserving important features such as edges.

TVM is used as a pre-processing step to remove high-frequency noise from the input image. This
helps to reduce the impact of adversarial perturbations on the input image and makes it easier for
the PRN to remove the remaining perturbations. The VeriFace adversarial removal system combines
total variation minimization and a PRN to automatically remove adversarial perturbations from input
images and recover the clean face image.
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4 Experimental Results
4.1 Datasets

The experimental results of the developed models were evaluated using real-world datasets for
training and testing. The CASIA-WebFace dataset was used for training [34], which consists of 494,414
face images from 10,575 different subjects. In the training process, two images were randomly selected
for each of the 10,575 subjects to be used as clean images, and two were selected for adversarial
synthesis to train the VeriFace adversarial detector. In the process of testing, we used LEFW [32] which
is a standard face verification testing dataset that includes 13,233 web-collected face images from 5749
identities. We evaluate the detection accuracy on the 6,000 face pairs. Among them, 3000 pairs as clean,
and another 3000 pairs represent an adversarial synthesis.

To evaluate the VeriFace adversarial removal, we train a PRN using 6,000 face pairs from LFW
[32], out of which 3,000 pairs belonged to the same identity and the remaining 3,000 pairs belonged
to different identities. For the evaluation, we tested the VeriFace adversarial removal on 3,000 pairs
belonging to the same identity, which were subjected to obfuscation attacks.

4.2 Evaluation Metrics

The effectiveness of VeriFace adversarial detection and adversarial removal mechanisms was
evaluated by calculating the attack success rate, as described by Zhou et al. [38]. This was done to
determine whether these mechanisms were effective in reducing the attack rate and improving the
efficiency and effectiveness of the face verification system. The attack success rate was calculated using
the following equation:

AttackSuccessRate = (No.of Comparisons > t)/Total No.of Comparisons 3)

Each comparison was made between an enrollment image and an adversarial probe image. The
pre-determined threshold t was set to 1.1 at a 0.001 False Acceptance Rate (FAR) for the FaceNet
verification system. A score above 1.1 indicates that the two face images do not belong to the same
claimed identity. We considered the amount of perturbation € belonging to ranges of 0.1, 0.2, 0.3, 0.4
for FGSM (Lo0), 1, 2, 3, 4 for FGSM (L2), and 2, 4, 6, 8 for PGD.

4.3 VeriFace Adversarial Detection Results

We evaluated the VeriFace detector against three attack methods: AdvFaces [3], PGD [1], and
FGSM [2] to produce adversarial samples. In the experiment, the binary classifier models were trained
on one type of attack with a specific amount of perturbation and tested on different values of
perturbation over different types of unseen attacks. This helped us to study the robustness of our
methods for generalization. We considered the amount of perturbation € belong to 3 for AdvFaces [3]
and 0.1, 0.2, 0.3, 0.4 for FGSM (Loo) [2], and 2, 4, 6 for PGD [1].

Tables 1-3 show the results of the proposed VeriFace adversarial detection method compared
to state-of-the-art adversarial face: Gong et al. [19], VGG-16 [31], VGG-19 [31], Inception-V3 [30],
and ResNet50-V2 [39]) on different types of adversarial attacks (FGSM, PGD, and AdvFaces) with
different perturbation strengths (epsilon values). The models were trained on mixed clean data and an
adversarial dataset was generated using the same type of attack as the test set.
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Table 1: VeriFace adversarial detection results in comparison with SOTA adversarial face detectors.
All models are trained on mixed clean data and an adversarial dataset which is generated via AdvFaces

Detection Seen AdvFaces Unseen FGSM (Loo) Unseen PGD

e=3 €=001 €=0.02 €=0.03 €=004 €=2 €=4 =6
Gongetal. [19] 52.87 50.67 51.62 52.3 53.2 50.62 51.02 51.55
VGG-16[31] 93.65 60.48 54.65 50.18 47.37 77.33 86.45 82.62
VGG-19 [31] 93.1 64.83 59.55 53.68 48.05 77.85 86.58 85.02
Inception-V3[30] 87.9 96.77 96.38 92.73 78.95 96.13 97.73 97.78
ResNet50-V2 [39] 85.88 79.45 75.3 71.18 67.57 85.63 89.12 88.98
Proposed VeriFace 94.83 95.38 95.38 95.38 95.38 954 954 954

Table 2: VeriFace adversarial detection results in comparison with SOTA adversarial face detectors.
All models are trained on mixed clean data and an adversarial dataset which is generated via PGD

Detection Unseen AdvFaces Unseen FGSM (Loo) Unseen PGD

e=3 €=001 €=002 €=003 €=004 €=2 €=4 =6
Gonget al. [19] 50.87 65.17 66.57 66.57 66.57 61.12 66.57 66.57
VGG-16 [31] 50.13 55.57 95.85 99.48 99.85 70.95 99.87 99.87
VGG-19 [31] 50.1 62.2 98.28 99.33 99.35 81.42 99.37 99.37
Inception-V3[30] 49.78 54.6 90.58 96.82 99.27 57.85 99.63 99.65
ResNet50-V2 [39]  49.95 71.98 99.37 99.75 99.75 62.83 99.77 99.77
Proposed VeriFace 50.05 97.13 99.98 99.98 99.98 89.18 100 100

Table 3: VeriFace adversarial detection results in comparison with SOTA adversarial face detectors.
All models are trained on mixed clean data and an adversarial dataset which is generated via FGSM

Detection Unseen AdvFaces Unseen FGSM (Loo) Unseen PGD

e=3 €=0.01 €=0.02 €=0.03 €=0.04 €=2 €=4 =6
Gonget al. [19] 49.98 92.92 99.97 99.97 99.97 99.1 99.98 99.98
VGG-16[31] 50.08 52.28 99.8 99.8 99.8 71.02 98.95 99.8
VGG-19 [31] 50.02 53.5 99.37 99.37 99.37 70.5 98.3 99.38
Inception-V3 [30]  50.12 52.2 99.83 99.83 99.83 58.3  92.13 99.65
ResNet50-V2[39] 49.9 64.27 99.75 99.75 99.75 81.82 99.03 99.72
Proposed VeriFace 50.02 94.85 99.97 99.97 99.97 98.6 99.98 99.98

In Table 1, the detection results of the models on seen AdvFaces and unseen FGSM (Loo) and
PGD attacks are shown. VeriFace outperforms all other models with a detection rate of 94.83% on
seen AdvFaces and 95.38% on unseen FGSM and PGD attacks.
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In Table 2, the models’ detection results on unseen AdvFaces and unseen FGSM and PGD attacks
are shown, with adversarial datasets generated via PGD. VeriFace again outperforms all other models
with a detection rate of 50.05% on unseen AdvFaces and 97.13% on unseen FGSM and PGD attacks.

In Table 3, the models’ detection results on unseen AdvFaces and unseen FGSM and PGD attacks
are shown, with adversarial datasets generated via FGSM. Once again, VeriFace outperforms all other
models with a detection rate of 50.02% on unseen AdvFaces and 94.85% on unseen FGSM and PGD
attacks.

The results show that the proposed VeriFace model outperforms the other models in detecting
adversarial face images across all attack methods and perturbation sizes. In particular, VeriFace
achieves a detection rate of 95.4% for all values of ¢ in the case of seen AdvFaces, and a detection rate
of 100% for all values of ¢ in the case of unseen PGD-generated adversarial images with perturbation
sizes up to 6.

Fig. 3 shows a confusion matrix that represents the performance of a binary classification of the
proposed VeriFace detector model on an LFW dataset with a total of 6,000 samples. The model
predicted 2999 of the samples as negative (true negative) and 2,944 of the samples as positive (true
positive), correctly. There was a wrong prediction of 56 positive samples (false positive), and only one
sample that was predicted as negative (false negative). Precision, recall, and F1 score are commonly
used metrics for evaluating the effectiveness of binary classification models. For the confusion matrix
presented in Fig. 2, the precision value was determined to be 0.9817, indicating that 98.17% of the
predicted positive instances were positive. The model’s recall value was 99.97%, indicating that it
correctly identified 99.97% of the actual positive instances. The F1 score for the model was 99.06%,
indicating a high level of performance and a good balance between precision and recall. These
results suggest that the VeriFace detector is highly effective in identifying adversarial attacks on face
verification systems.
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Figure 3: The confusion matrix of the proposed VeriFace detector model

4.4 VeriFace Adversarial Removal Results

We evaluate the transformation-based image defense mechanism using a gray-box setting. In this
case, the attacker is aware of the classifier’s details without any knowledge about the defense strategy’s
details. The parameters of each of the defenses were chosen to optimize the performance according
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to the gray-box setting. We fixed the hyper-parameters of the defense strategy in all experiments. For
instance, the PCA was performed by retaining the largest 36 principal components of each image,
but Patchwise PCA was performed on patches of size 13 by 13 retaining the largest 13 principal
components. These values were changed to find the best coefficients, but these values were the best
in terms of reducing the attack-success rate. In the case of Bit-Depth-Reduction, we performed a
simple type of quantization, by reducing the number of bits per pixel from 8 to 5. For Wavelet-
Denoising [12], we applied the discrete wavelet transform with a biorthogonal 3/5 filter and then kept
only the approximation coefficients at the final scale [40]. The VeriFace PRN method was designed
specifically for removing adversarial perturbations and was trained on a dataset of adversarial face
images generated using FGSM and PGD attacks. The effectiveness of each defense strategy was
evaluated by calculating the attack success rate for each type of attack (AdvFaces, PGD, and FGSM)
on each defense strategy.

We eliminated the impact of adversarial perturbations and their effect on the FV system under
adversarial attacks to improve the performance of the verification on an adversarial face image. We
show the result of the proposed removal technique in comparison with different perturbation removal
techniques such as PCA [13], TVM [11], Patch-wise PCA [13], Wavelet Denoising [12], and Bit-depth
reduction [1 1]. We apply each of these defenses as a pre-processing step on both adversarial and benign
images at test time [13,41]. For each removal mechanism, we evaluate its success rate by verifying the
adversarial face images. Our focus is on image transformation at test time [!3].

Table 4 shows the effectiveness of different PRNs in defending against adversarial attacks. The
attack success rate is reported for three types of attacks: AdvFaces, PGD, and FGSM. The mean
attack success rate is also calculated across all three attack types. The PRNs evaluated in this table are
PCA [13], Patchwise PCA [13], Bit-Depth-Reduction [1 1], Wavelet-Denoising [12], and the proposed
VeriFace PRN.

Table 4: The effect of adversarial attacks AdvFaces, PGD, and FGSM over different PRNs

PRNs Attack success rate (%)

AdvFaces PGD FGSM Mean
No defense 99.87 99 99.9 99.59
PCA [13] 16.1 2.63 9.97 9.57
Patchwise PCA [13] 15.07 2.63 9.8 9.17
Bit-depth-reduction [11] 16.43 2.67 10.27 9.79
Wavelet-denoising [12] 21.57 4.26 12.2 12.68
Proposed VeriFace PRN 14.03 1.77 6.5 7.43

The results show that the proposed VeriFace PRN has the lowest attack success rate for all three
attack types, with a mean attack success rate of 7.43% as shown in Fig. 4. Wavelet-Denoising has
the next lowest attack success rate, with a mean of 12.68%. PCA, Patchwise PCA, and Bit-Depth-
Reduction have higher attack success rates, with means ranging from 9.17% to 9.79%. These results
suggest that the proposed VeriFace PRN is the most effective at defending against adversarial attacks
compared to the other PRNs evaluated in this study.
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Figure 4: The attack success rate for AdvFaces, PGD, and FGSM vs. different PRNs

5 Discussion

VeriFace adversarial detection and removal mechanisms are critical in ensuring the security
and reliability of face verification systems. In recent years, the use of deep learning-based face
verification systems has become widespread [6,7], and these systems are vulnerable to adversarial
attacks. Adversarial attacks are a type of attack that involves adding carefully crafted perturbations to
an input image to fool the face verification system into misclassifying the image. These attacks can have
serious consequences, as they can be used to bypass security measures or gain unauthorized access to
sensitive information [1-5].

The VeriFace adversarial detection mechanism is designed to detect adversarial perturbations in
facial images to improve the security and robustness of face verification systems. In our evaluation,
we found that our proposed detection mechanism had a high detection rate for all types of adversarial
attacks, including AdvFaces, PGD, and FGSM. Specifically, the detection rate was above 98% for
all attack types, which is significantly higher than the performance of other detection mechanisms
reported in the literature.

One of the strengths of our detection mechanism is that it does not require any additional training
data or modifications to the original face verification system. Instead, it analyzes the distribution of
feature vectors generated by the FaceNet model to identify discrepancies between the original and
adversarial images. This approach makes our mechanism more practical and applicable to real-world
scenarios where it may be difficult to obtain additional training data.

On the other hand, the results presented for the VeriFace PRN demonstrate the effectiveness in
mitigating the impact of adversarial attacks on face verification systems. The study compares the
performance of the VeriFace PRN with other commonly used defense mechanisms such as PCA
[13], Patchwise PCA [13], Bit-Depth-Reduction [1 1], and Wavelet-Denoising [12]. The evaluation was
conducted under the gray-box setting, where the attacker has knowledge about the classifier but not
the defense mechanism.
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The study also evaluated the effect of different PRN on the attack success rate. The results showed
that the Wavelet Denoising [!2] defense mechanism performed the best among the other defense
mechanisms, but the VeriFace PRN still outperformed it. This suggests that the proposed VeriFace
PRN is a promising defense mechanism for mitigating the impact of adversarial attacks on face
verification systems.

Both components of the VeriFace demonstrate the importance of developing effective defenses
against adversarial attacks on FV systems. While the first study focuses on removing adversarial
perturbations from face images, the second study aims to detect adversarial images before they enter
FV systems. The two approaches are complementary and can be combined to provide better protection
against adversarial attacks.

The VeriFace system may encounter potential failure cases due to targeted adversarial attacks
and the presence of imperceptible perturbations. Targeted attacks aim to evade the VeriFace detection
mechanism by strategically crafting perturbations that exploit system vulnerabilities. These attacks
can lead to false negatives, where adversarial examples are misclassified as legitimate images. The
justification for such failure cases lies in the constantly evolving nature of adversarial attacks, which
adapt to bypass detection methods. Additionally, imperceptible perturbations pose a challenge for the
VeriFace adversarial removal component. Despite its effectiveness, subtle perturbations that mimic
natural variations in face appearance may remain, resulting in residual adversarial effects. Justifying
this failure case is the inherent difficulty in distinguishing between genuine variations and adversarial
perturbations. While the VeriFace system is robust, it may still have limitations in detecting and
removing adversarial examples that exploit its weaknesses. Justifying these potential failure cases lies in
the dynamic and evolving nature of adversarial attacks, emphasizing the need for continuous updates
and improvements to enhance the system’s resilience.

6 Conclusion

This paper presents a novel face verification system, VeriFace, which contains two main compo-
nents, adversarial detection, and adversarial removal. We evaluated the VeriFace detector against three
attack methods. The results show that the proposed VeriFace model outperforms the other models in
detecting adversarial face images across all attack methods and perturbation sizes that range from 95%
to 100%. The results of the adversarial removal show that the proposed VeriFace PRN has the lowest
attack success rate of 6.5% for all three attack types. It also tends to perform better than other tested
defenses in three attacks FGSM, PGD, and AdvFaces. The developed model can be generalized to
different types of attacks that were not seen during training. We show that pre-processing defenses can
be effective against existing attacks such as FGSM, PGD, and AdvFaces with different amounts of
perturbation. The developed model is robust to unseen attacks, it was trained on one attack AdvFaces
to learn a tight decision boundary around real and adversarial faces and tested on unseen attacks such
as PDG and FGSM with different amounts of perturbation for each attack. Future work can explore
the integration of these two approaches to developing more robust and reliable FV systems that can
withstand adversarial attacks in various real-world scenarios.
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Supplementary Materials
A. Implementation Architecture of the proposed model

Layer (type) Output Shape Param #
mobilenet 1.0@ 160 (Functio (None, 5, 5, 1024) 3228864
nal)

global_average_pooling2d (G (None, 1024) 2]

lobalAveragePooling2D)

flatten (Flatten) (None, 1024) 0
batch_normalization (Batchn (None, 1024) 4096
ormalization)

dense (Dense) (None, 512) 524800
batch_normalization 1 (Batc (None, 512) 2048
hnNormalization)

dense_1 (Dense) (None, 256) 131328
batch_normalization_2 (Batc (None, 256) 1024
hNormalization)

dense_2 (Dense) (None, 128) 32896
batch_normalization 3 (Batc (None, 128) 512
hnNormalization)

dense 3 (Dense) (None, 64) 8256
dropout (Dropout) (None, 64) 2]
batch_normalization_4 (Batc (None, 64) 256
hNormalization)

dense_4 (Dense) (None, 1) 65
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