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ABSTRACT

In the emerging field of image segmentation, Fully Convolutional Networks (FCNs) have recently become
prominent. However, their effectiveness is intimately linked with the correct selection and fine-tuning of hyper-
parameters, which can often be a cumbersome manual task. The main aim of this study is to propose a more
efficient, less labour-intensive approach to hyperparameter optimization in FCNs for segmenting fundus images.
To this end, our research introduces a hyperparameter-optimized Fully Convolutional Encoder-Decoder Network
(FCEDN). The optimization is handled by a novel Genetic Grey Wolf Optimization (G-GWO) algorithm. This
algorithm employs the Genetic Algorithm (GA) to generate a diverse set of initial positions. It leverages Grey Wolf
Optimization (GWO) to fine-tune these positions within the discrete search space. Testing on the Indian Diabetic
Retinopathy Image Dataset (IDRiD), Diabetic Retinopathy, Hypertension, Age-related macular degeneration and
Glacuoma ImageS (DR-HAGIS), and Ocular Disease Intelligent Recognition (ODIR) datasets showed that the
G-GWO method outperformed four other variants of GWO, GA, and PSO-based hyperparameter optimization
techniques. The proposed model achieved impressive segmentation results, with accuracy rates of 98.5% for
IDRiD, 98.7% for DR-HAGIS, and 98.4%, 98.8%, and 98.5% for different sub-datasets within ODIR. These results
suggest that the proposed hyperparameter-optimized FCEDN model, driven by the G-GWO algorithm, is more
efficient than recent deep-learning models for image segmentation tasks. It thereby presents the potential for
increased automation and accuracy in the segmentation of fundus images, mitigating the need for extensive manual
hyperparameter adjustments.
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1 Introduction

Diabetes mellitus, more often referred to simply as diabetes, is a condition characterized by
excessive blood sugar levels owing to inadequate insulin synthesis or an inappropriate insulin reaction
by the body. It is a significant worldwide health complication primarily caused by a sedentary lifestyle,
obesity, aging, as well as poor eating habits. The number of people diagnosed with diabetes is rising
alarmingly, with an estimated 116 million individuals who have diabetes, according to the international
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diabetes federation (IDF) [1]. According to projections, around 700 million individuals throughout
the globe will have diabetes by 2045 [2]. Diabetes can lead to various medical complications, including
nerve damage, cardiovascular disease, kidney failure, and diabetic eye disease (DED). DED, which
comprises diabetic macular edema (DME), diabetic retinopathy (DR), cataracts (CA), and glaucoma
(GA), is the most common reason for blindness and visual impairment among people of working age.
DED symptoms, such as abnormal blood vessel growth, lens degradation, optic nerve damage, and
macular swelling, can appear in the retina [3]. Effective treatments for DED, including corticosteroids,
laser photocoagulation, as well as anti-vascular endothelial growth factor injections, exist. However,
early diagnosis is crucial for preventing vision loss, as DED often shows no symptoms in the prelim-
inary stage. As a result, international and regional recommendations stress the need for monitoring
for DED in diabetes patients [4].

The growing population of diabetes patients exceeds the number of retinal specialists worldwide,
leading to prolonged waiting times for screening and diagnosis. Automated DED screening systems
can address this issue by providing a cost-effective and rapid point-of-care solution. Traditional
manual examination of colour retinal fundus images by ophthalmologists is difficult, expensive, time-
consuming, and not immediately responsive to patients. On the other hand, automated DED screening
systems can quickly analyze retinal images captured during regular screenings, saving time and cost.
Early detection of DED through automated systems can prevent complete vision loss; with early
diagnosis and treatment, 90% of cases can be prevented. Implementing automated DED detection
systems would significantly benefit early screening, treatment, and prevention of vision loss caused
by DED. According to the World Health Organization (WHO), DME and diabetic retinopathy may
increase by 47% by 2024% and 71% by 2034 if not addressed. Glaucoma is also rising, particularly in
older age groups and those with diabetes. Automated DED detection systems can be crucial in early
screening, treatment, and preventing vision loss [5].

Deep learning (DL) methods, in particular Convolutional Neural Networks (CNNs), have become
important tools in computer vision [6–9]. However, standard CNN architectures designed for image
classification may not effectively handle segmentation problems, such as pixel-level classification in
semantic segmentation [10,11]. To address this, Fully Convolutional Networks (FCNs) were devel-
oped, substituting the fully connected (FC) layer with convolution (Conv) along with de-Conv layers to
improve pixel-level segmentation [12–15]. FCNs eliminate dense layers, reducing network parameters
and enabling faster training. Typically, FCN structural design includes convolution (Conv), ReLU,
pooling, and an un-pooling (UP) layer. Conv and pooling layers downsample image features, while
the UP layer upsamples the output to match the input size. On the other hand, the fact that FCN
only utilizes a non-trainable and up-sampling (US) layer can restrict performance [13]. In order to
improve pixel-level segmentation, a variation known as a fully convolutional encoder-decoder network
(FCEDN) is presented. This network incorporates a trainable encoder along with decoder components
in its architecture [16,17]. The encoder consists of max-pooling (MP), Convolution (Conv), and
dropout layers (DO) for feature extraction. At the same time, the decoder comprises transpose Conv
(TC), dropout, UP, and US layer-by-layer output encoding. The output layer’s measurements match
the input image’s ground-truth to complete decoding. It is more productive than the FCN, which
only has a non-trainable US layer since the encoder and the decoder in Fully Convolutional Encoder-
Decoder Network (FCEDN) are trainable.

1.1 Motivation

Deep learning methods, predominantly CNNs, have garnered interest in improving segmentation
performance in computer vision. FCNs replace the FC layer of CNNs with both Conv and de-Conv
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layers; their performance is limited by a single non-trainable US layer [13]. To address this, we propose
an FCEDN variant comprising both encoders, decoder components, and fewer layers, resulting
in improved pixel-level segmentation performance. Determining the optimal hyperparameters for
FCEDN, such as layer numbers, kernel sizes, dropout rates, and learning rate, can significantly enhance
its performance. However, optimizing these hyperparameters manually is time-consuming. Optimiza-
tion techniques like Particle Swarm Optimization (PSO), Quantum PSO, unevolutional encoding, and
Grey Wolf Optimization (GWO) have been applied to CNN hyperparameter optimization. Still, no
evidence exists for FCEDN hyperparameter optimization [18–21].

1.2 Contributions

In this research, an FCEDN model is developed to carry out pixel-level image segmentation. The
FCEDN hyperparameters are tuned using a novel Genetic Grey Wolf Optimization (G-GWO) method
rather than being manually specified. GWO has developed as a potential way out to many optimization
issues in recent years by simulating leadership hierarchy as well as group hunting behaviour in GW’s
[22–25]. Since the inception of GWO, several versions of methods for accelerating convergence while
minimizing local optimums have been developed [26–28]. This paper suggested a novel form of GWO
called G-GWO that uses GA to construct a significantly more suitable beginning population. Results
have been compared to alternative nature-based approaches, and the technique is evaluated on five
conventional unimodal as well as five common multimodal benchmarking functions. When G-GWO
is compared to the conventional benchmark functions, it outperforms four different variations of
the GA, GWO, as well as PSO algorithms. This approach was formerly utilized to optimize the
hyperparameters of an FCEDN model, resulting in an efficient model. The major focus is on finding
good approximations for the hyperparameters of the FCEDN’s Conv, pooling, TC, UP, and dropout
layers. The last stage is to build an FCEDN system using these adjusted hyperparameters and validate
its segmentation results on picture datasets. The model applies to any form of classification job as
well as any other image segmentation challenge. The DME, DR, and GA image datasets IDRiD
[29], DR-HAGIS [30], and ODIR [31] are utilized in this work to assess the model’s successiveness.
Extensive quantitative results performed on DED image datasets demonstrated the effectiveness of
the G-GWO approach in terms of the Jaccard coefficient along with Jaccard loss, Sensitivity, accuracy,
Specificity, and Precision when compared to the GA [32], PSO, GWO [21], Modified GWO (mGWO)
[26], Enhanced [27] and incremental [28] GWO. We evaluate the segmentation performance of the
hyperparameter-optimized FCEDN model based on G-GWO on the same dataset as other recently
created segmentation networks, including Link-Net, U-Net, Seg-Net, as well as FCN.

The following are some of the most significant contributions of this study:

• The study introduces a novel combination of Genetic and Grey Wolf Optimization algorithms
to optimize FCEDN.

• G-GWO addresses the limitations of the typical GWO algorithm by incorporating genetic
crossover in addition to mutation operators for faster exploration to improve solution quality.

• The effectiveness of G-GWO is demonstrated through comparisons with other nature-inspired
optimization algorithms on benchmark functions.

• In addition, G-GWO is implemented in order to fine-tune the FCEDN hyperparameters for
pixel-level segmentation.

• Simulations conducted on DED show that G-GWO outperforms other optimization algorithms
with high accuracy.
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The remaining sections of the paper are as follows: Section 2 covers some of the most recent devel-
opments in FCN with hyperparameter tuning based on nature-inspired algorithms. The methodology
is discussed in detail in Section 3. Section 4 describes the suggested model, whereas Section 5 presents
and discusses the findings in depth. Section 6 provides a concise summary of the study’s findings.

2 Related Work

Semantic image segmentation, particularly in retinal disease, is important for effective diagnosis
and treatment in ophthalmology. It involves identifying and delineating object boundaries within
an image. One popular approach for image segmentation is the use of FCNs, which have gained
prominence and continue to advance rapidly.

Numerous image segmentation networks based on FCNs have been reported in the literature. In
[12], semantic segmentation using the FCN model incorporates skip architecture to combine semantic
and appearance information. Another U-Net network [14] employs a U-shaped architecture with
contracting and expanding paths to propagate context information and enable precise localization. In
[11], a pixel-level image classification FCN model using the VGG-16 network was introduced, where
the last layers were randomly initialized. SegNet [13], a deep FCN architecture, demonstrated superior
performance associated with DeepLab-LargeFOV, FCN, as well as DeconvNet. A combination of
FCN, SegNet, and U-Net was proposed in [15] for pleural cell nuclei segmentation, outperforming
individual models and majority voting. For hepatocellular carcinoma diagnosis, a computer-aided
diagnosis (CAD) system integrating CNN and FCN was proposed [16], incorporating skip structures’
to aid with liver along with tumour segmentation. Additionally, by combining FCN-8 and SegNet was
developed for plantar pressure image segmentation [17].

DL techniques have proven effective for retinal image segmentation in the context of cancer
disease. Reference [33] introduced a DL framework based on the U-Net model for optic disc
recognition in DR. The author employed CNNs to process retinal fundus images and employed a
U-Net framework to identify local images for further segmentation. The (Optic Disc) OD and (Optic
Cup) OC identification were performed in [34] using watershed transformation and morphological
filtering techniques. The exudate detection technique proposed by Prentašić et al. [35] utilized a
deep convolutional neural network for feature extraction and a Support Vector Machine (SVM)
classifier for classification, along with morphological procedures and curve modelling. Glaucoma
optic neuropathy screening was addressed in [36] using Inception-v3 in conjunction with mini-batch
gradient descent and the Adam optimizer. A disc-aware ensemble network combining global and
local image levels was developed for automated glaucoma screening, incorporating a residual network
(ResNet) and a U-shaped convolutional network [14].

Several other studies have proposed image segmentation and classification techniques for different
applications. Santos Ferreira et al. [37] trained an OD segmentation U-Net convolutional network and
utilized texture-based features for classification. Zhang et al. [38] investigated a deep convolutional
neural network (DCNN) for cataract detection and grading. At the same time, Ran et al. [39] proposed
a deeper network combining DCNN and an RF classifier for cataract grading. Xu et al. [40] presented
a local-global feature representation using an ensemble of CNNs and deconvolution networks (DN)
for cataract classification. Li et al. [41] developed an 18-layer deep neural network for cataract
diagnosis and localization, and Dong et al. [42] used the Caffe framework with a softmax classifier for
cataract classification. GoogLeNet-CAM and AlexNet-CAM models were introduced by Li et al. [43]
for automatic cataract detection, leveraging class activation maps (CAM) with pertained GoogLeNet
and AlexNet models.
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The selection of hyperparameters is crucial in optimizing the performance of deep learning
networks [21]. However, manual tuning of hyperparameters can be time-consuming and challenging,
especially with complex FCN architectures. Researchers have offered many methods, such as those
based on nature-inspired algorithms, as potential solutions to overcome this problem. A variant
of PSO [18] and Quantum Behaved PSO [19] to tune CNN hyperparameters. Univariate dynamic
encoding was utilized in [20] to optimize CNN hyperparameters, while multiscale and multilevel evo-
lutionary optimization (MSMLEO) multiscale and multilevel evolutionary optimization (MSMLEO)
with Gaussian process-based Bayesian optimization (GPEI) was proposed in [11]. In a recent study
[21], the GWO algorithm was employed to optimize the hyperparameters of CNNs for classification,
achieving improved performance. The optimized hyperparameters were used to build and train the
CNN model using the backpropagation algorithm for multiclass DED detection. While nature-
inspired algorithms have been used for CNN hyperparameter selection, no studies have focused on
the hyperparameter optimization of FCN. This study introduces a novel algorithm based on GWO
[22], which simulates the social and hunting behaviour of GWs. Several GWO variants have been
proposed, including MGWO [44], EGWO [27], RL-GWO [45], Ex-GWO, and Incremental Grey Wolf
Optimizer [25].

Additionally, I-GWO [26] incorporates a dimension learning-based hunting strategy. It is impor-
tant to keep in consideration, nevertheless, that the original GWO population starts entirely randomly.
It might lead to a lack of diversity among the wolf packs as they scour the landscape for prey.
It has been shown in several studies that an initial population with adequate diversity is extremely
beneficial for enhancing the effectiveness of optimization algorithms and that this diversity can have
a significant effect on the global convergence speed and the quality of the final solution. Based on
this central concept, we attempted for the first time to utilize GA to produce a much more suitable
starting population; after that, GWO was built to carry out using the diverse population. The G-GWO
algorithm is applied to optimize hyperparameters for an effective FCEDN model used to segment
DED fundus images.

3 Related Methodologies

The following section covers the fundamentals of the G-GWO optimization algorithm and how
it relates to FCEDN’s architecture and hyperparameters.

3.1 Fully Convolution Encoder-Decoder Network (FCEDN)

CNNs have gained popularity in computer vision due to their effective feature extraction, pre-
diction, and classification competencies [11]. However, when directly applied to image segmentation,
standard CNN architectures designed for image classification yield poor results. This is because fully
connected layers in CNNs ignore spatial data and provide a single class likelihood value, but pixel-
level classification is necessary for semantic segmentation. To improve segmentation performance
at the pixel level, FCNs were developed and used to replace the fully linked layer with Conv and
de-Conv layers. FCNs offer portability and time-saving advantages by eliminating fully-connected
layers [12]. There are two approaches to implementing semantic segmentation in FCNs. The first
approach involves constructing the FCN architecture with Conv, ReLU, pooling, and UP layers
[12]. Convolution and pooling layers downsample image features, while the UP layer performs final
upsampling. However, this approach may result in limited performance due to a lack of a trainable
UP layer, potentially losing spatial information. The second approach employs an encoder-decoder
architecture, where the encoder consists of CNN-like layers, and the decoder uses TC and UP to
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upsample feature maps [13]. The trainable parameters in the up-sampling layers significantly improve
semantic segmentation. In this study, we propose an FCN with an encoder with decoder mechanisms
(FCEDN) to enhance the effectiveness of pixel-level segmentation. The encoder comprises Conv,
dropout, and MP layers for feature extraction through down-sampling. The trainable decoder employs
TC, UP, and dropout layers to progressively US the encoded output layer. The decoding process
concludes through an output layer that matches the ground-truth dimensions of the input image.
Compared to FCNs with a non-trainable layer for US, the dual trainable encoder/decoder architecture
of FCEDN achieves superior performance. Fig. 1 illustrates an evaluation of the FCEDN, CNN, and
FCN architectures.

Figure 1: CNN, FCN, and FCEDN architecture

The FCEDN model involves numerous hyperparameters accompanying each layer, including the
kernel size, number of layers in Conv, de-Conv, MP, and UP layers, number of layer-wise kernels,
learning rate, batch size, activation function, dropout rate, number of epochs, optimizer, and more [9].
The kernel size determines the features that comprise the following layer, whereas the total number of
kernels determines the total number of features. MP and UP layers use pooling sizes to downsample
and upsample features. The dropout rate aids in model regularization. The architecture of FCEDN is
decided according to the total number of Conv, TC, pooling, and UP layers. As the depth of FCEDN
increases, the number of hyperparameters escalates significantly. The performance of FCEDN heavily
relies on these parameters. However, manually reaching the near-optimal setup of hyperparameters
of FCEDN by an extensive examination of all potential combinations is not only unfeasible but also
costly. Therefore, in this study, we formulate the appropriate selection of FCEDN’s hyperparameters
as an optimization problem to enhance the overall model performance.
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3.2 Genetic Algorithm (GA)

The concept of GA, initially proposed by Holland [32], draws inspiration from the principles of
Darwinian natural selection and genetics in biological systems. GA is a search methodology based on
adaptive optimization. It operates with a population of candidate solutions known as chromosomes,
each comprising multiple genes with binary values of 0 and 1. In this study, the initial positions for
GWO are generated using GA. The following steps outline the process of generating initial population
positions using GA:

• Chromosomes are randomly generated as the initial population.
• A roulette wheel selection technique is employed to choose parental chromosomes.
• A single-point crossover technique is applied to generate offspring chromosomes.
• The uniform mutation is adopted to introduce genetic diversity.
• The mutated chromosomes are decoded to obtain the preliminary positions of the population.
• By leveraging GA, the study establishes the preliminary positions for GWO, facilitating the

subsequent optimization process.

3.3 Genetic-Grey Wolf Optimization (G-GWO) Algorithm

A metaheuristic algorithm, the GWO [22], was inspired by the pack behaviour and hunting
techniques of GWs. Encircling, hunting, and attacking the prey are the three primary phases of the
algorithm. The mathematical representation of a wolf pack’s social hierarchy has the optimal solution
as α, followed by the 2nd and 3rd optimal solutions, β, and δ. The remaining set of solutions is referred
to as ω. The dominance structure among GWs is shown in Fig. 2.

Figure 2: Grey wolves’ hierarchy [22]

The following Eq. (1) offered a mathematical description of the encircling behaviour seen in GWs
during the hunting process:
⇀

Y = |⇀

Q × ⇀

Mp (t) − ⇀

Mw|,
⇀

Mw (t + 1) = ⇀

Mp (t) − ⇀

N × ⇀

Y | (1)

The symbols and vectors have specific meanings in the context of the equations used in GWO.
Let us denote the current iteration as t, the prey as p, and a GW as w. The coefficient vectors are

represented by
⇀

N and
⇀

Q, whereby
⇀

Mp stands for the prey’s location vector and
⇀

Mw for the GW. The

calculation of
⇀

N and
⇀

Q vectors are performed as Eqs. (2) and (3):
⇀

N = 2
⇀

n ×
⇀

l 1 − ⇀

n (2)
⇀

Q = 2
⇀

l 2 (3)
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The vector
⇀

n linearly decreases from 2 to 0 as the iterations progress. Additionally, the vectors
⇀

l 1 and
⇀

l 2 are random vectors chosen from the interval [0,1]. These Eqs. (1)–(3) aim to simulate the
hunting strategy of grey wolves and guide their movement toward the optimal solution. By iteratively
updating the positions of different wolf types based on these equations, the GWO algorithm effectively
explores the search space and converges toward promising solutions. During the hunt, alpha serves as
the primary guide, while beta and delta occasionally participate. Grey wolf hunting behaviour may
be modelled mathematically by recording the locations of the best three solutions (α, β and δ). The
remaining search agents (ω) are then required to update positions based on Eqs. (4)–(10) [22].
⇀

Y α = ⇀

Q1 × (
⇀

Mα − ⇀

M) (4)
⇀

Y β = ⇀

Q2 × (
⇀

Mβ − ⇀

M) (5)
⇀

Y δ = ⇀

Q3 × (
⇀

Mδ − ⇀

M) (6)
⇀

M1 = ⇀

Mα − (
⇀

N1 × ⇀

Y α) (7)
⇀

M2 = ⇀

Mβ − (
⇀

N2 × ⇀

Y β) (8)
⇀

M3 = ⇀

Mδ − (
⇀

N3 × ⇀

Y δ) (9)

⇀

M (t + 1) =
⇀

M1 + ⇀

M2 + ⇀

M3

3
(10)

Pseudocode 1 provides the implementation of the GWO algorithm.

Begin
initialize population size (popsize), maximum iterations (maxiter), upper bound (ub), and lower bound
(lb) for variables
Generate initial positions of GWs within the given bounds (ub & lb)

Initialize variables n,
⇀

N, &
⇀

Q
Fitness calculates fitness for each GW.
Set α as the GW with the highest fitness
Set β as the GW with the 2nd highest fitness
Set δ as the GW with the 3rd highest fitness
While iterations (k) < maxiter

For each GW (i = 1 to popsize)
Update the GW’s current position using Eq. (10)

End for
Update variables n,

⇀

N, and
⇀

Q
Recalculate fitness for all GWs
Update α, β, and δ based on the new fitness values
Increment iterations (k)

End while
Return alpha
End
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The random generation of the initial population in the original GWO algorithm may lead to a
deficiency of diversity among the wolf swarms exploring the exploration space. Extensive research
shows that the initial population quality is crucial for global convergence and solution quality in
swarm intelligence optimization algorithms, and to improve the GWO algorithm’s performance, a
novel approach called G-GWO utilizes a GA for generating a more suitable initial population.

Pseudocode 2 contains the G-GWO algorithm’s pseudocode.

Begin
Initialize the parameters:
Population size (popsize), maximum iterations (maxiter), maximum features (dim), position of GWs
(pos), and features mark vector (flag)
Generate the initial positions of GWs using a GA.

Initialize variables n,
⇀

N, and
⇀

Q;
for each individual i in the population:
for each feature j:
If the random value pos(i, j) is greater than a random number: Set flag(j) to 1.
Else: Set flag(j) to 0
Calculate the fitness of each GW using the fitness function:

αZ + β
H − G

H
(11)

Identify the GW with the highest fitness as alpha, the second highest as beta, and the third highest as
delta.
While the number of iterations k is less than the maximum number of iterations:
for each individual i in the population:
Update the position of the current GW using Eq. (10).
for each individual i in the population:
for each feature j: If the random value pos(i, j) is greater than a random number: Set flag(j) to 1. else:
Set flag(j) to 0.

Update variables n,
⇀

N, and
⇀

Q;

Calculate the fitness of each n,
⇀

N, and
⇀

Q; using Eq. (11).
Update α, β, and δ. Increment k by 1.
Return the particular features of α as the optimal feature subset.
End

4 FCEDN HyperParameter Optimization Using G-GWO

The proposed model consists of four fundamental steps, as illustrated in Fig. 3. These steps
include image pre-processing, G-GWO algorithm utilization for optimal selection of hyperparameters,
creation as well as FCEDN training using the selected hyperparameters, and finally, assessing the
performance of the model.
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Figure 3: Proposed methodology

4.1 Image Processing

Several pre-processing steps address the challenges posed by the varying resolutions and large
sizes of DED images. These images come in different resolutions, such as 4288 × 2848, 4752 × 3168,
3456 × 2304, 3126 × 2136, 2896 × 1944, and 2816 × 1880, among others. The presence of many input
images, coupled with their large sizes, can potentially lead to suboptimal segmentation performance
and increased training time for the FCEDN model. Therefore, before inputting the images into the
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model, the training and testing images undergo resizing by the bilinear interpolation method [21]. This
resizing ensures that the images are adjusted to a suitable size while preserving their aspect ratio. A
median filter is also applied to eliminate noise, and contrast-limited adaptive histogram equalization
(CLAHE) is utilized to enhance the image quality. These pre-processing steps collectively contribute
to improved segmentation performance and reduce the training time for the FCEDN model.

4.2 Design of FCEDN

The FCEDN (Fully Convolutional Encoder-Decoder Network) is a deep learning architecture
consisting of trainable encoder and decoder components, each comprising different layers. The down-
sampling part, or encoder, includes Conv, ReLU, dropout, and MP layers. On the other hand, the
decoder, or up-sampling part, consists of TC, UP, ReLU, and DO layers. Each layer plays a crucial
role in the overall network. Designing an optimal FCEDN framework tailored to a specific application
is challenging, as it often involves a trial-and-error process or is influenced by previous works. In this
study, the initial structure of the FCEDN is built based on related works [15–17]. The encoder includes
four Conv, one dropout, four ReLU, and two pooling layers. The decoder has four TC, two UP, four
ReLU, and one DO layer. The kernel sizes of the convolution, TC, pooling, and UP layers are selected
between 3 × 3 and 5 × 5. The number of kernels in the initial layers is lower than in the later layers,
ranging from 20–200. The model is regularized by establishing a dropout layer with a dropout rate
of 0.2–0.4. The overall architecture of FCEDN is controlled by the number of Conv’s, TC, pooling,
and UP layers. Increasing the number of convolutions can lead to overfitting, while reducing them can
result in underfitting. Furthermore, specific features can be excluded from more pooling or repeated
in fewer pooling layers. This work has a range of Conv, TC, pooling, and UP layers between 2 and 10.
Multiple experiments have calculated the following values to establish a balance between efficacy and
computational time.

4.3 G-GWO for HyperParameter Optimization of FCEDN

The progression of optimizing FCEDN’s hyperparameters using G-GWO involves four steps:
encoding, population initialization, fitness evaluation, and population update. In the encoding phase,
the hyperparameters of FCEDN, such as Conv Kernel Size (C-KS), Transpose Conv Kernel Size (TC-
KS), Conv Number of Kernels (C-NK), Transpose Conv Number of Kernels (TC-K), Max Pooling
Kernel Size (MP-KS), Unpooling Kernel Size (UP-KS), and Dropout Rate (DL-Dr) of the Dropout
layer, are encoded into a k-dimensional vector. The encoded vector’s values are chosen at random from
a certain interval. The ith parameter vector is represented by Eq. (12):

Pi = {Ri1, Ri2, Ri3, . . . , Rik} (12)

Considering the presence of four convolution layers, two dropout layers, two max-pooling
layers, four T-Conv layers, and two UP layers, the vector size (k) would be 22, representing the
hyperparameters of these layers. The specific hyperparameters corresponding to the vector elements
are as follows: (C1-Nk&Ks, C2-Nk&Ks, MP1-Ps, DL1-Dr, C3-Nk&Ks, C4-Nk&Ks, MP2-Ps, DL2-Dr,
UP1-ps, TC1-Nk&Ks, TC2-Nk&Ks, UP1-ps, TC3-Ks&Nk, TC4-Ks&Nk).

Next, n encoding vectors were generated for the preliminary wolf population, denoted as Xn.
Each Xi represents the location of the ith GW and is a k-dimensional vector representing the
hyperparameters of FCEDN. A lightweight model is trained on small random samples to reduce the
computation time for fitness evaluation to determine whether the fitness value alteration is negligible.

The n,
⇀

N, and
⇀

Q coefficient vectors of G-GWO are constructed employing Eqs. (2), (3), and (10),
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respectively. Each agent’s fitness is then assessed, and the procedure of updating the general population
while maintaining the top three agents α, β, and δ lasts for a quantified number of iterations, as
outlined in the pseudocode. Finally, the agent and the greatest fitness demonstrate the ideal FCEDN
hyperparameters. The parameters mentioned above are then used to construct the segmentation
network. In this study, determining the FCEDN model’s hyperparameters for segmenting images is
presented as an optimization problem. The objective function of EN-GWO is defined as maximizing
the Jaccard coefficient, formulated as follows:

f (Xi) = 1/tim

(∑tim

m=1

(
ε + ∑j=r,l=c

j=1,l=1 ym (j, l) ŷm (j, l)

ε + ∑j=r,l=c

j=1,l=1 ym (j, l) + ε + ∑j=r,l=c

j=1,l=1 ŷm (j, l) − ε + ∑j=r,l=c

j=1,l=1 ym (j, l) ŷm (j, l)

))

(13)

In the formulation, ym (j, l) stands for the precise pixel value (j, l) and ŷm (j, l) stands for the
anticipated label of the pixel (j, l) For the mth image with size (r ∗ c), they were utilizing the Xi position
vector acquired from FCEDN. Between 0 and 1, the smoothing value is chosen randomly, and tim is the
ratio of images used for the training. Class imbalances are more prevalent in segmentation assignments
involving fewer classes. A deep neural network can achieve an 80 per cent accuracy by appropriately
classifying the background pixels only, which make up the majority of the image. However, in these
tasks, the pixels demonstrating the segmented areas establish approximately 20 per cent of pixels.

Consequently, accuracy alone may not be the most suitable metric for evaluating automatic
segmentation performance. Instead, a more reasonable measure of segmentation performance is the
percentage correspondence among the ground truth in addition to predicted masks. Similarity between
the predicted as well as ground truth masks is measured by determining how many pixels are shared
between the two sets of data and then dividing that number by the overall amount of pixels in both
sets of data. By considering this measure, we can better assess the model’s performance in accurately
segmenting the desired areas of the image.

4.4 Performance Metrics

Typical segmentation valuation metrics, such as the Jaccard Coefficient (JC) and Jaccard loss (JL),
are applied to determine the relationship between the segmented area and the ground truth. These
metrics provide quantitative measures of the resemblance between the predicted segmentation and
the actual ground truth. Furthermore, the overall accuracy (Acc), sensitivity (Sen), specificity (Spc),
and precision (Pre) of the pixels by the pixels segmentation method are also examined. The metrics
in question are derived using the confusion matrix and permit a thorough evaluation regarding the
segmentation performance. Following are the formulas for calculating the following metrics from the
confusion matrix:

JL = 1 − JC (14)

Acc = TP + TN
FP = TP + TN + FN

(15)

Sen = TP
FN + TP

(16)

Spc = TN
FP + TN

(17)
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Pre = TP
FP + TP

(18)

TP represents the number of object-classified pixels, whereas TN is the number of background-
classified pixels. FN indicates the total number of pixels that belong to the object but are categorized
as background. In contrast, FP indicates the number of pixels that belong to the background but are
classified as objects.

5 Experimental Result and Discussion

This section compares the proposed G-GWO to other nature-inspired techniques, including GWO
[21], mGWO [26], eGWO [27], iGWO [28], PSO, and GA, using ten standard benchmark functions.
These include five unimodal reference functions and five multimodal benchmark functions.

Unimodal Functions:

Sphere (F-1): A continuous, convex function that evaluates optimization algorithms’ converging
ability.

Schwefel 2.22 (F-2): Often used to test an algorithm’s robustness to local minima.

Schwefel 1.2 (F-3): Used to assess convergence speed.

Schwefel 2.21 (F-4): This tests premature convergence and exploration capabilities.

Generalized Rosenbrock (F-5): Known for its narrow, flat valleys, it is useful for testing the
precision of algorithms.

Multimodal Functions:

Generalized Schwefel (F-6): Contains multiple local minima, ideal for evaluating global search
ability.

Rastrigin (F-7): Known for its large search space and many local minima.

Ackley (F-8): Combines characteristics of several functions, useful for a comprehensive evaluation.

Griewank (F-9): Often used to evaluate the ability of algorithms to escape local minima.

Generalized Penalized (F-10): Suitable for testing an algorithm’s efficiency in overcoming mathe-
matical penalties.

All these benchmark functions are implemented with the same 10 ∗ 30 population size and
environment; the predetermined number of iterations is 500. Table 1 presents the mean as well as
the standard deviation of fitness error derived from 50 liberated trials. While these metrics provide
an overview of the performance, it should be noted that this evaluation lacks a deeper statistical
analysis to determine the significance of the observed differences between the techniques. Without such
analysis, conclusions about the superiority or inferiority of certain techniques may be tentative. In each
experiment, the parameters of the relative algorithms are configured according to the specifications
recommended in their original work. An examination of Table 1’s results reveals that eGWO provides
superior outcomes for F-1 and F-2, while GA outperforms other techniques in the case of F6 [27].
EN-GWO demonstrates extremely competitive performance in all other functions compared to other
methodologies. However, it should be stressed that these findings are presented without statistical
significance testing, and further analysis would be required to confirm these observed differences.
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Table 1: Comparison of optimization algorithms over benchmark functions

Algorithm F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 F-9 F-10
PSO Avg 9.16e + 08 2.19e + 08 9.98e + 09 1.89e + 09 3.01e + 09 5.60e + 09 4.55e + 08 1.78e + 08 9.43e + 07 1.90e + 10

Std 1.98e + 10 4.79e + 11 1.14e + 08 3.92e + 10 1.00e + 08 2.68e + 11 1.39e + 10 1.29e + 11 4.52e + 11 3.12e + 09

GA Avg 2.62e + 09 1.68e + 08 9.83e + 09 1.32e + 09 2.21e + 10 2.10e + 09 1.92e + 08 9.85e + 07 1.28e + 09 2.82e + 09
Std 9.45e + 08 1.19e + 08 3.68e + 09 4.67e + 08 1.11e + 10 8.98e + 08 1.54e + 08 6.68e + 07 8.88e + 08 1.95e + 09

GWO Avg 5.65e + 18 1.53e + 11 2.02e + 01 4.25e + 02 3.21e + 01 5.44e + 03 3.01e + 01 2.47e + 10 1.58e + 02 4.23e + 00
Std 9.12e + 18 1.28e + 11 2.89e + 01 6.45e + 02 6.18e + 01 1.38e + 03 3.86e + 01 1.94e + 10 5.22e + 02 1.67e + 00

eGWO Avg 5.32e + 27 6.54e + 17 1.06e + 03 9.23e + 05 3.09e + 01 5.28e + 03 1.67e + 02 2.43e + 13 2.86e + 02 8.50e + 00
Std 1.11e + 26 4.25e + 17 2.86e + 01 1.46e + 04 1.23e + 00 2.98e + 02 3.57e + 01 8.91e + 13 5.32e + 02 2.98e + 00

iGWO Avg 9.53e + 20 1.31e + 02 1.58e + 01 2.99e + 03 3.08e + 01 5.32e + 03 2.07e + 01 2.65e + 11 3.63e + 03 2.49e + 00
Std 1.99e + 19 3.45e + 01 2.57e + 01 6.95e + 03 6.72e + 01 1.42e + 03 1.87e + 01 2.57e + 11 2.11e + 02 1.94e + 00

mGWO Avg 2.98e + 24 1.40e + 02 4.48e + 01 5.56e + 04 3.07e + 01 5.23e + 03 2.84e + 01 1.22e + 10 1.99e + 02 3.09e + 00
Std 1.67e + 23 4.56e + 01 3.78e + 01 6.43e + 04 6.29e + 01 1.23e + 03 2.88e + 01 1.16e + 10 2.55e + 02 2.23e + 00

G-GWO AVG 3.33e + 25 4.42e + 15 2.33e + 00 7.56e + 05 3.91e + 01 5.46e + 03 2.49e + 01 1.11e + 13 3.84e + 03 2.76e + 00
STD 7.18e + 25 2.07e + 15 3.89e + 00 9.66e + 04 7.34e + 01 1.25e + 03 2.27e + 01 8.12e + 13 1.99e + 02 1.87e + 00

Extensive experiments were performed to evaluate the efficacy of G-GWO for hyperparameter
optimization of FCEDN utilizing IDRiD [29], DR-HAGIS [30], and ODIR [31] datasets. These
experiments were carried out using MATLAB and Python, the Keras, Scikit-learn, and OpenCV
libraries. Experiments were conducted on Google Colab Pro, outfitted with a GPU with an intel-core
i7 8th generation processor with 32 GB RAM.IDRiD, DR-HAGIS, and ODIR are image datasets
that serve as input for super pixel-based feature extraction, classification annotations, and ground
truths. The resolutions of these datasets varied, including 4288 × 2848, 4752 × 3168, 3456 × 2304,
3126 × 2136, 2896 × 1944, and 2816 × 1880. The IDRiD dataset contains 516 RGB images for the
segmentation assignment, while the DR-HAGIS and ODIR datasets contain 30 and 362 RGB images,
respectively. The ODIR dataset is subdivided into 177 glaucoma images, 49 DR images, and 136 DME
images. Refer to Table 2 for more information about the simulated dataset and Fig. 4 for sample images
from the datasets.

Table 2: A detailed description of the dataset

Fundus image datasets DR DME Glaucoma Total images

IDRiD [29] 516 0 516
DR-HAGIS [30] 10 10 10 30
ODIR [31] 1131 171 207 1509
Total fundus images – – – 2055

The IDRiD [29] is a groundbreaking dataset specifically curated for India, consisting of 516 retinal
fundus images captured at the Nanded (M.S.) eye clinic using a Kowa VX-10α fundus camera. With
a focus on the macula and a field of view of 50 degrees, the images provide comprehensive coverage
of diabetic retinopathy and normal retinal structures, meticulously annotated up to the pixel level.
The dataset includes well-defined grading scores from 0 to 4 for diabetic retinopathy and 0 to 3
for diabetic macular edema, reflecting varying levels of severity according to international clinical
relevance standards. The IDRiD dataset is an invaluable resource for developing and evaluating
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advanced algorithms, facilitating early detection and analysis of diabetic retinopathy in the Indian
population. The DR-HAGIS [30] database is a collection of retinal fundus images. This database
contains 39 high-resolution, colour fundus images from the United Kingdom’s diabetic retinopathy
screening program. The screening program utilizes different fundus and digital cameras provided by
various service providers, leading to variations in image resolution and sizes.

Figure 4: Sample images from datasets

Additionally, patients enrolled in these programs often exhibit other comorbidities alongside dia-
betes. To accurately represent the range of images assessed by experts during screening, the DR HAGIS
database includes images of different sizes and resolutions, as well as four comorbidity subgroups:
diabetic retinopathy, age-related macular degeneration, hypertension, as well as Glaucoma. The ODIR
(Ocular Disease Recognition) [31] dataset is a publicly available collection of retinal images captured
using fundus cameras. Its purpose is to facilitate research in ocular disease recognition by developing
and evaluating algorithms for disease detection and classification. The dataset includes diverse images
from patients with various ocular diseases, as well as healthy individuals for comparison. Annotations
are provided for the presence or absence of ocular conditions such as diabetic retinopathy, glaucoma,
AMD, and hypertensive retinopathy. The dataset is split into training, validation, and testing subsets,
enabling algorithm optimization and evaluation. By leveraging the ODIR dataset, researchers can
advance the field, developing automated tools for early disease detection and improved patient care
in ophthalmology.

CAD systems are designed to detect lesions related to DED. However, current methods still face
challenges with a high rate of false-positive detections for each image. Manual feature engineering
and limited labelled data hinder accurate lesion recognition and deep learning model training. Fundus
image databases suffer from privacy constraints and limited data, making training challenging. This
study proposes a fundus image augmentation scheme using diverse techniques to address these
issues. This study used data augmentation methods, including geometric transformations and patch
extraction, to improve image instances, as explained in Table 3.

Table 3: Different techniques for data augmenting with invariance features

Sr. Augmenting approaches Invariance features

1 Sharpen 0.5, 1, 1.5, 2
2 Emboss 0.5, 1, 1.5, 2

(Continued)
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Table 3 (continued)

Sr. Augmenting approaches Invariance features

3 Gaussian blur 0.25, 0.5, 1, 2
4 Rotation in degrees 45, 90, 135, 180
5 Edges identification 0.25, 0.5, 0.75, 1.0
6 Skew Left, Right, Forward, Backward,
7 Flipping Left side, Right side, Top, Bottom,
8 Shear X-axis 10° and Y-axis 10°

Images have artificially increased the images seven times by employing diverse data augmentation
approaches, as represented in Table 4. The dataset consists of 14385 fundus images, with 10070 images
for training (70%) and 4316 for evaluation (30%).

Table 4: Description of the experimental augmented dataset

Dataset/cases DR DME Glaucoma Overall

IDRiD [29] 3612 3612
DR-HAGIS [30] 70 70 70 210
ODIR [31] 7917 1197 1449 10563
Overall augmented 11599 1,267 1519 14385
Training sample 8120 887 1063 10,070
Testing sample 3479 380 456 4,316
Total augmented images 11599 1267 1519 14385

This study evaluates the viability of agents in G-GWO in order to identify optimal parameters
for building the FCEDN model. The FCEDN model comprises four convlayers alongside ReLU
activation, two MP layers, two DO layers, four TC layers, and two UP layers. The conv layers have
20, 50, 70, and 100 kernels, with a fixed kernel size 4. The TC layers contain 70, 50, 20, and 2 kernel
diameters of 4, 4, 4, and 2, respectively. A particle size of 2 and a DO rate of 0.2 for both the MP and
UP layers are implemented. The last layer of the FCEDN model is a TC layer with two kernels and a
kernel size of two, which is used to match the image’s ground truth. The final output is generated using
the softmax activation function. The FCEDN model is trained with the Adam optimizer, a constant
learning rate of 0.001, and a batch size 20. A sample dataset of 200 randomly selected images from the
ISIC2016 dataset is used for training. Although the FCEDN architecture is chosen based on a review
of previous works [15–17], simulations are also performed with alternative architectures by altering
the number of conv, ReLU, MP, TC, and UP layers, as well as the number of kernels in the conv
and TC layers. Other network parameters remain unchanged across these architectures. The FCEDN
architecture with 4 Conv, 8 ReLU, 2 DO, 2 MP, 4 TC, and 2 UP layers is shown in Table 5. Therefore,
this architecture is maintained for future simulations that optimize the FCEDN’s hyperparameters.

After determining the FCEDN architecture, its hyperparameters have been encoded to be
compatible with the G-GWO population. In addition to G-GWO, GWO [21], mGWO [26], eGWO
[27], iGWO [28], PSO, and GA are used to optimize the FCEDN hyperparameters. All optimization
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strategies utilize an identical population size. Table 5 provides a summary of the hyperparameters
obtained through various optimization techniques, as well as the maximal Jaccard coefficient attained
by the best-performing agent. G-GWO consistently outperforms GWO, iGWO, eGWO, mGWO, GA,
and PSO when considering the value of the Jaccard Coefficient on the sample dataset, as shown by the
table analysis. These results demonstrate that G-GWO provides superior hyperparameter optimization
for FCEDN compared to other cutting-edge techniques.

Table 5: Parameter configurations

Parameters FECDN

# of CONV 4
# of Relu 4 + 4
# of Conv_K 20, 50, 70, 100
Conv_K size 4, 4, 4, 4
# of TC 4
# of TC_K 70, 50, 20, 2
TC Size 4.4.4.2
# of Pooling 2
Pooling_K 3, 3
# of UP 2
UP_K size 3, 3
DO_Rae 0.2, 0.2

The control parameters for the numerous optimization techniques are listed in Table 6. These
values have been determined through simulation and are tailored to the application in question. In
order to incorporate the FCEDN model with the G-GWO population, its hyperparameters have been
encoded while its architecture remains unchanged. The hyperparameters of FCEDN are optimized uti-
lizing multiple optimization techniques, such as GWO [21], mGWO [26], eGWO [27], iGWO [28], PSO,
and GA, in addition to EN-GWO. All of these methods use the same population size. The maximal
Jaccard coefficient attained by the fittest agent is presented in Table 6 alongside the hyperparameters
of the FCEDN model derived through various optimization techniques. G-GWO provides improved
hyperparameter optimization for FCEDN relative to other state-of-the-art techniques, as shown in
Table 6. The FCEDN models were trained for 500 iterations on the IDRiD, DR-HAGIS, and ODIR
datasets using various hyperparameter methodologies. For each epoch, the Jaccard coefficient along
with Jaccard loss were computed, and the results were evaluated. The segmentation effectiveness of
the datasets utilizing different hyperparameter-optimized FCEDN models is presented in Table 7. The
results show that the proposed EN-GWO-based model yielded exceptional results, with a Jaccard
coefficient of 98.7%, 98.9%, 98.3%, 98.6%, 98.9%, 98.4%, and 98.7%, and a Jaccard loss of 0.0129,
0.0326, 0.0397, 0.027, 0.0253, 0.0245, and 0.0217, respectively. It can be observed from Table 7, the
proposed model evaluated on IDRiD, DR-HAGIS, and ODIR datasets achieved an average DR
accuracy of 98.5% on the IDRid dataset. The proposed model evaluated on the DR-HAGIS dataset
achieved 98.7%, 98.1%, and 98.4 % for DR, DME, and Glaucoma, respectively. The accuracy results
of ODIR for DR is 98.8% and the accuracy value of DME and glaucoma are 98.2%, and 98.5%,
respectively.
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Table 6: Different optimization methods provide FCEDN hyperparameters

H-P Optimization technique

GWO GA eGWO iGWO mGWO PSO G-GWO

C1-Nk 27 45 45 35 39 50 50
C1-Ks 2
C2-Nk 92 85 100 92 100 50 62
C2-Ks 3 2 4 2
MP1-Ps 2
DL1-Dr 0.2 0.27
C3-NK 109 135 109 112 150 150 100
C3-Ks 2
C4-NK 173 155 162 161 150 200 158
C4-Ks 2
MP2-Ps 2
DL2-Dr 0.2 0.27
UP1-Ps 2
TC1-Nk 114 135 127 100 100 150 139
TC1-Ks 4 2 4 2
TC2-Nk 98 85 76 97 57 91 49
TC2-Ks 2 4
UP2-Ps 2
TC3-Nk 23 45 47 26 22 50 24
TC3-Ks 2
TC4-Nk 2
TC4-Ks 2 4 4 3 2 2 3
J-C 0.8102 0.7990 0.8002 0.8049 0.8002 0.7920 0.8208

Table 7: Comparison of various optimization techniques based on segmentation efficiency of a
hyperparameter optimized FCEDN model

Dataset Disease Metric GWO GA eGWO iGWO mGWO PSO G-GWO

IDRiD
Diabetic
retinopathy

Jac-C 87.5 85.2 89.1 86.7 88.2 84.5 98.7
Jac-L 0.06287 0.2473 0.1149 0.3285 0.0948 0.2431 0.0129
Accuracy 88.9 83.1 90.2 81.3 87.4 84.7 98.5
Sensitivity 86.3 88.5 82.4 90.1 85.7 87.9 98.3
Specificity 90.4 77.2 92.8 72.5 89.8 81.5 99.1
Precision 89.1 82.6 90.3 80.5 88.7 83.9 98.6

(Continued)
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Table 7 (continued)

Dataset Disease Metric GWO GA eGWO iGWO mGWO PSO G-GWO

DR-HAGIS

Diabetic
retinopathy

Jac-C 86.8 83.7 88.6 85.9 87.1 82.9 98.9
Jac-L 0.0654 0.1548 0.1229 0.2522 0.0994 0.1486 0.0326
Accuracy 88.7 82.9 89.4 81.6 86.9 83.2 98.7
Sensitivity 85.2 87.5 83.9 89.7 84.3 86.5 98.4
Specificity 89.5 78.3 92.1 75.2 88.2 80.6 98.9
Precision 88.3 81.6 89.0 79.3 87.6 82.3 98.8

DME

Jac-C 82.1 81.4 78.6 82.6 80.6 82.3 98.3
Jac-L 0.0772 0.1852 0.1468 0.3031 0.1198 0.1793 0.0397
Accuracy 84.3 80.2 82.9 79.1 83.5 81.7 98.1
Sensitivity 81.5 82.8 79.3 84.1 80.3 81.9 98.2
Specificity 87.2 77.4 90.5 73.2 86.7 80.5 98.4
Precision 85.9 80.6 83.2 78.9 84.7 81.1 98.3

Glaucoma

Jac-C 85.9 92.8 91.4 92.2 90.1 93.6 98.6
Jac-L 0.0826 0.0972 0.0767 0.0795 0.0645 0.091 0.027
Accuracy 88.2 91.7 90.9 92.5 89.8 92.7 98.4
Sensitivity 87.1 90.4 89.6 91.2 88.6 91.8 98.6
Specificity 89.4 93.0 91.9 93.8 91.3 93.4 98.5
Precision 87.5 91.2 90.7 92.1 89.3 92.4 98.7

ODIR

Diabetic
retinopathy

Jac-C 88.3 85.9 89.8 87.2 88.7 85.0 98.9
Jac-L 0.051 0.1203 0.0951 0.196 0.0773 0.1152 0.0253
Accuracy 90.1 84.8 91.7 83.6 89.2 85.7 98.8
Sensitivity 87.6 89.4 85.9 90.9 86.8 88.7 98.7
Specificity 92.2 80.5 94.4 76.3 91.7 81.9 98.9
Precision 89.3 83.5 90.5 82.1 88.7 84.2 98.6

DME

Jac-C 82.9 84.1 81.7 85.6 83.0 84.5 98.4
Jac-L 0.0747 0.0892 0.0703 0.0729 0.0592 0.0836 0.0245
Accuracy 94.8 82.6 84.2 81.9 83.5 82.8 98.2
Sensitivity 82.3 93.7 80.9 84.8 81.5 82.9 98.1
Specificity 87.4 81.5 89.5 78.2 86.7 80.7 98.4
Precision 85.6 81.9 84.3 79.1 84.7 81.2 98.3

Glaucoma

Jac-C 90.8 91.6 88.1 9.0 89.3 90.3 98.7
Jac-L 0.0693 0.0828 0.0654 0.0676 0.0676 0.0778 0.0217
Accuracy 92.1 90.5 91.8 90.3 89.8 90.0 98.5
Sensitivity 91.0 90.7 89.3 90.6 89.2 89.9 98.6
Specificity 93.2 90.2 92.4 90.0 89.9 90.1 98.8
Precision 91.7 90.5 90.7 90.2 89.6 89.9 98.7

In general, the results demonstrate the efficacy of G-GWO in optimizing the hyperparameters for
various disease classification tasks, resulting in superior performance compared to other optimization
techniques. The evaluation metrics further validate the enhanced accuracy, sensitivity, specificity, and
precision attained by G-GWO across multiple datasets and disease scenarios. The graphical analysis
representing accuracy, sensitivity, specificity, and precision are illustrated in Figs. 5a–5d.
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Figure 5: Performance matrices comparison

Fig. 6 depicts the input, pre-processing, ground truth, and corresponding predicted mask obtained
by the G-GWO-based hyperparameter-optimized FCEDN model for some sample images. These
results indicate that the area is properly segmented.

Figure 6: (Continued)
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Figure 6: Input, pre-processing, ground truth, and the predicted segmentation results obtained by the
proposed model for some sample images

6 Conclusion

Fundus images are valuable in detecting areas affected by diabetic eye disease. However, man-
ually identifying these areas presents a significant challenge for ophthalmologists. In response to
this challenge, we introduce an optimized method known as Genetic Grey Wolf Optimization for
hyperparameter tuning the Fully Convolutional Encoder-Decoder Network. We aim to accurately
identify the regions in fundus images associated with diabetic eye disease. The effectiveness of G-
GWO is demonstrated through its comparison with four variants of the GWO algorithm, as well as
the GA and PSO strategies for hyperparameter optimization. We conducted extensive experiments
using the IDRiD, DR-HAGIS, and ODIR datasets. As a result of the proposed FCEDN model,
several evaluation metrics—including the Jaccard coefficient, Jaccard loss, accuracy, sensitivity,
specificity, and precision—have shown significant improvement. The proposed model outperforms
other optimization techniques and the latest deep learning methods examined in this study. Despite
our research covering several significant aspects, some areas warrant further exploration. For instance,
the optimization process can be enhanced by introducing additional hyperparameters such as the
regularization rate, activation functions, and training size and rate. Furthermore, we could examine
the use of different optimization algorithms to increase the efficacy of the FCEDN model during the
weight-updating phase. This study concludes by introducing a new method, G-GWO, for optimizing
the hyperparameters of the FCEDN model in fundus image analysis. The experimental results validate
its superiority over other optimization methods and show its potential in accurately identifying areas
affected by diabetic eye disease.

The study encompasses potential limitations of the proposed approach, such as dataset gen-
eralization, computational complexity, sensitivity to hyperparameters, benchmarking against state-
of-the-art, and interpretability of results. Addressing these aspects will provide a comprehensive
understanding of the approach’s strengths and areas for improvement. Furthermore, suggesting future
research directions will underscore the significance of the study in advancing image segmentation
with genetic optimization techniques for Fully Convolutional Encoder-Decoder Network (FCEDN)
models in medical imaging applications.
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