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ABSTRACT

Effectively identifying and preventing the threat of Byzantine nodes to the security of distributed systems is a
challenge in applying consortium chains. Therefore, this paper proposes a new consortium chain generation model,
deeply analyzes the vulnerability of the consortium chain consensus based on the behavior of the nodes, and points
out the effects of Byzantine node proportion and node state verification on the consensus process and system
security. Furthermore, the normalized verification node aggregation index that represents the consensus ability of
the consortium organization and the trust evaluation function of the verification node set is derived. When either of
the two is lower than the threshold, the consortium institution or the verification node set members are dynamically
adjusted. On this basis, an innovative consortium chain generation mechanism based on the Asynchronous Binary
Byzantine Consensus Mechanism (ABBCM) is proposed. Based on the extended consortium chain consensus
mechanism, a certain consensus value set can be combined into multiple proposals, which can realize cross-
domain asynchronous message passing between multi-consortium chains without reducing the system’s security. In
addition, experiments are carried out under four classical Byzantine Attack (BA) behaviors, BA1 to BA4. The results
show that the proposed method can obtain better delay than the classical random Byzantine consensus algorithm
Coin, effectively improving the consensus efficiency based on asynchronous message passing in the consortium
chain and thus meeting the throughput of most Internet of Things (IoT) applications.

KEYWORDS
Consortium chain; Byzantine; consensus; generation mechanism; Internet of Things; consensus vulnerability

1 Introduction

With the great success of the permissionless blockchain application in electronic cryptocurrency,
blockchain networks based on decentralized identity authentication and group consensus attract
increasing attention. However, limited by the scale, performance, and deployment cost of distributed
application systems, permissionless blockchain technology is challenging to use widely. Consortium
Blockchain (CBC) inherits the security characteristics of public chain to some extent with the openness
that private chain does not provide, so more research focuses on CBCs [1–3]. The CBC limits the
proposer set to a few known nodes and relies on a trusted service or consortium organization to
authenticate the nodes. Based on proof of interest of chain or Byzantine Fault Tolerance (BFT), CBC
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proposes new blocks in the way of fault-tolerant consensus and verifies new transactions without
needing confirmations, thus reducing the influence of potential Byzantine nodes on the system.
Moreover, liquidity is achieved by deploying and running smart contracts on CBCs [4], of which
the efficiency is significantly higher than that of the permissionless public chain driven by the proof-
of-work mechanism. With the continuous expansion of the application scenarios of CBC in recent
years, the diversity and durability of the services it can provide have been improved unprecedentedly.
Therefore, CBC provides a new way for identity authentication and trust transfer among parties in the
network [5–7].

The consensus mechanism of CBC ensures the consistency of contents stored by each node in the
distributed ledger and protects data from unauthorized access, which is important for realizing the scal-
ability, transaction speed, transaction certainty, and security of CBC [8,9]. The consensus mechanism
of CBC is constantly improved to maintain compatibility of high efficiency and scalable applications
such as side chain and sharding mechanisms [10–12]. Users of the CBC can create parallel and separate
CBCs through the Application Program Interface (API) and set the initial consensus mechanism,
allowing different parallel and separate CBCs belonging to the same consortium organization to adopt
different consensus mechanisms. Meanwhile, the consensus mechanism of each parallel and separate
CBC can be upgraded through voting at any time. The system can reach a consensus safely among
several side chains or sharding chains by deploying smart contracts in CBC.

However, under the environment of a Byzantine partition consortium network, the information
service entities of heterogeneous CBCs interact frequently and lack collaborative management, making
it difficult for the data owner to control the access of other trusted domain entities to the data, resulting
in the risk of data being stolen, tampered with and replayed when the data is shared across domains
[13]. Chen et al. [14] proposed a blockchain-based cross-domain data-sharing method for the Internet
of Things (IoT), which uses the threshold proxy re-encryption method to process the ciphertext to
avoid collusion between malicious agents and visitors. Yu et al. [15] proposed an industrial IoT data-
sharing scheme based on blockchain and proxy re-encryption, where cloud servers verify whether
user attributes meet the access policy and generate decryption parameters to send to users when
data users request cross-domain data. Existing consensus mechanisms can satisfy the scalability or
security of distributed systems, but it is impossible to do both as long as the consensus mechanism of
the final determination of block conflict is different and the impact of system scalability on security
is also different. Thus, the consensus mechanism based on asynchronous communication still faces
challenges. Therefore, it is of great academic significance and extensive application value to further
research the consensus mechanism of CBC to improve the security and scalability of the partitioning
network consensus mechanism in heterogeneous CBCs based on privacy protection and increase the
efficiency of trust transfer and data sharing between different trust domains [16–19].

This paper established a new consortium chain generation model to solve the above problems.
The rules of chain generation are extracted. The behaviors of nodes are analyzed and verified, based
on which the consensus vulnerability of CBCs is deeply analyzed. Based on this, the paper proposes
a novel generation mechanism for CBC based on the Asynchronous Binary Byzantine Consensus
Mechanism (ABBCM). The main contributions of this work are as follows:

(1) A new generation model of CBC is established. The influence of logical and physical topology
structure on the CBC performance is analyzed from the perspective of the chain generation process.
The single-chain generation rule is given to avoid chain forking.
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(2) The node behavior is analyzed and verified. Based on the node behavior, the consensus
vulnerability of CBCs is deeply analyzed. The normalized verification node aggregation index is
obtained to represent the consensus ability of consortium institutions.

(3) A novel CBC generation mechanism, ABBCM, based on asynchronous binary Byzantine
consensus, is proposed, which extends the general definition of Byzantine consensus and allows a
definite set of consensus values to combine multiple proposals. The experimental results show that
under the four classical Byzantine node attack behaviors, BA1 to BA4, the ABBCM obtains better time
delay than the Coin, a classical random Byzantine consensus mechanism, and can meet the throughput
of most IoT applications.

This paper is structured as follows. Section 2 describes the related work of CBCs and consensus
algorithms. Section 3 analyzes the effect of logical and physical topology on the CBC performance
from the perspective of chain generation and gives the single chain generation rule avoiding chain
forking. Section 4 analyzes the consensus vulnerability of CBCs based on node behavior. Section 5
introduces a novel consortium chain generation mechanism based on asynchronous binary Byzantine
consensus. In Section 6, the proposed mechanism is simulated, and the results are discussed. Section 7
concludes with lessons learned and a plan for future work.

2 Related Works

Decentralized applications based on CBC have been involved in data governance [20], cloud
storage [21], IoT [22], supply chain [23], and other fields to establish a trusted environment for
stakeholders, achieving trusted and durable services. However, its low scalability and throughput limit
the performance of the hosted decentralized applications. The section enfolds works to improve the
performance of CBCs in recent years: mainstream platforms and consensus mechanisms. Various
works related to the cross-domain consensus of CBCs are also compared based on research descrip-
tion, techniques, and limitations.

2.1 CBC Platforms

The mainstream CBC platforms include HyperLedger, Corda, and Quorum. In 2015, led by the
Linux Foundation, International Business Machines Corporation (IBM), Intel, Cisco, and others
announced the establishment of the HyperLedger project, which provides open-source reference
and implementation for transparent, public, and decentralized enterprise-level distributed ledger
technology. It also introduces blockchain into the application of distributed consortium ledger for
the first time, which is grounds for building an efficient business network based on blockchain in
the future [24–27]. Like Hyperledger, Corda uses a distributed notary mechanism to meet growing
business demands [28,29]. However, the distributed consensus mechanism’s performance between
nodes significantly impacts ledger synchronization between nodes and system performance. This
project provides consensus mechanism selection strategies for different businesses. For example, in
applications with high trust between nodes, Raft, Paxos, and other Crash Fault Tolerance (CFT)
algorithms are selected to achieve high system performance.

On the contrary, the BFT class algorithm is applied to obtain higher system security and
reliability. Subsequently, JPMorgan launched a distributed ledger protocol, Quorum, based on the
Raft consensus mechanism based on Ethereum. It greatly improved the system performance by
introducing the Enclave module with transaction isolation and specific encryption functions to realize
parallel operation [30,31]. Although the implementation schemes of the above CBC platforms are
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different, they pursue usability and scalability to ensure performance and adapt to different industries’
requirements.

2.2 Consensus Mechanism Based on CBCs

Based on the existing CBC platform, much research has been done to improve its performance
[32]. Some performance-driven consensus protocols of CBCs ensure ledger consistency and partition
fault tolerance through the delegation mechanism [33–37] but reduce the number of core nodes
participating in the consensus and the security brought by system decentralization. Sun et al. [38]
proposed a blockchain-based on-board social network data-sharing system. This scheme can realize
one-to-many data sharing, but the identity of the shared entity needs to be determined in advance,
making it difficult to realize large-scale and fine-grained data sharing. Su et al. [39] proposed
an authorization Byzantine fault-tolerant algorithm based on node reputation, which can reach
consensus among the various authorization partitions in CBCs. Yang et al. [40] built a new blockchain-
based energy management architecture for IoT-assisted smart homes, enabling smart homes to interact
with the grid and other users in an energy Internet system. Based on [40], Abishu et al. [41] proposed a
new consensus mechanism, which takes advantage of practical Byzantine fault tolerance and proof
of reputation to ensure the high reliability of energy transactions. Zhang et al. [42] proposed a
consensus mechanism based on credit risk assessment to realize credit management of counterparties
in distributed energy transactions. However, the above consensus research based on CBC still cannot
meet high concurrency, low delay, and strong security in Byzantine cross-domain applications.

There are also researches such as Tezos [43], which proposed an on-chain governance model
to generate blocks dynamically and realized the autonomous management of chain ecology by
establishing a digital federation, thus simplifying the verification process of transactions and smart
contracts, which has a broad application prospect in IoT where the computing power of node is limited.
A time segmentation solution of CBC based on the Tezos blockchain was proposed by [44], which
allows computing devices with low storage capacity to keep only the latest segmentation ledger instead
of the whole consortium ledger. It supports the construction of mobile self-organizing CBC and inter-
chain transactions under a 5G network of heterogeneous vehicle networking and conducts the built-in
form verification of some transactions and smart contracts. Qasse et al. [45] tried to solve the cross-
domain authentication and trust transfer between independent Inter-blockchain Communication
(IBC) systems based on CBC to ensure the security of multi-domain consensus consistency of user
identity. Practical Byzantine Fault Tolerance (PBFT) and other BFT consensus protocols do not
require verification nodes to solve encryption problems or provide proof of stake to determine the
ownership of accounting rights [46,47]. Generally, only a subset of participating nodes need to run
the BFT protocol. The consensus can be reached by exchanging rounds of messages so that nodes can
reach the consensus of the current round before the next round starts. Therefore, it has good anti-fork
and potential application prospects in CBCs [48].

BFT protocol usually can be verified mathematically as long as 2/3 of the participants follow the
protocol. Then, the BFT protocol can ensure no block conflicts regardless of whether there is an upper
limit of network delay [46]. Some studies further explored solutions to improve the performance of the
BFT consensus mechanism [49]. They proposed that cloud computing and programmable hardware
can be used to improve the efficiency of the BFT consensus, allowing the consortium chain to deliver
higher throughput, lower latency, and the ability to scale with better network bandwidth and hardware
environments. However, BFT-like consensus protocols still face challenges, such as the communication
systems’ high complexity and weak scalability.
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Table 1 compares the existing research with the proposed work based on the research description,
techniques, and limitations. However, these existing solutions usually require some nodes to be
coordinators. If the coordinators are non-Byzantine nodes and messages are delivered timely in
the asynchronous round, they broadcast their proposals to all nodes in the consortium network. If
not, exploiting its power within the consensus round can significantly hinder the performance. This
paper proposed a new consortium chain generation mechanism, which can realize cross-domain asyn-
chronous message passing between multi-consortium chains without reducing the system’s security.

Table 1: Overview of current related research work

Techniques Description Limitations

Threshold proxy re-encryption
scheme for secure IoT data
sharing based on blockchain
[14]

Blockchain-based approach to
IoT cross-domain data sharing.

The threshold proxy is
used to re-encrypt the
ciphertext, which results in
high complexity.

Blockchain enhanced data
sharing mechanism [15]

Industrial IoT data sharing
mechanism based on blockchain
and proxy re-encryption.

Whether a user’s attributes
meet the cross-domain
data access policy is
verified by the cloud server,
which reduces the
credibility of the system.

Blockchain-based data-sharing
system for vehicular social
networks [38]

The scheme can realize
one-to-many data sharing in
vehicular social networks.

The identity of the shared
entity needs to be
determined in advance, so
it is difficult to realize
large-scale and
fine-grained secure data
sharing.

Authorized Byzantine
fault-tolerant mechanism based
on node credit [39]

A secure charging scheme for
electric vehicles with smart
communities in energy
blockchain.

Not ensuring the scalability
of the application.

New energy management
mechanism based on
blockchain [40]

Privacy-preserving transactive
energy management for
IoT-aided smart homes via
blockchain.

Cannot meet the
requirements of high
reliability.

PBFT-based proof of
reputation (PPoR) [41]

Consensus mechanism for
blockchain-enabled
vehicle-to-vehicle energy
trading in the internet of electric
vehicles.

Not ensuring the scalability
of the application.

Distributed energy intelligent
transaction model based on
energy blockchain [42]

It implements credit
management of counterparties
in distributed energy trading.

Cannot meet the
requirements of high
concurrency.

(Continued)
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Table 1 (continued)

Techniques Description Limitations

Access control mechanism for
healthcare monitoring system
using blockchain-based smart
contracts [50]

It provides a secure access
control mechanism for patients
and realizes secure data sharing
among system entities.

Security of the access
control mechanism in the
Byzantine environment is
not explicitly discussed.

Blockchain-based
authentication and
authorization mechanism for
smart city applications [51]

By leveraging blockchain
technology to hold a global
view of the security policies
within the system.

Security of authentication
and authorization
mechanism in the
Byzantine environment is
not explicitly discussed.

Consortium chain generation
mechanism ABBCM (proposed
work)

It effectively improves the
consensus under asynchronous
message passing.

It suffers performance and
scalability issues of special
IoT application.

3 Chain Generation Model

CBC is usually endorsed by institutions to determine the set of verification nodes and the block
generation mechanism. In CBC, child blocks are voted from existing blocks to build a growing tree
of blocks, the root of which is called a “creation block”. Normally, blocks form a single chain under
the block generation mechanism, meaning a parent block has only one child block. However, due to
network delays or malicious attacks, one parent block inevitably generates more than one child block
to be confirmed. The consensus of CBC is to select only one child block from several unconfirmed child
blocks of each parent block when asynchronous nodes are executed asynchronously and sequentially,
that is, to select the most authoritative chain from the block tree.

The following is an Asynchronous node-based CBC Generation Model (ACCGM), of which
the practicability and effectiveness are illustrated by experiments. From the perspective of chain
generation, the influence of the logical and physical topology structure of the CBC network on its
performance is analyzed. Then, a single chain generation rule is given to prevent CBC from forking.

Definition 1: Asynchronous Node Set (ANS). ANS refers to a set of asynchronous sequential
execution nodes and their public keys in CBC, denoted as Γ = {

n1, n1PK
, n2, n2PK

, · · · , nk, nkPK

}
.

“Asynchronous” means that each node works at a specific speed that varies over time, and the node’s
performance is transparent to others. “Sequence” means that each node performs one atomic step at
a time as the work progresses.

ANS communicates by exchanging data through an asynchronous and reliable point-to-point
consortium network. Any pair of nodes can be connected through a two-way communication channel.
The transaction will not be lost, copied, or tampered with in the network transmission process, but
there is a transaction transmission delay. ni ∈ Γ represents the CBC node, and B represents the block.
It is assumed that each node has obtained part or all of the block ledger B on the chain when t ≥ 0, i.e.,
Bt

ni
= {B, t ≥ 0}. Genesis Block g is the only block known to all nodes at the initial time, i.e., B0

ni
= {g}.

The public and private keys of each node are generated by an elliptic curve encryption algorithm. The
node private key is used to verify the new block.

The ACCGM chain generation model satisfies the following properties:
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Property 1: Recursion. Each new block B is linked to the current tail block P (B) by the mapping
function P. The relationship between blocks can be expressed recursively as:

P0 (B) := B (1)

P2 (B) := P (P (B)) (2)

Pi (g) := φ, i ∈ N (3)

∀B → Pi (B) :�= B, i ∈ N (4)

Eqs. (1) and (2) are recursive representations of blockchains. In Eq. (3), g is a creation block
without a parent block. Eq. (4) defines that there is no cycle between blocks. By property 1, we defined
a chain C (B) that generates and contains a block B as the path from B to g, i.e.,

CB := (
B, P(B), · · · , Pi−1(B), g

)
(5)

Property 2: Locality. Due to network delay, eclipse attack, and other reasons, different CBC nodes
are allowed to perceive different block sets in the chain generation model, namely:

Bt
ni

�= Bt
nj ,ni ,nj∈N, t > 0 (6)

Property 3: Inheritance. In the process of CBC generation, blockchain consensus has inheritance,
namely:

∀ (s, t > 0) and (s > t) → Bt
ni

⊆ Bs
nj

h (B) = k ⇔ Pk (B) = g (7)

If B′ �= B, and B′ ∈ CB, then, B′ is called the ancestor block of B, while B is called the descendant
block of B′; if B′ = P (B), then B is called the direct descendant node of B′. Property 3 indicates that
the state of the blockchain in which the block B resides is obtained by executing all transactions in CB

from Genesis Block g.

It is assumed that a maximum of K (3K + 1 < k) Byzantine nodes are allowed to exist in CBC
consisting of k nodes. They may crash, fail to send or receive messages, send any messages, start at
any state, perform any state transitions, etc. For example, they can also use honest node “pollution”
calculations by sending a message with the same content as a partial honest node error estimate, thus
affecting the system consensus. Byzantine nodes cannot delay receiving messages indefinitely but can
control the network by modifying the order in which messages are received. In particular, no consensus
mechanism can ensure system security and scalability in a completely asynchronous messaging system
[36]. This paper assumes an upper limit time δ for message transmission and node computation delay
to ensure the system reaches the final consensus after a certain time.

Definition 2: Upper limit time δ. If any node v of CBC receives a message at time t, other nodes
in the chain can guarantee the message receive within the time window [t, t + δ].

In Definition 2, the local time deviation of each node on CBC is incorporated into δ. It is assumed
that the node na is currently processing a block with a timestamp of ta_Stamp when a block has a timestamp
of tb_Stamp, and tb_Stamp > ta_Stamp, meaning that a block with a timestamp of tb_Stamp occurs in the future.
Node na will reject the block. If tb_Stamp < ta_Stamp − δ indicates that the block with timestamp tb_Stamp has
been confirmed, node na will also reject the block.
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Definition 3: δ-Validation. Under the upper limit of delay time δ, the system considers a legitimate
verification that at time ts_Stamp, which contains the block header s, the highest block height l (s),
the block hash H (s), the hash h (s|u) of the new proposed block u, and the valid signature V
created by the private key of the verifier v, and satisfies Eq. (8) as a correct verification, indicated
as

〈
s, l(s), H(s), H(s |u), ts_Stamp,V

〉
δ
.{

s = Pi(u), i ≥ 1
VPK ∈ Γ

(8)

It can be seen that the correctness of node voting depends on the chain in which the node votes.
Typically, the verifier v broadcasts a six-tuple voting message: block header s of the current tail node,
the height l (s), the hash H (s) to the block header s, the hash h (s|u) to the new proposed block u, the
timestamp, and the signature of the verifier v. The current tail node s must be the ancestor of the new
proposed block u; otherwise, the vote is considered illegal. If the public key of the verifier v is not in
the verifier set, then this vote is also illegal.

Definition 4: If block s on CBC has a descendant block u, and u obtains the correct votes exceeding
the threshold value, then block s is considered to be determined. That is:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

justified (g) and finalised (g) == 1
s = Pi(u), i ≥ 1
u = Pj(u′), j ≥ 1
IsValidated

〈
s, l(s), H(s), H(s |u), ts_Stamp,V

〉
δ,sthreshold

== 1
IsValidated

〈
u, l(u), H(u), H(u |u′ ), tu_Stamp,V

〉
δ,uthreshold

== 1

(9)

As a basis for the recursive definition, it is generally assumed that Genesis Block g has both
received the correct votes over the threshold and is final. In Definition 4, block u′ is the descendant
block of block u. If both block s and its descendant block u obtain correct votes exceeding the threshold
value, then block s is considered to be determined. sthreshold and uthreshold are the consensus threshold values
when the upper limit of delay is δ.

Definition 5: Absolute majority link. An absolute majority link means that for ordered block
(s, u), denoted as s → u, at least one verifier exceeding the threshold has issued a confirmation vote
for the current end-of-chain block s and a δ-verification for the newly packaged block u.

Definition 6: Block conflict. Block conflict is considered to occur between blocks s and u if and
only if the two blocks s and u sharing the same Genesis Block g are located in different branches. That
is:⎧⎪⎪⎨
⎪⎪⎩

justified (g) and finalised (g) == 1
s �= Pi(u), i ≥ 1
u �= Pj(s), j ≥ 1
IsValidated

〈
s, l(s), H(s), H(s |u), ts_Stamp,V

〉
δ,sthreshold

== 0

(10)

From Definitions 2 to 6, it can be seen that if neither block s nor block u on the chain is the
ancestor or descendant of the other, the two finally determined blocks conflict. Therefore, the tail
block s is final; either it is the genesis block or if and only if

(1) The tail block s has obtained a verification node vote exceeding the threshold;

(2) There is an absolute majority link s → u;
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(3) Blocks s and u do not conflict;

(4) Block height h (u) = h (s) + 1.

Thus, the single chain generation rule avoiding chain forking and ensuring at most one reasonable
block height n (n > 0) on a single alliance chain is obtained:

Rule 1: Unequal height rule. If ∃g makes Pi (s1) = Pj (s2) = g (i > 0, j > 0), and s1 → u1 and
s2 → u2 are distinct absolute majority joins, then h (u1) �= h (u2).

Rule 2: Exclude rule. If ∃g makes Pi (s1) = Pj (s2) = g (i > 0, j > 0), and s1 → u1 and s2 → u2 are
distinct absolute majority joins, then h (s1) < h (s2) < h (u2) < h (u1) is not true.

Rule 3: Nonoverlapping rule. For any height n (n > 0), at most, one absolute majority joins s → u
such that h (u) = n.

4 Vulnerability Analysis

The existing access mechanism of CBC helps improve the ability of the ACCGM-based CBC
system to resist external attacks. Still, it cannot identify and prevent the threats of Byzantine nodes to
the system. The impact of the behavior of Byzantine nodes in the ACCGM consensus on the system
is analyzed as follows.

4.1 Behavior of Verification Node

In the ACCGM consensus process, Byzantine nodes can initiate abnormal voting without
violating the rules to obtain a final result or retain the intermediate data in the calculation process to
infer and snoop the data of other participants. On the one hand, when the verification node initiates
non-voting behavior, the correct voting proportion of the verifier will be lower than the consensus
threshold, and a consensus block will not be generated. On the other hand, if two or more conflicting
validation blocks are generated in the same round due to malicious voting or incorrect behavior of the
verifier, either the chain forks or the off-chain governance mechanism is used to support one branch at
the expense of the other. Therefore, the analysis of verification node behavior matters in constructing
the system incentive mechanism and ensuring the correct formation of CBC.

The voting behavior of the verification node will be written into the block as a transaction, which
can be divided into correct voting, malicious voting, incorrect voting, and no voting.

A. Correct voting

If only a single block meets Definition 3 and has verification nodes exceeding the threshold and
voting correctly in a certain round, the block will be written into CBC, and each node synchronizes
the ledger.

B. Malicious voting

Malicious voting means that the verifier votes for two new blocks in the same round simultane-
ously, which meets Definition 6, thus causing a conflict.

C. Incorrect voting

Incorrect voting refers to the situation in which the verifier cannot vote correctly in the same
consensus round due to some incorrect behavior. Typical cases of incorrect voting are as follows:

(1) The verifier sends the vote later, resulting in the vote not reaching CBC within the consensus
round.
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(2) Some nodes do not propagate the vote of a verification node, resulting in the vote not reaching
CBC within the consensus round.

(3) The vote does not reach CBC within the consensus round due to network delay.

(4) The signature of the verifier’s vote is invalid.

(5) The voting block is not generated in the current highest block.

D. No voting

No voting includes no voting of the verification node and voting loss.

Non-byzantine nodes may produce votes A and C, and Byzantine nodes may produce votes B,
C, and D. When dealing with voting transactions, CBC based on ABBCM only processes the correct
voting A and malicious voting B defined above; the incorrect voting and no voting are invalid votes and
will be ignored. If only correct votes exist, the system will select a single legal block within a specified
time cycle and record it in CBC. Otherwise, the system may fail to obtain consensus due to the failure
to obtain more than the threshold number of verification signatures in a specific time round, called
active failure, or the system forks due to two conflicting blocks being finalized simultaneously, called
a security failure.

The consortium institutions will use the punishment mechanism for cases B, C, and D. The
mechanism is affected by the following aspects:

(1) The larger the proportion of malicious voting nodes, incorrect voting nodes, or non-voting
nodes, the more serious the penalty will be.

(2) Failure to consensus or chain forks will increase punishment. The following is a formal analysis.

It is assumed that m blocks (m is constant) are written on a block s in CBC, and block s is confirmed
by probability, then the Block Finalisation Factor (BFF) of block s in round i is:

BFFi,rs,i =

⎧⎪⎪⎨
⎪⎪⎩

0, rs,i = 0
rs,i, rs,i < m
m, rs,i ≥ m, h (si) − h (s) ≥ m
h (si) − h(s), rs,i ≥ m, h (si) − h (s) < m

(11)

where rs,i ∈ N is the consensus round experienced from block s writing into CBC to the current round
i. When rs,i ≥ m, h (si) − h (s) < m, it indicates that there are non-consensus rounds in rs,i rounds after
block s. For example, the correct voting cannot reach the preset consensus threshold due to the large
proportion of malicious voting nodes, incorrect voting nodes, or non-voting nodes. Thus, consensus
cannot be obtained.

vj ∈ V , 0 < j ≤ Mi, where Mi is the total number of verification nodes in round i, and the vote of
verification node vj in round i is denoted as Ψvj ,i.

Ψvj ,i =
{

1, Verification node vj votes correctly in round i
0, otherwise (12)

By analyzing the behavior of validation nodes, the polymerization index of validation nodes was
obtained to represent the consensus ability of consortium institutions. The node polymerization index
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Ci for normalization verification of the mechanism in round i can be expressed as:

Ci =

⎧⎪⎨
⎪⎩

∑
vj∈V Ψvj ,i · (1 − a)

Mi · |BFFi − N| , BFFi < N
∑

vj∈V Ψvj ,i · (1 − a)/Mi, BFFi = N
(13)

According to the Byzantine node proportion a ∈ (0, 1/3), 2/3 < (1 − a) < 1, and when BFFi < N,
|BFFi − N| ≥ 1, so Ci ∈ (0, 1).

4.2 Vulnerability of CBC Consensus

In the chain generation model ACCGM, the CBC network is partially synchronous, and the
transaction transfer between nodes has an upper bound finite delay. Although the verification node
can independently choose the time for issuing the voting transaction within each consensus round, it
cannot ensure that the voting transaction of each verification node in each round will be synchronized
among the CBC nodes before the end of the round. If the voting transaction is issued too early, the
verification node will fail to vote on other more competitive blocks within the consensus round. Late
issuance of voting transactions may result in activity consensus failure. In addition, the authentication
node update transaction is allowed to be sent after only consensus blocks are generated in each
consensus round, and the authentication node set is dynamically managed. Therefore, in a single
consensus round, it is necessary to consider the impact of network partition, network delay, Byzantine
node proportion, verification node state, and other factors on the consensus. Network partition and
delay have been explained in the previous section. The following focuses on analyzing the influence of
Byzantine node proportion and verification node state on the consensus.

4.2.1 Consensus Vulnerability Based on Byzantine Node Proportion

Consortium nodes are divided into ordinary nodes, which sort transactions and package blocks in
the underlying chain, and verification nodes, which vote for new blocks; however, they are somewhat
interdependent. Ordinary nodes collect and classify transactions, determine the order of transactions
in CBC, and write global computer state information (contract variables, etc.) and related data into
the block as part of the transaction. The voting transaction sent by the verification node is the
same as the ordinary transaction, which needs to be packaged and recorded by the ordinary node.
Byzantine ordinary nodes can refuse to include the voting transactions of some verification nodes in
their proposed blocks. It can also improve the probability of successful execution of the above attacks
by increasing the proportion of Byzantine nodes in a working state, sending out voting transactions in
advance in consensus rounds, or even forcing other nodes to perform the same operation by network
attacks.

When enough non-Byzantine nodes are offline in a certain period, the proportion of Byzantine
nodes will increase, greatly improving the possibility of chain forking in the system. It is assumed
that the proportion of Byzantine nodes in ACCGM-based CBC is a, and the honest nodes working
together on the single CBC account for the majority. In the actual working scenario, node offline,
network delay, eclipse attack, sybil attack, etc., will impact a. In the ACCGM-based CBC network,
Byzantine nodes in the current tail block s may create a longer chain than the current chain. The
probability of the above event decreases exponentially to the block height difference m of the forked
block s and the new tail block s′ (s �= s′). When the Byzantine node attacks, if there are m descendant
blocks after the original chain block s, the probability of generating a longer forked chain s′ from the
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block s is (a/ (1 − a))
m. When m is large enough, the above malicious attacks will become impractical.

The relationship between Byzantine node proportion and system security is shown in Fig. 1.
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Figure 1: The relationship between Byzantine node proportion and system security

It can be seen that when a is constant, the probability of generating Byzantine chain forking will
be significantly lower as m increases. When a = 1/3, m = 9, the probability of generating Byzantine
chain forking will be about 5 × 10−4, almost negligible. However, as a increases, especially approaches
0.5, the probability of producing a Byzantine chain forking approaches 1 for any value of m.

4.2.2 Consensus Vulnerability Based on Node Reputation

In the ACCGM-based CBC distributed network environment, the initial reputation of the node
is provided by the endorsement of the institutions, which is a static trust management mechanism
based on authentication and authorization. However, when each node participates in the calculation
autonomously, using the initial reputation to evaluate the node often presents a lag to some extent.
For example, nodes in the CBC network have the capability of routing and forwarding transactions
or blocks. Nodes with high initial reputations hijacked by malicious forces can independently change
the forwarding route or discard part of transactions or blocks. If nodes with high initial reputations
provide fraudulent services or do not provide services, the system consensus will be seriously threat-
ened. This paper established a node trust model of CBC based on consensus rotation information
feedback and proposed a dynamic maintenance mechanism of node reputation relying on weighted
trust feedback from nodes to improve the accuracy and dynamic adaptability of node reputation
evaluation. The above model is quantitatively evaluated to further analyze the relationship between
node reputation and CBC consensus.

Definition 7: Node reliability evaluation function. The reliability evaluation of node p to node q
in consensus round i is defined as function f (p, q)

i:

f (p, q)
i =

{
f (p, q)

i−1 + ∂(1 − f (p, q)
i−1

), i > 0
1/2, i = 0

(14)

where ∂ is the standard deviation of the trust degree of the consortium institution to the consortium
node set.

Definition 8: Node set trust evaluation function. It is assumed that the number of CBC nodes in
each consensus round is k, and η ∈ (0, 1] represents the proportion of verification nodes that normally
work within a period. (1 − η) represents the proportion of verification nodes that work abnormally,
and the institutional credit value changes dynamically with η, then the trust degree of the node set of
the consortium institutions in consensus round i can be expressed as Eq. (15).
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DΓ,i =

⎧⎪⎪⎨
⎪⎪⎩η ·

i∑
k=0

∑
p,q∈S

f (p, q)

ik2
, i > 0

η, i = 0

(15)

In Eq. (15), i = 0 indicates that there is no interaction history between nodes in the initial round,
so the direct trust degree of the initial round is set as η.

Before the system reaches a consensus at the beginning of each round, when the value of the trust
evaluation function DΓ,i of the verification node set is lower than the threshold, the set is dynamically
adjusted by

(1) keeping the credit value of the verification node whose value of credibility evaluation function
is higher than the preset value in each round unchanged;

(2) reducing the credibility value of verification nodes whose credibility evaluation function value
is lower than the preset value or does not vote;

(3) removing the verification nodes whose reputation value is lower than the reputation threshold
from the set of verification nodes, which will increase the influence of normally working verification
nodes in the consortium institutions, significantly reducing the risk of system consensus.

5 Asynchronous Binary Byzantine Consensus-Based Chain Generation Mechanism

The above analysis of the influence of network partition, network delay, Byzantine node propor-
tion, verification node state, and other factors on the consensus found that in CBC with K < k/3
Byzantine nodes, the consensus between k nodes can be probabilistically achieved by using the local
random strategy of nodes or the shared common random strategy. However, these solutions typically
require a unique coordinator process, sometimes called a leader, to be non-faulty. The advantage
is that if the coordinator is non-faulty and the messages are delivered timely in an asynchronous
round, then the coordinator broadcasts its proposal to all processes, and this value is decided after
a constant number of message delays. The drawback is that a faulty coordinator can dramatically
impact the algorithm’s performance by leveraging the power and imposing its value on all. Non-
faulty processes thus have no choice but to decide nothing in this round. Thus, the above method
cannot effectively achieve consensus in asynchronous messaging systems. For the above problems, the
influence of Byzantine nodes on CBC consensus is further analyzed, and a novel mechanism of CBC
generation based on asynchronous binary Byzantine consensus mechanism is presented, which is time
optimal and resilience optimal without needing signatures. Unlike a classic (strong) coordinator, the
weak coordinator in this mechanism does not impose its value. On the one hand, this allows non-faulty
processes to decide a value quickly without the coordinator’s help. On the other hand, the coordinator
helps the algorithm terminate if non-faulty processes know that they proposed distinct values that
might all be decided.

The ABBCM-based CBC generation mechanism relies on many-to-many communication of
binary values of nodes, extending the common definition of Byzantine consensus and allowing a
definite set of consensus values to combine multiple proposals. On the one hand, it is assumed that
values proposed only by Byzantine nodes cannot be agreed upon, and non-Byzantine nodes can
quickly achieve consensus without the help of coordinating nodes. On the other hand, if the consensus
values proposed by non-Byzantine nodes are not consistent, the round of consensus will be terminated
early. Let � be a set of consensus values proposed by the node. In the multivariate consensus, � may
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contain any number of values. To simplify the problem, let � = {0,1} in the binary consensus. Assuming
that each non-Byzantine node proposes a value for consensus, the binary Byzantine consensus problem
can be translated into having each node determine a value in a way that satisfies the following
properties:

• Certainty. Each non-Byzantine node will eventually propose a value for consensus.
• Consistency. No two non-Byzantine nodes determine different values.
• Validity. If all non-Byzantine nodes propose the same value for the consensus, the final

consensus value will not be something else.

ABBCM relies on many-to-many communication (binary value broadcast) of node binary values,
expressed as BiVa-B. In the BiVa-B instance, each non-Byzantine node ni broadcasts the current round
of binary values for consensus and obtains a set of binary values for consensus proposed by other
nodes over the network, stored in the local read-only variable set ξi, where ξi is initialized to φ, and the
element in set ξi is added when a new value is received.

The following rules define BiVa-B:

Rule 1: Incremental rule. If at least (κ+1) non-Byzantine nodes ni broadcast the same value �,
then each node ni adds � to its local read-only variable set ξi.

Rule 2: Reverse rule. If ni is a non-Byzantine node and � ∈ ξi, � has been broadcast by a non-
Byzantine node.

Rule 3: Diffusion rule. If a non-Byzantine node ni adds � to its local read-only variable set ξi,
eventually, for every non-Byzantine node nj, there is � ∈ ξi.

Rule 4: Balancing rule. Finally, the local read-only variable set ξi for each non-Byzantine node ni

is not empty.

Based on the above rules, the set of local read-only variables ξi for each non-Byzantine node ni:
(1) becomes non-empty, (2) becomes equal, (3) contains all values broadcast by non-Byzantine nodes,
and (4) contains no values broadcast only by Byzantine nodes.

System model ABBCMk,K
δ [K < k/3] is established below, which can provide strong effectiveness

and consistency in asynchronous message communication system, as well as certainty to meet the needs
of CBC applications. The local variables involved in node ni are shown in Table 2, and the main process
is shown in Algorithm 1. Node ni proposes the initial consensus value by calling bin-propose (�i) in
the asynchronous round and assigns �i to the local current estimate estimatei of the binary proposal
consensus value; After that, each non-Byzantine node enters a series of asynchronous rounds. In any
rotation r, the non-Byzantine node ni proceeds in three stages.

Table 2: Local variables of nodes

Notation Meaning

estimatei Represents the local current estimate of the proposed consensus value of node ni,
initialized to the proposed consensus value of ni.

ri Number of local asynchronous rounds, initialized to 0.
ξi [ri] Represents the local consensus value set constructed by BiVa-B in round r, initialized

to φ.
βi Auxiliary binary value.

(Continued)
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Table 2 (continued)

Notation Meaning

αi Auxiliary value set.
Estimate[r]() Used to store the current decision estimate estimatei broadcast by ni in round r.
Auxiliary[r]() Used to broadcast the current value of ξi [r].

Algorithm 1: Algorithm of ABBCMk,K
δ [K < k/3]

Input: Consortium chain C, estimate �i of consensus value proposed by node ni in round r;
Output: Consensus value for round r.
Function bin_propose (�i)

estimatei ← �i; ri ← 0; // Assign the initial consensus value �i to the local current
// estimate estimatei of the binary proposal consensus value

While (true) do
BiVa-broadcast Estimate[ri] (estimatei); // Broadcast the current binary consensus

// estimate of the node
Wait_until (ξi [ri] �= φ);
Broadcast Auxiliary [ri] (ξi [ri]); // Message ξi [ri] is broadcast by node ni

Wait_until (messages Auxiliary [ri] (β_valn(1)),...,Auxiliary[ri] (β_valn(k−K)))
// ni waits until has been received from (k − K) different nodes n (x)

βi ← rimod2; //node ni determines the candidate for the consensus value
If (valuesi = {�})

estimatei ← �; // If αi contains a single element �, � becomes the new estimate of ni.
Else

estimatei ← βi // If αi = {0, 1}, then node ni cannot be determined.
// ni chooses one of these values as its new estimate.

End If
End while
When b_val[r](�) is BiVa-delivered by BiVa_broadcast [r] do

ξi [r] ← ξi [r]∪{�} //When the consensus proposal value is forwarded and broadcast over
// BiVa-deliver, it is added to ξi [ri]

Return ξi [ri];
End function

Stage 1: Consensus value cleaning to filter out the consensus value proposed by the Byzantine
node. Node ni enters the next round and broadcasts its current binary consensus value estimate.
In BiVa-broadcast(), node ni receives the same consensus proposal value from K+1 nodes and
rebroadcasts the value. When � is received from 2K+1 different processes, each node ni adds it to
ξi [r] and forwards the value. Also, when BiVa-deliver forwards a consensus proposal value, it is added
to ξi [r]. Finally, the set ξ of all non-Byzantine nodes becomes non-empty and equal and contains only
all the consensus proposal values broadcast by non-Byzantine nodes.

Stage 2: Consensus value estimate exchange to reach a consensus. At this stage, node ni broadcasts
the message Auxiliary[r](), whose content is c. Node ni then waits until it receives a set of αi that satisfy
the following two properties:
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• The values of αi come from Auxiliary[r]() sets of at least (k-K) different nodes.
• αi ⊆ ξi [ri]. Because the BiVa-broadcast() return values of Byzantine nodes can be filtered out

in the first stage, even if Byzantine nodes send their false message set Auxiliary[r](), which
contains values proposed only by Byzantine nodes, αi will also only contain consensus estimates
broadcast by non-Byzantine nodes.

Thus, in any round of r, αi ⊆ {0, 1} contains only the values broadcast by non-Byzantine nodes
with BiVa-broadcast() algorithm.

Stage 3: Consensus values converge, a local calculation stage, to determine the candidate of
consensus value of node ni. The convergence process of consensus value depends on the content of αi.

• If αi contains a single element �, � becomes the new consensus estimate for node ni and a
candidate for consensus determination.

• If αi = {0, 1}, nodes ni cannot determine the new estimate of consensus value. Since both values
are presented by non-Byzantine nodes, to converge uniformly, ni can choose one of them as its
new estimate of consensus value based on the sharing strategy, for example, b = rmod2, because
the value is the same among all non-Byzantine nodes in the same round.

In the above ABBCM-based CBC generation mechanism, node ni obtains the consensus value � of
the current round by calling decide (�). However, calling decide (�) does not terminate its participation
in the algorithm, which means node ni continues to execute circularly after the call returns because it
may be necessary to help other nodes converge to the determined consensus value in the following two
rounds in the node decision-making.

6 Experiments

To test the performance of the asynchronous binary Byzantine consensus-based chain generation
mechanism proposed in this paper, we built the Ethereum simulation test environment consisting of
100 virtual verification nodes on five servers and compared its performance with “Coin,” the recent
randomized algorithm from Mostéfaoui et al. [52] used in the HoneyBadger blockchain. Experiments
show that under all our workloads, our mechanism outperforms “Coin,” which is known to terminate
in O (1) round in expectation. This is due to the overhead of the Coin implementation that slows down
every round and the risks of being unlucky at tossing the coin by increasing the number of rounds
needed to decide. Even with Byzantine behaviors, our method is always superior to the latter.

The experimental platform was CPU Xeon-E5 with memory size 64 G and operating system
Ubuntu-64bit. Consortium chain CA was constructed. The total number of verification nodes is
n = 100, the proportion of Byzantine nodes is denoted as a, the time interval for consortium chain to
construct transactions is denoted as Δ, and the number of consensus transactions in a single round is
denoted as τ .

Considering that the behavior of Byzantine node can greatly affect chain generation based on
binary Byzantine consensus, the following four typical Byzantine attack behaviors are constructed for
performance testing:

BA1: Byzantine nodes send bit flip value; when the protocol specification expects to send bit b̃,
the Byzantine node sends bit b.

BA2: Byzantine nodes send the combination of the random value and the flipped value of the bit.

BA3: Byzantine nodes do not respond to any transactions.
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BA4: Byzantine nodes form consortiums to block the consensus of non-Byzantine nodes in each
round by sending messages.

6.1 Delay Test

To eliminate the influence of the time interval of constructing transactions on the delay, referring
to the previous work [53] and take Δ = 1 ms, under the four classical attack behaviors BA1 to BA4
of the Byzantine node defined in this paper, the comparison of the delay under the classical Byzantine
consensus mechanism Coin [52] proposed by Mostéfaoui et al. is shown in Fig. 2.

(a) Delay comparison under BA1 (b) Delay comparison under BA2

(c) Delay comparison under BA3 (d) Delay comparison under BA4
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Figure 2: Delay comparison between ABBCM and Coin

As shown in Fig. 2, when the Byzantine node proportion a gradually increases, the time delay
of both ABBCM and Coin increases. The larger a is, the more significant the delay increment of the
two algorithms is, indicating that the transaction processing delay is positively correlated with the
Byzantine node proportion. Under the specific value of a and the four classical Byzantine node attack
behaviors BA1 to BA4 limited in this paper, the time delay of ABBCM is better than Coin’s. Under the
four attacks, the total delay of ABBCM is reduced by 52% compared with Coin. When a → 0+, the
transaction delay between ABBCM and Coin tends to be stable. As a increases, the transaction delay
presents a certain weak robustness under four classical Byzantine node attack behaviors BA1 to BA4.
In Fig. 2c, under the attack behavior of BA3, ABBCM obtains a minimum average delay of 382 ms.
In Fig. 2d, under the attack behavior of BA4, ABBCM obtains a maximum average delay of 331 ms.
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6.2 Throughput Test

(1) The consensus round time r is not limited

Consensus round time r is not limited, which means that r is set to be large enough so that
transactions of block can reach consensus within a time less than r. In this case, consensus round
time will not impact consensus time and throughput. According to the delay test results, r is set as
1 s, the proportion of Byzantine nodes a = 33%, the interval for the consortium chain to construct
transactions Δ = 1 ms, and the number of consensus transactions in a single round τ = 10, 20, 30, 40.
The throughput test is conducted under the four classical Byzantine node attack behaviors BA1 to
BA4 limited in this paper, of which the results are shown in Fig. 3.

(a) Throughput test under BA1 (b) Throughput test under BA2 

(c) Throughput test under BA3 (d) Throughput test under BA4
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Figure 3: Throughput test under unrestricted conditions

As can be seen from Fig. 3, when consensus round time r is not limited, throughput in four
Byzantine attack scenarios increases with the increase of consensus transactions in a single round.
In a specific Byzantine attack scenario, when the consensus transactions in a single round increase
slowly from 1, the system throughput increases significantly, such as the phase from τ = 10 to τ = 20
in Fig. 3. When the consensus transactions in a single round increase to a certain extent, the system
throughput increment slows down, such as the phase from τ = 30 to τ = 40 in Fig. 3. Under the
four attack scenarios, Byzantine attack BA3 has the weakest impact on system throughput, with
a maximum average throughput of 243TPS, which is because the attack mode of Byzantine nodes
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without any response increases the proportion of non-Byzantine nodes, reducing the consensus time
to some extent. On the contrary, Byzantine attack BA4 has the strongest effect on system throughput,
with a maximum average throughput of 232TPS.

(2) The consensus round time r is limited

Consensus round time r is limited, so setting r to a reasonable value affects consensus time and
throughput. According to the delay test results, r is set to 500 ms, the proportion of Byzantine nodes
a = 33%, the interval for consortium chain to construct transactions Δ = 1 ms, and the number of
consensus transactions in a single round τ = 10, 20, 30, 40. The throughput test is conducted under the
four classical Byzantine node attack behaviors BA1 to BA4 limited in this paper, of which the results
are shown in Fig. 4.

(a) Throughput test under BA1 (b) Throughput test under BA2

(c) Throughput test under BA3  (d) Throughput test under BA4

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r 

of
 tr

an
sa

ct
io

ns
 c

om
pl

et
ed

(1
0 

th
ou

sa
nd

)

Time (s)

���� ���� ���� ����

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r 

of
 tr

an
sa

ct
io

ns
 c

om
pl

et
ed

(1
0 

th
ou

sa
nd

)

Time (s)

τ=10 τ=20 τ=30 τ=40

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r 

of
 tr

an
sa

ct
io

ns
 c

om
pl

et
ed

(1
0t

ho
us

an
d)

���� ���� ���� ����

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r 

of
 tr

an
sa

ct
io

ns
 c

om
pl

et
ed

(1
0 

th
ou

sa
nd

)

Time (s)Time (s)

���� ���� ���� ����

Figure 4: Throughput test under restricted conditions

Compared with the throughput test under unrestricted conditions, the system throughput
decreases under the four attack modes when the consensus round time is set to 500 ms in Fig. 4.
Under the same conditions, the average value of the highest throughput decreases by 9.2%, and the
average value of the lowest throughput decreases by about 50%. In Fig. 4c, under attack BA3, system
throughput declines slightly because Byzantine nodes do not respond to anything, which increases the
influence of non-Byzantine nodes to some extent and thus weakens the influence of the reduction of
consensus round time on consensus efficiency. In Figs. 4a and 4d, under attacks BA1 and BA4, the
system throughput decreases greatly because the influence of Byzantine nodes reduces the consensus
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efficiency, failing part of the consensus to be completed within a consensus round time, especially
when the number of consensus transactions in a single round is large. In addition, under attack BA4,
after Byzantine nodes form a consortium, they cannot control the speed or order of messages from
non-Byzantine nodes. However, they can observe and decide the time to send messages according to
the time when non-Byzantine nodes receive or forward messages. Thus, they can significantly hinder
the consensus progress within the round.

7 Conclusion

There is not yet an effective consensus algorithm ensuring safety and liveness in fully asynchronous
message-passing systems, and even a single process may cause a consortium chain system to crash.
However, the crash failure model is less severe than the Byzantine failure model because if the process
commits Byzantine failure, the system cannot reach a consensus. To ensure consensus is reached, a
consortium chain generation model based on ANS in the Byzantine environment is established to
further analyze the influence of chain structure on its performance, obtaining single chain generation
rules to avoid chain forking. On this basis, the influence of network partition, network delay, Byzantine
node proportion, and verification node state on the consensus process is further analyzed, and a
novel consortium chain generation mechanism based on asynchronous binary Byzantine consensus
is proposed. The mechanism neither uses a classical (strong) coordinator nor relies on randomization
or signatures, meaning it does not wait for a specific message. The above mechanism shows better
consensus efficiency under the four classical Byzantine aggression behaviors and asynchronous
environment. In the future, based on the study of the asynchronous binary Byzantine consensus
mechanism, the relationship between the effectiveness of multiple Byzantine consensus mechanisms
and the behavior of nodes in the chain generation process will be studied to meet the needs of more
practical application scenarios.
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