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ABSTRACT

Wheat rust diseases are one of the major types of fungal diseases that cause substantial yield quality losses of
15%–20% every year. The wheat rust diseases are identified either through experienced evaluators or computer-
assisted techniques. The experienced evaluators take time to identify the disease which is highly laborious and too
costly. If wheat rust diseases are predicted at the development stages, then fungicides are sprayed earlier which
helps to increase wheat yield quality. To solve the experienced evaluator issues, a combined region extraction and
cross-entropy support vector machine (CE-SVM) model is proposed for wheat rust disease identification. In the
proposed system, a total of 2300 secondary source images were augmented through flipping, cropping, and rotation
techniques. The augmented images are preprocessed by histogram equalization. As a result, preprocessed images
have been applied to region extraction convolutional neural networks (RCNN); Fast-RCNN, Faster-RCNN, and
Mask-RCNN models for wheat plant patch extraction. Different layers of region extraction models construct a
feature vector that is later passed to the CE-SVM model. As a result, the Gaussian kernel function in CE-SVM
achieves high F1-score (88.43%) and accuracy (93.60%) for wheat stripe rust disease classification.
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1 Introduction

Wheat is one of the most important staple crops in the world [1], providing a major source of
food for billions of people. However, the growth and productivity of wheat crops are often threatened
by a variety of diseases, including fungal, bacterial, and viral infections [2]. These diseases can
cause significant damage to plants, leading to reduced yields and decreased grain quality. Generally,
professionals are responsible for making decisions about the need to use pesticides. There are several
methods for recognizing wheat diseases [3,4] including visual inspection, laboratory analysis, and the
use of digital tools such as image analysis. Image analysis, in particular, has gained increasing attention
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as a promising approach for the rapid and accurate recognition of wheat diseases. By leveraging the
power of computer vision and machine learning [5], image analysis can assist in the early detection and
diagnosis of diseases, which helps to reduce yield quality losses. Over the past few years, automated
solutions that incorporate artificial intelligence techniques and smartphone applications have been
used in automated plant protection [6]. Among all types of wheat diseases, wheat rust diseases are a
major threat to the global food supply, and their recognition is crucial for efficient crop management.
Wheat rust [7,8] is a plant disease caused by fungal pathogens belonging to the genus Puccinia. There
are three main types of wheat rust: stem rust, leaf rust, and stripe rust. These diseases can cause
significant yield loss and reduce the quality of wheat grain. Stem rust is the most damaging, as it can
kill the entire plant [9], while leaf rust and stripe rust mainly affect the leaves and stems, respectively.
To control wheat rust diseases, farmers [10] can use different fungicides to control the disease in
the flowering stage. Image processing, image segmentation, machine learning, and deep learning
have become increasingly popular tools in the field of plant disease recognition. Image processing
techniques are used to preprocess and enhance the quality of the images captured of the wheat plant.
Image segmentation [11] is then used to separate the infected parts of the plant from the healthy
parts. Machine learning and deep learning algorithms are then trained on these segmented images
to accurately recognize and classify the type of rust disease present in wheat plants.

1.1 Wheat Rust

Rust is a fungal disease that spreads through resistant cultivars and environmental conditions [12].
Even, wheat rust diseases are caused by fungal pathogens that can be transmitted in a few different
ways. The main mode of transmission for wheat rust is through the airborne spores of the fungal
pathogen. When the spores are released from infected wheat plants, they can be carried by wind
currents to infect other nearby wheat plants. There are three main types of wheat rust diseases: stem
rust, stripe rust, and leaf rust diseases.

1.1.1 Stem Rust

This disease is caused by the fungus Puccinia graminis f. sp. tritici known as PGT [13], which
attacks the stems, leaves, and spikes of wheat plants. It can cause significant damage to the crop, leading
to yield losses of up to 100%. PGT is typically discovered in warm, moist environments and symptoms
of infection are typically expressed as masses of red-brick urediniospores on the leaf sheaths.

1.1.2 Stripe Rust

This disease is affected by the fungus Puccinia striiformis (PST), which attacks the leaves and
spikes of wheat plants. It can cause yellow stripes on the leaves and lead to yield losses of up to 60%.
The PST pathogen is germinated in temperate regions along with cool and wet weather [14]. Yellow-
orange spores are generated as the pustules mature stage. As the disease grows, the tissues surrounding
the pustules become brown and dry.

1.1.3 Leaf Rust

Leaf rust is produced by the fungus Puccinia triticina (PT) [14], which attacks the leaves of wheat
plants. The yellowish-orange pustules appear on the leaves, leading to defoliation and yield losses of
up to 50%. The pathogen grows in areas with mild temperatures and high humidity. The summary of
rust diseases along with their pathogen has been presented in Table 1.
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Table 1: Summary of rust diseases

Factors Stem rust Leaf rust Stripe rust

Pathogen PGT PT PST
Affected parts Stems, leaf sheaths, leaf

heading
Stems, headings, leaf
sheaths

Leaf blades, leaf
sheaths

Color Orange-red Brown Yellow-orange
Shape Oval Round Small round blister

1.2 Deep Learning-Based Image Recognition Process

To recognize the type of rust diseases, one way to approach for recognize the rust diseases is to
develop a deep learning-based image recognition process, which involves breaking down the disease
[2,15] into its parts and identifying the visual features that distinguish it from other diseases or healthy
plants. The recognition process involves image preprocessing, image segmentation, feature extraction,
and image classification phases. The description of recognition process along with its phases has been
described as:

1.2.1 Image Processing

It is an important step in image recognition tasks. It involves applying a set of techniques to
improve the quality of images. Image preprocessing techniques are applied to improve the visibility
of the features [16–18] in the image and to remove any unwanted noise to produce enhanced images.

1.2.2 Image Segmentation

Image segmentation is the process of dividing an image into multiple segments or regions of
interest, and it is a common technique used in computer vision for disease detection in crops
[19]. One-stage segmentation models such as YOLACT [6], RetinaNet [20], and YOLOV5 [21] can
simultaneously perform both feature extraction and object detection in a single pass. These models
have shown promising results in detecting wheat rust diseases in images. Two-stage segmentation
models include the region extraction models and their variants such as Region-based convolutional
neural networks (RCNN) Mask-RCNN [12], Fast-RCNN [16], Faster-RCNN [17], models separate
feature extraction and object detection into two stages. The first stage generates region proposals, and
the second stage classifies each proposal as either a disease or a nondisease infection. These models
typically require more computational resources, but they can provide more accurate and fine-grained
segmentation results compared to one-stage models. Hence, one-stage and two-stage segmentation
techniques allow for highly automated and accurate recognition of wheat rust diseases, contributing
to improved crop management and increased food security.

• Simple segmentation: It is a basic segmentation technique that divides an image into different
regions based on simple features [17]. This type of segmentation is useful for computer vision
object detection and tracking tasks.

• Stage-wise segmentation: In stage-wise segmentation, it finds multiple objects and separates
each object into the same object class [18,19]. The recognition result shows that the large
variety of object-related categories in the real scenario can be distinguished and that instances
of objects belonging to the same class, which is subject to intraclass appearance variation, may
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describe the computing cost of the segmentation algorithm. However, it refers to efficient real-
time computational expenses, such as lower memory/storage needs and reduced CPU load in
seconds.

• Process of stage-wise segmentation: Instance segmentation is a two-way process. First, it takes
the input as an image. After inputting an image, the region proposal network (RPN) aligns the
region of interest (ROI) in an image. The second process of instance segmentation is known
as the classification process. The classification and localization [20] of an image are achieved
through a fully connected network layer. With the help of the softmax function, multiple classes
of the image can be classified. The regression in the fully connected network (FCN) layer
makes the bounding boxes of each classified class in an image. With the development of deep
learning techniques, many frameworks based on instance segmentation have been developed.
The process of instance segmentation in terms of classification and localization is shown
in Fig. 1.

Figure 1: Process of stage-wise segmentation

1.2.3 Feature Extraction

This involves identifying the visual features that distinguish the disease from other parts of the
image. This can include texture, color, shape, and size features. It is often necessary to extract features
from segmented regions after performing image segmentation [21,22]. Feature extraction involves
identifying and quantifying certain properties of the image segments that can be used for various
purposes, such as object recognition and classification.

1.2.4 Image Classification

It is the process of categorizing an image into a predetermined set of classes. This involves
analyzing the image and identifying its distinguishing features [23–25] such as color, texture, and shape,
to determine which category it belongs to. Once these features have been extracted, they can be used
as input to a machine learning model or deep learning model to perform image classification. The
purpose of image classification after feature extraction is to predict the category or class of a new
image based on the extracted features.

1.3 Problem Definition

Color contrast and noise variance are the important factors that create issues in the image
recognition process. Image background complexity describes the characteristics of an image. There
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are many aspects, such as different types of noises, and color contrast, which often resemble the area
of interest itself [26,27]. Because of the presence of undesirable or random fluctuations in pixel values,
this can damage image quality and generate noise variance in images. Color contrast issues are caused
by a lack of diversity in color intensity, which can result in a muted appearance [28]. There is a need
to handle the above-mentioned issues in a better way.

1.4 Highlights of the Study

• This study designs a combined approach of region extraction and CE-SVM model to improve
the classification accuracy for wheat rust disease recognition. The CE-SVM model performs a
multi-class classification by classifying different types of rust diseases effectively.

• Using an augmented rust disease dataset ensures a complex feature learning which improves
the rust disease differentiation.

• The study offers early identification and quick disease control strategies that increase the crop
production rate.

1.5 The Major Contribution of This Study

The major contribution of this study is described as:

• The current study improves classification accuracy by recognizing wheat rust diseases through
the integration of region extraction and CE-SVM models.

• The application of CE-SVM shows the machine learning flexibility for multiclass rust disease
classification and helps accurate choice-making in farming environments.

• The proposed model helps minimize crop losses, optimizing resource allocation and supporting
sustainable agricultural practices.

1.6 Paper Organization

The structure of this paper is as follows: The related work has been described in Section 2. Even,
the proposed method along with materials and methods details has been described in Section 3. The
results of the system assessment have been represented in Section 4. Lastly, the conclusion has been
narrated in Section 5.

2 Related Work

Crop diseases greatly affect the local crop production agricultural environment. The first group of
methods uses handmade features to distinguish the symbols of disease. The second group of methods
uses digital imaging to diagnose diseases as well as examine diseased components from a microscopic to
regional scale. In addition, estimates of the various types of crop leaf characteristics are also considered
for consideration of the magnitude of the leaf damage to the plant. There have been several recent
studies on recognizing wheat rust diseases using image segmentation models. These studies have used
various deep-learning techniques such as YOLOV5, YOLACT, and Mask-RCNN, among others.
These studies demonstrate the effectiveness of using image segmentation models for recognizing wheat
rust diseases and highlight the potential of these techniques for practical applications in agriculture.

The authors [2] detected fusarium head blight wheat disease and its severity in wheat spikes have
been found through the Mask-RCNN technique. With the help of the Mask-RCNN technique, a total
of 77.76% detection rates have been found on wheat spikes and diseased areas of FHB, respectively.
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The study [3] described a study that aimed to improve the accuracy of ear segmentation in
winter wheat crops at the flowering stage. The researchers [4] used semantic segmentation, a type
of deep learning, to identify and segment the ears in the images. The results showed that the semantic
segmentation method improved the accuracy of ear segmentation compared to traditional methods.
The improved accuracy could be useful for breeders and agronomists in monitoring crop growth and
yield. The detection of FHB wheat disease in wheat spikes has been found through the Mask-RCNN
technique [5]. A total of 166 images have been captured in the University of Minnesota location. The
Mask-RCNN technique achieves 99.80% in 27,000 iterations for FHB disease recognition.

The severity of Northern leaf blight (NHB) disease in maize leaves has been found [6]. A total of
900 images have been used for training and validation, and 300 images have been used for testing
purposes. Out of 300 test images, an NHB disease has been found in 296 images. With the help
of YOLACT++, MIoU (84.91%), and recall (98.02%) for NHB disease in maize leaves have been
achieved.

Even Wheat heads have been detected through the YOLOV4 model [7]. With the help of YOLOV4,
a total of 94.5% accuracy has been achieved in a real-time environment. For the detection of spikes in
wheat, the YOLOV5 model is used [8]. This model achieves a 94.10% average accuracy rate for spike
detection in the wheat plant.

The FHB disease and its severity from wheat spikes are detected through the Mask-RCNN
technique [9]. With the help of the Labelme data annotation technique, a total of 3754 wheat spike
sub-images have been annotated. Throughout the experimentation, the Mask-RCNN model achieves
77.16% and 98.81% for wheat spikes and FHB disease subsequently. For wheat ears counting in a
complex background, two models such as Faster-RCNN and RetinaNet models have been used [10].
Among the total images, 365 images with filling stage, and 350 mature stages for wheat ears have been
used for experimentation purposes. During experimentation, the RetinaNet model (97.22%) achieves
high R2 after transfer learning as compared to Faster-RCNN (87.02%). The FHB disease and its
severity from wheat spikes are detected through the Mask-RCNN technique [11]. With the help of
the Labelme data annotation technique, a total of 3754 wheat spike sub-images have been annotated.
Throughout the experimentation, the Mask-RCNN model achieves 77.16% and 98.81% for wheat
spikes and FHB disease subsequently.

The macro disease index of wheat stripe rust has been calculated through the Segformer model
in the autumn stage [12]. The segmentation rate for stripe rust disease has been effectively increased
with the data augmentation technique. With the help of the data augmentation technique, an F1-score
(86.60%) of Segformer for wheat stripe rust at the macro disease index has been calculated.

For wheat ears counting in a complex background, two models such as Faster-RCNN and
RetinaNet models have been used [17]. Among the total images, 365 images with filling stage, and 350
mature stages for wheat ears have been used for experimentation purposes. During experimentation,
the RetinaNet model (97.22%) achieves high R2 after transfer learning as compared to Faster-RCNN
(87.02%).

The wheat stripe rust disease is identified through UAV images [20]. With the help of the PSPNET
model, a generalization vector of stripe rust disease has been calculated. Even, the PSPNET model has
been compared with SVM, and the Unet model and achieves high classification accuracy (98%) than
other models.

The main aim of the study [21] is to evaluate the levels of damage caused by Fusarium head blight
in wheat crops using an improved YOLOV5 computer vision method. The researchers improved the
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YoloV5 algorithm, a popular object detection tool, to accurately identify and classify infected wheat
heads in digital images. The improved YOLOV5 method was tested on a dataset of wheat head images,
and results showed that it was able to accurately assess the levels of damage caused by the disease.

In the study [22], a deep learning model called Mask-RCNN to detect Wheat Mosaic Virus (WMV)
in wheat images. The model was trained on a dataset of infected and healthy wheat plant images and
was able to detect the virus with high accuracy. The Mask-RCNN model implementation, wheat leaves,
and mosaic virus disease have been detected with 97.16% accuracy.

The authors [23] proposed a new network architecture called Automatic Tandem Dual Blendmask
Networks (AT-DBMNet) to automatically diagnose the FHB severity level by analyzing images of
wheat spikes. The AT-DBMNet architecture consists of two sub-networks, each of which uses a
different type of attention mechanism to weigh the importance of different parts of the image. The
results of the study showed that the AT-DBMNet outperformed other state-of-the-art methods in
terms of accuracy and computational efficiency, demonstrating the potential of this approach for
improving FHB diagnosis in wheat crops. The authors [24] collected images of wheat spikes infected
with loose smut and used MRCNN to analyze the images and predict the severity of the disease. They
compared the results from MRCNN with those from manual inspection and found that MRCNN
had a high accuracy, with a coefficient of determination (R2) of 0.93 and a root mean squared error
(RMSE) of 4.23%. The authors concluded that MRCNN is a promising method for quantifying
the severity of loose smut in wheat crops, offering an efficient and accurate alternative to manual
inspection. The authors [29] used an RCNN algorithm to detect and classify wheat aphids in images,
which was improved with the addition of a mask-scoring module. The parallel processing allowed for
real-time analysis of multiple images. The technique was tested on a dataset of wheat plant images and
demonstrated high accuracy in identifying the presence of wheat aphids and their severity.

3 Proposed Work

The novel wheat rust detection model consists of image acquisition, data augmentation, histogram
equalization, and four region classifier models. The main aim of the wheat rust detection model is to
classify the type of rust in its wheat plant with different region extraction models. The overall flow of
the wheat rust detection model is shown in Fig. 2. The wheat rust model consists of six phases: data
acquisition, data augmentation, image enhancement, dataset annotation, region extraction models,
and a hybrid classifier for wheat rust disease classification.

Figure 2: Novel wheat rust disease detection model
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3.1 Data Acquisition

This is the first step of wheat rust disease recognition. There are three types of wheat rust, namely,
yellow rust, black rust, and brown rust. Yellow rust disease occurs on wheat a stripe is called stripe
rust. Brown rust occurred on wheat leaves. Black rust disease is rectified on the stems of wheat leaves.
The dataset was collected from Github, Kaggle, and UCI repository secondary sources [17,30–32].
The dataset details from different secondary sources are shown in Table 2.

Table 2: Detailed description of the dataset

Types Kaggle Github Other sources

Yellow rust 506 200 50
Brown rust 352 180 62
Black rust 208 120 53
Healthy 376 156 89

The wheat-healthy and rust disease datasets were collected from Kaggle, GitHub, and other
internet sources [30,32]. With the help of secondary sources, 756 images of yellow rust, 594 images
of brown rust, 381 black rust, and 621 wheat-healthy images were gathered. The samples of wheat
gathered from images from secondary sources are shown in Fig. 3.

Figure 3: Samples of wheat gathered images

3.2 Data Augmentation

The quantity of data supplied during training heavily influences how accurately deep learning
models make predictions [20]. The prediction accuracy is improved with a large amount of data.
With the help of secondary dataset sources such as Kaggle, GitHub, and other sources, a total of
2352 nearby wheat images were gathered. The goal of data augmentation is to artificially increase
the diversity of the training data, making the model more robust to variations in the input data. For
example, in object detection, data augmentation can be used to add rotation, scaling, and translation
to the original images, to help the model better learn to recognize objects under different conditions.
A large number of datasets are directly related to improving disease prediction accuracy. The size
of the dataset is increased through data augmentation techniques, which help to improve the rust
disease classification accuracy. Data augmentation is the second step of preprocessing. Three main
types of data augmentation techniques flipping, cropping, and rotation [33], have been implemented to
increase the dataset size. The representation results of flipping, cropping, and rotation augmentation
techniques are shown in Fig. 4. The flipping technique flips the image horizontally. The cropping
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shows the resizing effect on an image. Normally, the images have been cropped to a size of 224 ∗ 224
pixels. The image is rotated right or left on an axis between 1° and 359° to perform rotation
augmentations. The rotation degree parameter has a significant impact on the safety of rotation
augmentations. First, data augmentation is carried out, and four rotation angles, 45, 135, 210, and
320, are taken into consideration. As a result of data augmentation, more than 60% of the dataset is
increased along with the original data, which is more impactful for improving rust disease prediction
accuracy. The limitations of rotation techniques have been described as:

• Rotating or flipping an image may result in semantic issues. If an image contains text or objects
with certain orientations, for example, flipping or rotating the image may result in incorrect or
impossible formations.

• Augmenting an image with rotations or flips might introduce closures or overlaps between
different objects that were not there in the original. This may confuse a model during training
and result in inaccurate predictions.

Figure 4: Representation results of data augmentation techniques

3.3 Image Enhancement

This is the main step of preprocessing. To improve the rust region visibility, contrast enhancement
is important .The enhancement of contrast regions is improved through histogram equalization.
Histogram equalization [3] improves the brightness of an image through frequency distribution. The
main aim of histogram equalization is to improve the brightness of rust disease on each wheat plant
part so that the disease can be easily predicted on each wheat plant part. In histogram equalization,
the image is applied as input for histogram generation which is known as histogram computation.
Once, the histogram [9] is generated, the local minima of the histogram is to be calculated, which is
called the normalized sum minima. Based on local minima, the histogram is to be partitioned. After
histogram partitioning, the grayscale levels were determined. Earlier in the process, the grayscale levels
were calculated, and then histogram equalization was applied to each partition of an image formerly
known as a transformation. The effective results of histogram equalization on or before the image for
contrast enhancement are shown in Fig. 5.
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Figure 5: Effective results of histogram equalization

As a result of data augmentation, 14,112 images were generated, which is effective for improving
the training accuracy. The augmented images have been used for wheat rust disease prediction.
During data augmentation, a small number of images are too blurry and noisy, which reduces the
prediction accuracy. As a consequence, contrast enhancement is needed to help improve the diagnosis
rate. Among the augmented images, a total of 1263 images have been discontinued from the whole
augmented data due to low contrast and high blur, which makes it impossible to enhance the contrast
of an image through histogram equalization. Thus, a real-time 12,849 augmented wheat disease dataset
has been provoked, which has been used to identify rust diseases.

3.4 Data Annotation

The annotation of wheat plant images was performed using the computer vision annotation tool
(CVAT). The CVAT tool is used to annotate the experimental data. Therefore, the performance of
each object detection model was compared by annotated mask images with the prediction results of
the mask [19]. The labelled images are shown in Fig. 6.

(a) Wheat-healthy
plant

(b) Leaf rust on
whole wheat plant

(c) Leaf rust on
wheat plant

(d) Yellow rust on (e) Stem rust on
wheat plant

Figure 6: Annotated wheat plant images

3.5 Region Extraction Models

For better image representation, computer vision techniques namely deep learning technology, are
the most accurate way to address a variety of image recognition functions, including image recognition,
fine-grained recognition, object detection classification, and image acquisition, used in a variety of
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databases [3]. Image annotation is very helpful in the training process, but it requires millions of
parameters for estimation. Object classification is performed through the CNN model. However, how
many parts of the plant are recognized by rust disease is not done by the CNN model. Finding each
object in an image with boundary boxes in terms of their interest and classification is done through
object detection models. The object detection models are based on region proposals [7]. Instance
segmentation is a combination of object detection and localization. The object detection models are
based on RCNN models. Procedures for acquisition based on regional proposals, especially the RCNN
series method gained a high segmentation rate in terms of their performance. The descriptions of the
RCNN, Fast-RCNN, Faster-RCNN, and Mask-RCNN models are as follows.

3.5.1 RCNN

Finding the number of regions according to their interest and locating their bounding boxes in an
object is achieved through the RCNN model. The RCNN model is designed especially for detecting
multiple objects in an image. The RCNN model follows a selective search algorithm. The main aim of
the RCNN model is to detect multiple objects and make the boundary boxes [20] around all the objects
in an image. With the help of a selective search algorithm, information about the ROI is extracted.
Therefore, the ROI is presented with a rectangle. For classification of the objects that are coming under
the ROI have been classified through an SVM model. The main backbone of RCNN for classifying
each object in an image is achieved through the SVM model. The structure of the RCNN model in
terms of classification, feature extraction, and regression is shown in Fig. 7.

Figure 7: Structure of the RCNN model

The RCNN model consists of four modules. The first module is the selective search algorithm.
The selective search algorithm combines similar regions and makes the groups based on color, shape,
and size. The second module is the ROI. The selective search algorithm extracts multiple regions, and
the combination of all regions, namely, R1, and R2, is known as an RPN. The RPN is applied to the
CNN model for feature extraction [22]. Three types of features texture, color, and shape, have been
extracted by CNN. For feature extraction, CNN uses a pre-trained model such as Resnet-50. The
third module consists of classification, which has been achieved through SVM. The SVM performs
multiclass classification. Different classes of objects, such as C1 and C2, have been classified by
CNN. The fourth module of RCNN is regression. The regression module makes the boundary of



2108 CMC, 2023, vol.77, no.2

each classified object in an image in the form of a rectangle. The boundary box makes the rectangle
bounding multiple classified objects in an image. With the help of selective search, Resnet-50, SVM
models, and regression, the bounding of each object is made. Based on a selective search algorithm, the
RCNN model covers only 2000 regions. Increasing the range of regions in the RCNN takes 47–50 s.

3.5.2 Fast-CNN

To solve the problems of the RCNN model, the Fast-RCNN model has been developed. The
name of this model is Fast-RCNN because it detects objects faster than the RCNN model. This
model is known as quick RCNN [7]. Hence, it can increase the accuracy of object detection as well
as classification. In the Fast-RCNN model, the input image is given to the CNN model. Mostly,
a pre-trained model VGG16 has been used as a CNN model. The pre-trained model of CNN can
generate a convolutional feature map. The selective search algorithm extracts the regions from the
image. Therefore, VGG16 is the heart of the Fast-RCNN model. The regions are combined to make a
region of proposals. Through the ROI pooling layer, the region of proposals is resized [9]. The resized
region of proposals is the input given to the fully connected (FC) layer. The FC layer consists of
the two-way model. One FC layer is softmax for classification purposes. The second way of the FC
layer model is to make the category-specific bounding regression box. The RCNN is slower than the
Fast-RCNN because there is no need to extract the 2000 region proposals every time, and these 2000
region proposals are applied to the CNN model. However, in the Fast-RCNN model, the convolution
operation is performed on one image, and the feature map is directly accomplished from the image.
The structure of the Fast-RCNN model is shown in Fig. 8.

Figure 8: Structure of the Fast-RCNN model

In the Fast-RCNN model, the ROI pooling layer is known as the spatial pyramid pooling layer.
The spatial pyramid layer resizes the combined region of proposals into the form of squares. The
output from the ROI pooling layer is described as follows:

Ospp = N (7 ∗ 7) ∗ Img_size (1)



CMC, 2023, vol.77, no.2 2109

where Ospp is the output from the ROI pooling layer. N is the number of region proposals. The img_size
is the image size in the form of height and width pixels. The bounding box has a target class U. The
range of u lies between 0 and 1. If the value of U > 1, then the value of I makes bounding boxes, and
then V is used. If the value of u = 0, then no bounding box has been made. The u = 0 indicates that
there is a background region in pixels.

3.5.3 Faster-RCNN

The RCNN and Fast-RCNN extract the regions from the image through a selective search
algorithm. The selective search algorithm [19,20] takes considerable time to extract the regions from an
image. The RCNN model uses region proposal, feature extraction, region classification, and bounding
boxes of classified regions. The Fast-RCNN model uses the VGG16 model as the backbone for feature
extraction and classifies object proposals. The Fast-RCNN uses the selective search algorithm for
region extraction, which has a negative impact and decreases the performance of the Fast-RCNN
model.

To overcome the issues of RCNN and Fast-RCNN, a Faster-RCNN model has been developed.
The Faster-RCNN is the combination of RPN and Fast-RCNN. The main objective of Faster-RCNN
is to detect objects in much less time than RCNN and Faster-RCNN models. The Faster-RCNN model
is composed of RPN and feature extraction. The features of an image are extracted through a CNN-
pretrained model. The sliding window is used as a target classless object. The main goal of RPN is to
produce a set of proposals. The RPN module generates a probability of the class object as well as a label
for each object. These proposals have two siblings for the FCN layer: one sibling is classification, and
the other sibling is bounding box regression. These are responsible for providing a predetermined set
of bounding boxes with various sizes and dimensions used for reference when the first RPN object
locations are predicted. These boxes are defined to capture the scale and average class of objects.
Anchor boxes usually focus on a sliding window. The RPN generates 2 K classification scores and
4 K coordinates of bounding boxes. The 2 K classification scores have been calculated in terms of the
foreground and background of regions. The coordinates of regression bounding boxes are encoded
into k regions of proposals.

When translating an item into the image, a recommendation followed by translation, to the same
function can be used to predict a recommendation in any case due to the presence of translation
fluctuations.

The design of multidimensional anchors is the key to using external features to add more time
to solve scale problems. After feature extraction and bounding boxes with relevant objects found in
terms of regions, filters were applied to find the top anchors. The ROI pooling layer extracts those
features from the regions that correspond to new relevant objects found by RPN as a new tensor.
Thus, the Faster-RCNN model classifies the object in bounding box form and its coordinates. Thus,
RPN generates the number of region proposals, and Fast-RCNN recognizes the multiple objects in
the regions. The structure of the Faster-RCNN model is shown in Fig. 9.

In the Faster-RCNN model, all anchors are extracted with a size of 256 from one image. With the
help of anchors, the RPN is trained. Therefore, all anchors of an image may be combined in terms
of their similar features. During the combination of anchors in one image, the network may slow and
take considerable time.
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Figure 9: Structure of the Faster-RCNN model

3.5.4 Mask-RCNN

To overcome the issues of Faster-RCNN, a Mask-RCNN model has been developed. Mask-
RCNN is the combination of RPN and classifier [22]. First, the input is an image given to the CNN
pre-trained model. Generally, a pre-trained CNN model such as Resnet-50 has been used for feature
mapping. With the help of a pre-trained model and binary classifier, multiple regions of interest
(proposals) have been generated. The RPN can offer the object bounding boxes, and the classifier
can generate the binary mask for every class. The ROI pooling network makes bounding boxes of
each object and warps them into fixed-size dimensions. The wrapped features are applied to the FC
layer as input [24]. The FC layer performs multiclass classification and bounding box regression of
each object in an image. The warp features are embedded as a mask classifier. The mask classifier
is the combination of two convolution layers for generating the binary mask of each ROI. Mask
Classifier allows the network to produce a mask for each class without competing between classes.
Thus, the Mask-RCNN model generates [26] three outputs. The candidate object and warp mask.
The candidate object has a class label and bounding box in terms of coordinates. The Mask-RCNN
localizes and classifies multiple objects in a single image. The structure of the Mask-RCNN model is
shown in Fig. 10.

During training with different iterations, the total loss of mask RCNN is described as:

L = Lcls + Lbox + Lmask (2)

where Lcls is the classification loss. Lcls and Lbox are losses generated by the RPN.

Overall, the description of region extraction models has been described in Table 3.

3.6 Hybrid Classifier

The hybrid classifier consists of a feature extraction and classification model. After the extraction
of segmented regions through region extraction models, the disease features were extracted through
the Resnet-50 pre-trained model [23]. Once, the disease features have been extracted, rust diseases
can be identified by a cross-entropy support vector machine model [34]. The Resnet-50 model passes
the image patches into different convolution layers for feature extraction. After rust disease feature
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extraction, the CE-SVM model calculates the probability of each rust disease through the probability
distribution function. The probability distribution function calculates the cross-entropy vector for
each rust disease. Once, the vector of each rust disease has been generated, the set of vectors has
been set as input to multiclass SVM. The multiclass SVM has four split margins that have been used
to characterize the type of rust disease features. The whole process of disease feature classification
is known as the cross-entropy SVM (CE-SVM) algorithm. The diagrammatic representation of the
hybrid classifier is shown in Fig. 11.

Figure 10: Structure of the Mask-RCNN model

Table 3: Description of region extraction models

Model Type Criteria for region
proposal

Classification channel

RCNN Object detection Selective search RPN + feature extraction
+ classification

Fast-RCNN Object detection ROI pooling Feature extraction + ROI
+ classification

Faster-RCNN Object detection RPN Feature extraction + RPN
+ ROI + classification

Mask-RCNN Object detection +
instance segmentation

RPN Feature extraction + RPN
+ ROI + classification +
mask prediction
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Figure 11: Hybrid classifier for wheat rust disease detection

4 System Assessments

In this section, the results obtained from different region extraction models, including RCNN,
Fast-RCNN, Faster-RCNN, and Mask-RCNN with different pre-trained models along with their
hybrid classifier are used to evaluate their performance analysis through performance parameters to
answer the research questions. The research questions are as follows:

RQ1: How do the region extraction models improve the segmentation rate and localization compared
with the previous state-of-the-art segmentation techniques?

RQ2: Are there any advantages of region extraction models using data augmentation techniques?

RQ3: Are there any significant changes in the performance of region extraction models along with
the hybrid classifier?

RQ4: Is there any comparison between one-stage and two-stage segmentation models?

Towards the answer to each research question, RQ1 defines the segmentation rate comparison
of region extraction models along with one-stage and two-stage object detection models. Even, the
advantages of augmented data are helpful for region extraction in the form of patches, which is
beneficial to increase the segmentation rate as well as training and testing accuracy of the classifier
in RQ2. The role of a hybrid classifier with high levels of rust feature extraction and classification of
features has been defined in RQ3. In RQ4, the CE-SVM defends the classification accuracy without
losing any rust features.

4.1 Experimental Setup

All the region-based classifier experiments were performed on an Ubuntu server 18.04 powered
DELLEMC Power Edge R840 four-way rack server with an Intel Xeon(R) Gold 5120 processor
and an Nvidia Tesla P100 GPU. The region-based classifiers have been executed on PyTorch python
notebook. There are many inbuilt Python libraries, such as Keras, TensorFlow, pandas, and h5py
libraries that have been enumerated to run region extraction as well as hybrid classifier models. A
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total of 12,849 augmented images were used for training and testing purposes. Among the augmented
images, a total of 1500 images were randomly selected for data annotation purposes.

4.2 Parameter Defining

This phase is incorporated with region extraction models and hybrid classifier parameters, which
is beneficial for estimating the desired output according to the given input in the form of an image.
The parameter details of each model have been defined as follows.

4.2.1 A Framework of Region Extraction Models

For the identification and location of each object in a single image, four types of region extraction
models RCNN, Fast-RCNN, Faster-RCNN, and Mask-RCNN were used in this study. Based on
considerations of each object detection model, the RCNN model uses image size in terms of their
height and width dimensions. During training, the RCNN model uses the selective search algorithm
for region proposals with learning rate, epochs, and batch size. The Fast-RCNN model uses a selective
search algorithm for region proposals and bounding box threshold values, and iterations in terms
of epochs for recognition. The Faster-RCNN model uses the RGB image with fixed dimensions
(224 ∗ 224) and uses the VGG16 model for feature extraction. For bounding boxes of each object
in an image, the Faster-RCNN model uses Intersection over Union (IoU) with a value (0.6). The
VGG16 model has 32 filters from the middle layer to the last layer. After applying Faster-RCNN to an
image, different images were recognized with pooling output size in [7 ∗ 7] dimensions. Additionally,
the Mask-RCNN model uses Resnet-50 for feature maps and takes 2 images per GPU. During
iterations, the Mask RCNN model generates RPN and mask loss. Several types of pre-trained network
parameters such as image size, epochs, and batch size, have been used in each object detection model
as shown in Fig. 12.

Figure 12: Refined pre-trained network parameters of region extraction models
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4.2.2 Hybrid Classifier Framework

The hybrid classifier is a combined phase consisting of feature extraction as well as the CE-SVM
model. The Resnet-50 model is used as the backbone of feature extraction, and the CE-SVM model is
employed to classify rust disease features. The parameter details of the hybrid classifier are shown in
Table 4.

Table 4: Parameter details of the hybrid classifier

Resnet-50 CE-SVM

Parameter name Value Parameter name Value

Patch size 32 ∗ 32 Titled of sampled data Stochastic
complement

Kernel stride 7 ∗ 7 No of p classes 3
Kernel convolution 9 layers with 3 ∗ 3 Kernel function Polynomial, linear,

Gaussian
Max pooling 2 ∗ 2 Cross-entropy constant 0
No of epochs 1–20 Train: test ratio 70:30
Batch size 20 Network initialization Gradient descent
Momentum 0.9 Random vector initialization [0, 1]
Learning rate 0.001 Range of random vector size 1 ∗ p

4.3 Result Analysis

The main aim of region extraction models is to define the wheat rust disease part along with their
bounding box in an effective manner. To analyze the performance of region extraction models and
hybrid classifiers, four research questions have been planned. The analysis of each research question
is defined in its result-oriented form, which is interpreted as follows.

4.3.1 RQ1: Segmentation Rate and Localization

Region extraction models, such as RCNNs, can improve the segmentation rate and localization
compared to previous state-of-the-art segmentation techniques for wheat rust disease recognition by
incorporating domain-specific knowledge into the model. In the context of recognizing wheat rust
diseases, region extraction models can be trained on annotated images of wheat plants, with the regions
of interest (ROIs) being defined as the regions of the plants that contain rust. The model then learns
to recognize the characteristic patterns [12]. Two-stage segmentation models such as Mask-RCNN,
RCNN, Faster-RCNN, and Fast RCNN have been compared with YOLACT++, YOLOV5, SSRNET,
RetinaNet, and R-FCN for wheat rust disease identification in terms of segmentation rate and
localization. The segmentation rate and localization of two-stage segmentation models such as RCNN,
Fast RCNN, Faster-RCNN, and Mask-RCNN, as well as one-stage models such as YOLACT++,
YOLOV5, SSRNET, RetinaNet, and R-FCN for wheat rust disease identification, can vary depending
on several factors, including the size and complexity of the dataset [12], the quality of annotations, and
the specific architecture and training procedures used for each model.

In general, two-stage segmentation models tend to achieve higher segmentation rates and more
accurate localizations compared to one-stage models, as they incorporate additional context from the
image and refine the localization of objects. In training two-stage segmentation models, several 1500
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labeled images were considered ground truth images for training purposes. The segmentation, as well
as localization rate, was determined with the local bounding box in terms of wheat rust objects in an
image. With a momentum of 0.9, 50 epochs was the maximum number of iterations for the model’s
parameters. The weight decay was set to 0.0001, and the learning rate was set to 0.001, which is better
suited for small batches with quick convergence. When an IoU had a ground-truth box greater than
0.5, an ROI was considered positive; otherwise, it was considered negative. Positives outnumbered
negatives 1:1. Three ratios, 0.5, 1, and 2, were covered by the RPN anchor. We decided to run the
mini-batch with two images per GPU to extract the wheat rust patches.

The segmentation rate and the localization of each rust object in different wheat images along
with a different number of epochs are shown in Figs. 13 and 14, respectively. The number of epochs is
directly proportional to the localization and segmentation rate improvement. The number of epochs
shows that the localization and segmentation rates of the two-stage segmentation models are higher
than those of the one-stage segmentation models. Among the two-stage segmentation models, Mask-
RCNN has a high number of segmentations (0.97) and localization rates (0.69) with a high number of
epochs for wheat rust disease object localization.

Figure 13: Segmentation rate of one-stage and two-stage segmentation models

Figure 14: Localization rate of one-stage and two-stage segmentation models

4.3.2 RQ2: Improving the Generalization of Region Extraction Models

There are several advantages of using region extraction models with data augmentation techniques
for wheat rust disease detection:
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• Improved Accuracy: Data augmentation techniques such as rotation, cropping, flipping, etc.,
can help increase the diversity of the training dataset [10,11], which can improve the accuracy
of the region extraction model.

• Reduced Overfitting: Overfitting is a common problem in deep learning models. By using data
augmentation techniques [12,23], the model can be trained on a larger and more diverse dataset,
which can reduce overfitting.

• Robustness to Variations: Data augmentation can also help increase the robustness of the model
to variations in the input data, such as different lighting conditions, and angles.

• Better Generalization: By training the model on a larger and more diverse dataset, it can
generalize better to unseen data [24,25] resulting in improved performance on new images.

Overall, data augmentation techniques can significantly improve the performance of region
extraction models for wheat rust disease detection.

4.3.3 RQ3: Performance Evaluation

Object rust has been found in the wheat stem, stripe, and leaf parts. Once, the patches have
been extracted, the classification of rust disease is easily determined by the hybrid classifier. The
performance of region extraction models has been measured through mean IoU, and mean average
precision (mAP) has been easily estimated with ground truth and predicted image [21]. The labeled
image has been considered a ground truth image. The effective estimation of extracted patches through
different region extraction models corresponding to ground truth images is shown in Fig. 15.

Figure 15: Patches extraction by RCNN, fast RCNN, Faster-RCNN, and Mask-RCNN models

The performance of each rust disease extracted patch was measured with ground truth and
predicted sub-image, which was evaluated through IoU, mean IoU (MIoU) and mean average precision
(mAP) parameters. A detailed description of the performance achieved by each region extraction
model is shown in Table 5. In region extraction models, a total of 63,485 different patches of wheat
rust diseases have been extracted, which have been useful in extracting the dynamicity of rust disease
features.

At each stage of patch extraction, a total of 63,485 rust diseases were used as input to the feature
extraction module. The extracted patches have a size of 32 ∗ 32 pixels along with their bounding box
location. The Resnet-50 model is used for feature extraction. The extracted features have been helpful
for classification purposes. Based on the region extraction model outcome of the extracted patch, the
contour of the combined image was extracted. To create the feature vector for rust infections features
such as contour area, perimeter, roundness, and Hu invariant moment were extracted through the
Resnet-50 feature extraction model. As a result, our work, with the help of trained model feature
extraction, shares the same attributes as the trained model and initializes the network using those
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features. The intended result was accomplished by the trained model. Transfer learning can minimize
computing load [2], hasten network convergence, and address the underfitting issue brought on by
insufficient tag training data. In this study, a substantial portion of our dataset was used to fine-tune
the trained model following the properties of the component image. The extracted features have been
used for classification purposes in the CE-SVM classifier. The CE-SVM acts as a multiclassifier that
classifies [34] the three types of wheat rust diseases on stem, stripe, and leaf plant parts. The multiclass
classifier was trained based on input feature vectors. The CE-SVM was trained according to a different
category, and the truly defined category of each rust disease feature vector was set to 0, if no rust
disease feature vector was identified, it was set to 0. The iteration of CE-SVM is set to 100, and the
polynomial, linear, and Gaussian functions have been trained to measure the accuracy of training the
CE-SVM classifier.

Table 5: Performance achieved by each extraction model for rust disease patch extraction

Region extraction models IoU MIoU mAP

RCNN 0.79 0.80 0.79
Fast RCNN 0.83 0.84 0.85
Faster-RCNN 0.85 0.86 0.84
Mask-RCNN 0.88 0.9 0.91

In the hybrid classifier, a ratio of 70:30 patches was used for training and testing purposes.
Recall that the ratio of true positive occurrences to the total of true positives and false negatives
was represented. The proportion of true positive instances to all positive instances was indicated
by precision. Precision and recall were combined to create the F1-score. The percentage of correctly
anticipated labels was the accuracy. The performance of three different CE-SVM kernel functions for
wheat rust disease classification is shown in Table 6.

Table 6: Performance of three different CE-SVM classifiers with three kernel functions for wheat rust
disease classification

Performance parameters Polynomial (%) Linear (%) Gaussian (%)

Precision 74.53 74 88.43
Recall 76.90 73.69 91.90
F1-score 73.87 72.56 89.60
Accuracy 75.90 74.53 93.60

The performance analysis of CE-SVM for different wheat rust disease classifications, along
with the different number of feature vector samples was measured with stem, stripe, and leaf rust
diseases. Among the three different kernel functions in CE-SVM, the Gaussian function has high
precision, recall, F1-score, and accuracy compared to linear and polynomial kernel functions. The
higher accuracy achieved by the Gaussian function is 93.60%, which is more sufficient for wheat
rust disease classification. Even, if the proposed model has been tested on different datasets such as
CGIAR [23,24], and wheat leaf dataset [25] to measure the generalization. During the testing of the
proposed model, the CGIAR dataset (83.67%) outperforms the wheat leaf dataset (79.87%) for wheat
rust disease classification.
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4.3.4 RQ4: Comparison of Two-Stage Segmentation with One-Stage Segmentation Models for Wheat
Rust Disease Classification with a Hybrid Classifier

The main factors to compare two-stage segmentation models with one-stage segmentation models
along with their cross-entropy support vector machine classifier are as follows:

• Speed: Two-stage models are faster than one-stage models because they do not require multiple
forward passes through the network [8,10].

• Accuracy: One-stage models tend to have better accuracy because they have a more complex
pipeline, but this comes at the cost of slower speed [11,22].

• Memory: Two-stage models tend to use less memory as they have fewer layers, but again, this
may come at the cost of lower accuracy [12,24].

• Flexibility: Two-stage models can be more flexible because they can incorporate different loss
functions, such as cross-entropy and support vector machine, which can improve accuracy [34].

• Model size: Two-stage models are typically smaller than one-stage models, which make them
easier to deploy in resource-constrained environments [35].

It is important to note that the trade-off between speed, accuracy, memory, flexibility, and model
size will depend on the specific use case to classify wheat rust diseases.

4.4 Comparison of the Proposed Method with the Previous State-of-the-Art Approaches

In this section, region extraction models such as RCNN, Fast RCNN, Faster-RCNN, and Mask-
RCNN along with the hybrid classifier are compared with previous state-of-the-art approaches. For
example: the fusarium head blight is detected through the Mask-RCNN model [2]. With the help of
the Mask-RCNN technique, a total of 77.76% detection rates have been found on wheat spikes and
diseased areas of FHB, respectively. A single-stage segmentation model YOLOV5 has been used to
count the number of wheat spikes in wheat plants. Once, the wheat spikes have been counted, the
classification is not performed by the authors [8,9,11,12]. Hence, the classification is performed by the
proposed approach to validate the results of the classifier. A detailed comparison is shown in Table 7.

Table 7: Results comparison of the proposed method with the previous state-of-the-art approaches

References Target Model name Recognition rate (%) Classifier

[2] Fusarium head
blight

Mask-RCNN 77.76 No

[8] Wheat spikes count YOLOV5 94.10 No
[9] Wheat ear count SSRNET 98.00 No
[11] Fusarium head

blight and its
severity

Mask-RCNN 77.16 No

[19] Wheat ear count Faster-RCNN 87.02 No
Our proposed
approach

Wheat rust diseases RCNN, Fast
RCNN,
Faster-RCNN,
Mask-RCNN,
Resnet-50

93.60 Yes
(Cross-entropy
SVM)
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5 Conclusion and Future Work

Wheat rust diseases caused by fungal pathogens pose a substantial threat to global wheat
production and food security. Early detection and accurate prediction of these diseases can minimize
yield quality losses. In this paper, four different region extraction models RCNN, Fast RCNN,
Faster-RCNN, and Mask-RCNN, along with the CE-SVM model have been employed to classify
the three types of wheat rust diseases. First, a total of 2352 wheat rust and wheat healthy plant
images were gathered from secondary sources. Second, three basic data augmentation techniques
flipping, cropping, and rotation, have been applied to the secondary source dataset to improve the
training speed as well as the classification accuracy. Throughout the usage of data augmentation
techniques, a total number of 12,849 augmented images have been used for patch extraction in region
extraction models. The patches have been extracted through data annotation in the training phase
of the region extraction model. The annotated patches are considered ground truth, and extracted
patches are considered predicted patches, which is helpful for IoU calculation. Several types of
invariant, hue, and area features have been extracted in informed patches due to ResNet-50 pre-trained
models. The CE-SVM method complements the RCNN models by providing a robust classification
framework. Among all types of kernel functions, the Gaussian function in the cross-entropy SVM
model achieves high classification accuracy (93.60%) for wheat stripe rust disease. In the future, the
RCNN models will be fine-tuned to yield results comparable to the kernel functions, supporting
that superior segmentation results provide increased classification accuracy. Object detection or
segmentation models can successfully extract feature information from images specifically disease-
affected regions. The method is strongly reliant on precise disease area localization. Incorrect region
extraction might have a negative impact on categorization outcomes. By focusing on key image regions,
using region extraction models in conjunction with CE-SVM for wheat rust disease classification
has the potential to improve accuracy and interpretability. Even, the proposed combined approach
can assist farmers and agronomists in making informed decisions, such as optimizing fungicide
application or implementing resistant cultivars to effectively mitigate the impact of wheat rust diseases.
Efficient wheat rust disease classification using a hybrid region extraction model and CE-SVM method
includes timely disease detection, improved crop management, enhanced decision-making, resource
optimization, disease monitoring and surveillance.
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