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Abstract: Regression testing is a widely used approach to confirm the correct
functionality of the software in incremental development. The use of test cases
makes it easier to test the ripple effect of changed requirements. Rigorous test-
ing may help in meeting the quality criteria that is based on the conformance to
the requirements as given by the intended stakeholders. However, a minimized
and prioritized set of test cases may reduce the efforts and time required for
testing while focusing on the timely delivery of the software application. In this
research, a technique named TestReduce has been presented to get a minimal
set of test cases based on high priority to ensure that the web application meets
the required quality criteria. A new technique TestReduce is proposed with a
blend of genetic algorithm to find an optimized and minimal set of test cases.
The ultimate objective associated with this study is to provide a technique that
may solve the minimization problem of regression test cases in the case of
linked requirements. In this research, the 100-Dollar prioritization approach
is used to define the priority of the new requirements.

Keywords: Test case minimization; regression testing; testreduce; genetic
algorithm; 100-dollar prioritization

1 Introduction

Software testing activity has much importance in software development to deliver a good quality
product. Testing requires high resource utilization to conform to the end-user requirements. According
to an estimate, half of the software cost is incurred by software testing actions to meet the high quality
of software [1]. To make a system more reliable and maintainable numerous testing techniques are
presented in the literature like unit testing, black-box testing, gray box testing, white box testing,
penetration testing, stress testing, regression testing, integration testing, system testing, performance
testing, Graphical User Interface (GUI) testing, security testing, and compatibility testing. In this
decade, agile and most used development processes follow an iterative, incremental approach to
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develop software where functionalities are added in short cycles. The incremental process increases
the probability of fault injection when changes are made to in development cycles [2]. Regression
Testing is a testing process used to confirm that modification or any change in the existing system
does not disturb the performance of the existing software to ensure the system’s reliability [3]. There
are two methods to generate the test cases as manual and automated. Manual testing leads to high
cost and waste of resources [4]. However, the automated test case generation may produce efficient
results in terms of reduced time and cost [5]. As the developing software evolves from one cycle to
another, the size of the test suite increases rapidly. In regression testing, it becomes hard to execute all
the Test Cases (TCs) repeatedly to monitor the behavior of modified components. The execution of
all test cases may result in higher time consumptions [6]. To save time and cost, only critical TCs are
selected by software testers to analyze the performance of the application. The techniques to consider
in regression analysis are TC selection, TC Prioritization (TCP) and Test Suite Minimization (TSM) or
reduction [3]. The research focuses on TSM with optimal solutions to validate web-based applications
with the use of Genetic Algorithm (GA). Nature-inspired algorithms became an active research area
in the domain of software testing. GA has been discussed in many automatic test data generation
[7,8] stress testing [9,10] integration testing [11], unit testing of classes in object-oriented programming
[12] and high volume testing [13]. There are many techniques for test case generation of model-based
web applications. However, there are few studies in the domain of TCP for web applications [14]. This
research focuses on the TSM technique for regression testing in web applications based on incremental
development.

The underlying study is organized as follows: Section 2 discusses the background of Regressing
Testing and Test Case Prioritization. Section 3 is about related work in the domain of software
testing. Section 4 presents the proposed technique and its implementation details. Section 5 is about
experimentation and results. Section 6 concludes the underlying research.

2 Background

Software testing is significant in the quality of any software application. Due to a diversity of
hardware platforms, operating systems, and programming languages, software testing has become
challenging in software development [3]. Software plays an essential role in our lives ranging from
simple calculations to complex systems in every field of life as health, entertainment, and education.
Hence, software failure can lead to several problems like high financial losses, environmental vulnera-
bilities, and can also take human lives [15]. Software quality is associated with robust software testing
that is considered as one of the indispensable activities to produce high-quality products with a low
defect rate [16,17]. Moreover, “Software testing is the process of exercising or evaluating a system or
system components by manual or automated means to verify that it satisfies specified requirements”
[18].

Regression testing turns into a difficult task to execute all test cases when the test suite becomes
voluminous. Regression testing incorporates a few steps to minimize the testing efforts as testers first
prioritize the test cases before performing regression testing to test high priority requirements first.
The process in which ordering of the test cases is carried out is called as Test Case Prioritization
(TCP). The description of the general TCP criteria is presented in [3]. However, the most commonly
used criteria or metric for the TCP is structural coverage [6,19,20]. The structural coverage results in
the detection of maximum faults in a short period of time. In this research, 100-dollar technique is
applied for TCP. The concept of cash is applied in 100-dollar and the participants of the technique
assign a value to the list of requirements by assuming an imaginary amount of 100 dollars [21]. Many
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researchers attempted to use nature-inspired algorithms such as Genetic Algorithm (GA), Differential
Evolution, Ant Colony Optimization (ACO), and Neural Network (NN) to get an optimum result
for the regression TSM problems [22]. The authors in [22] attempted to prioritize TCs to uncover
maximum faults in the system. An optimized technique was proposed by using ACO. Results showed
a reduction of cost, effort, and time in performing regression testing [23]. Another nature-inspired
algorithm cuckoo search was used in addition to mutation testing in [24]. A technique for TSM was
presented in configuration-aware structural testing. Primarily, an optimized test suite was produced
through combinatorial optimization. An adaptive mechanism was then used for further optimization
[24].

TSM challenges have been handled in the literature using integer linear programming with a
focus on certain criteria. These techniques fall short of computing optimum solutions, particularly
when there is an overlap among test cases in terms of several criteria, such as code coverage and
the collection of discovered errors. Recently, nonlinear formulas have been presented to handle such
problems. However, these formulations need much more processing resources than linear ones [25].
Furthermore, they are susceptible to flaws that may result in sub-optimal solutions. The test case
reduction and prioritization reduce the efficiency of test case scheduling while increasing the usage
of time and resources. As a result, a research proposed a unique African Buffalo-based Convolution
Neural Slicing (AB-CNS) technique for lowering time and resource usage during regression testing.
Initially, the suggested model minimizes test cases and prioritizes them using the AB-CNS fitness
function [26].

The TSM technique is used to select the smaller set of TCs that can uncover maximum faults in
the system while minimizing cost and effort of testing at the same time. TCM is used to minimize the
large set of TCs from the suite depending on specified criteria. In which multi-criteria TSM problem
can be solved by a tool called Nemo, Nemo was considered as optimum solution for the multi-criteria
test-suite minimization (MCTSM) problems, in which nonlinear problems can be turned into linear
ones and then solve the problems by using Nemo. It can be used to achieve the best solution for
MCTSM problems while considering up-to-date solvers. The study focuses on a practice to chain
fault localization and detection. However, Outcomes showed the proposed solution can decrease the
size of the test suite while considering both goals of fault localization and detection [27]. Scope-aided
testing is a tactic presented in [28]. The key objective of the study was to upsurge the production by
testing the reused code to discover faults. The empirical evolution of the study showed an average rate
of fault detection can be improved by test suite prioritization while considering such faults that are in
scope. In test suite and TSM the size of test suite can be considered by covering a reasonable number
of faults.

3 Related Work

Nature-inspired algorithms are used in various computing or software engineering fields like
cost estimation, cryptography, warehousing, or data mining problems. Genetic Algorithm (GA) is
a search-based algorithm on the concept of biology, where the finest individuals are chosen for
reproduction [29]. Numerous search algorithms especially GAs got interest of researchers to discover
predictive functions for the relation. Many researchers explored the phenomenon of GA in contrast
to regression test case prioritization [30,31]. Software testing is costly and takes more time, the use
of GA produced better test data set. GA has been proven a successful solution to generate software
test data automatically with the comparison of random testing GA tests all branches [9]. Test sets
were generated to execute a wide range of branches in different programs comprising a scheme of five
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different measures mainly including a quadratic equation solver, linear and binary search procedures,
remainder, and a triangle classifier. An experimental study was presented for the TCP technique using
GA in [29]. This technique separated the test case discovered by the customer and among the rest of
the test cases. It showed that when compared with arbitrarily prioritized TCS, a large set of faults
can be detected. This experiment reveals that GA provides an effective and time-efficient solution by
applying structural-based criteria to prioritize TCs.

GA was used to generate the test data, produce the optimal solution, and solve many problems
during testing. To improve the performance it established the maintenance during searching [32]. The
combination of GAs and coupling measurement was used to improve the optimal integration test
orders in [11]. GA was used to reduce the cost-effectiveness that depends on coupling measurement.
Coupling measurements were consumed to determine the intricacy of stubs. GA helped to access the
best solution in a stable and efficient method. The usage method of GA was to create the best test
arrangements that depend on coupling measurement. The system-level TCP scheme was presented
in [31] to discover faults at an earlier stage of testing which can improve quality using GA. Multiple
prioritization factors were discussed to strategize the proposed technique. Prioritization factors may
seem concrete such as TC length fault proneness, coverage of code, and flow of data, or non-concrete
such as the severity of faults. A TSM model in a Component-Based System was discussed in [24]. In the
proposed model, a blend of GA and soft computing techniques was added into equal class partitioning
in the generation of test suite to optimize the fitness values. A method of breeding software test cases in
contrast to GA is presented in the process of the software testing cycle [8]. A fitness function was used
for the fossil records of the organisms therefore it produces interesting search behaviors like novelty
and severity. To analyze the particular fossil record and an overall search process, the study utilized
several visualization techniques. GAs are used in breeding software test cases as a major aspect of a
product testing cycle. An automatic method for software test case production is proposed in [12]. Test
cases were produced for unit class testing under a general scenario. The researcher produced TCs by
chromosomes as all statistics were contained that is which objects of a class to create, which sets of
input should be used, and which methods should be utilized for those inputs. The experiment revealed
that using a GA for test case optimization was extremely powerful in achieving optimal coverage in
a reasonable time. The resultant test suites were relatively compact in nature. A mixed technique is
presented with GA and Bee Colony Optimization (BCO) for test case reduction [9]. GA conforms the
optimization problems and produce solution. It provides optimum results in minimum time span.

A methodology for automatic production of test information, utilizing state graphs and GA
is debated in [7]. Exploratory proof demonstrated that the test information acquired can cover
problematic ways and a structure that can be utilized to conform the requirements in testing. The Tabu
Search algorithm is a novel technique, it has been used to find solutions for the real-time problems
in the automatic test generation with GA during software testing for effective solutions [33]. The
authors in [34] proposed weight-based GAs in order to effectively minimize the size of test suite, while
achieving high pairwise feature coverage and the ability to detect a fault in the software test cases in
the software manufacturing process. The testing activity was performed based on three objectives; Test
Minimization Percentage (TMP), Fault Detection Capability (FDC) and Feature Pairwise Coverage
(FPC) to build a genetic function for testing. They also proposed three weight-based GAs and it was
very effective in producing considerable results. Their results showed that the Weight-Based GA for
Multi-objective Optimization achieved the given threshold while others failed or hardly made up to
the criteria.

Different search algorithms such as Greedy Algorithms, GAs, Hill Climbing, Additional Greedy
Algorithm, and 2-Optimal Algorithm have been discussed in the literature to find a solution for
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TC problems during regression testing. GA works better as compared to other search algorithms.
Regression testing is very costly, but it is significant to a software development process. Test case
prioritization intent to better perform regression testing by sequencing the TCs. Greedy Algorithms
have been focused on TCP for regression testing however five search techniques have been used in
[35]. GAs are also used in the development of functional testing. GAs are simple to cover a vast scope
of development issues. GA finds better results in a very short duration. The maximum faults can be
discovered during software testing. To conclude it is considered that most researchers find the GA
technique useful that can find a better solution in a short period of time [36]. Regression testing may
result in a decrease in reliability of the software due to reduction of some key use cases [37]. RT process
is highly costly and time consuming and take significant time in case of larger test suits [38,39]. Some
of the techniques are not suitable for RT as they are not suitable for larger test suits [40]. The other
reported issues are related to the path coverage as the presented techniques are not suitable in terms
of path coverage [41]. Fulfilment of the requirements is an important issue that is not handled by the
existing techniques and focus on code check only [42]. We have proposed a technique TestReduce to
ensure that the key use cases have not been eliminated after application of TestReduce.

4 Proposed Technique

This section presents proposed technique for regression testing for optimal test suite minimization
with the use of Genetic Algorithm (GA). Details of each step involved in the proposed technique are
presented in the subsequent sections.

4.1 TestReduce

TestReduce is based on GA to reduce regression TCs. The purpose of TestReduce is to optimize
the solution that may best fit to find out a specific set of TCs to initiate regression testing. The selected
set will help to test the quality of the corrected code and to analyze the ripple effect. The different steps
involved in the TestReduce are mentioned in this section.

Step 1: Requirement Prioritization

A change in software requirements is directly associated with the regression. Hence, any change in
the requirements will ultimately result in regression analysis. A better way can be paved for regression
test case prioritization by giving due consideration to a changed scenario in terms of requirements.
The changes in requirements can be categorized into two main categories. The first category of
requirements is named as independent requirements that do not have any relationship or association
with other requirements. The second category of the requirements is termed as associated requirements
that show a certain extent of relationship or association with other requirements. This research does
not focus on independent requirements. Hence, the key objective of this study is to provide a way that
may solve the prioritization problem of regression test cases in the case of linked requirements.

Requirement’s prioritization is taken as a first step to define the priority of the regression test
cases. Hence, 100-Dollar prioritization approach was used to define the priority of new requirements.
Therefore, if the change in requirements is higher, then ultimately the number of requirements will be
higher in number. However, the prioritized value of a requirement is represented by variable ‘p’.

Step 2: Requirements Associations

There are multiple words that are used for linked requirements like dependency, association, and
relationship. However, from now onward the word association will be used for dependent requirements
to maintain consistency. In the case of regression analysis, there is a need to redefine the priorities
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of the new requirements due to a given change in the standards and procedures of the developing
environment. Moreover, the exploration of associations, with existing and new requirements, is
significant to define the priority of test cases in a correct manner. The requirement associations,
directly or indirectly, lead towards the phenomenon of traceability. In the phenomenon of traceability,
the main goal is to trace a relation with the predecessor and successor. Hence, this association may
result in defining the test case priorities more rigorously. The independent requirements that have no
association with other requirements are easy to test as they are not going to affect any associated
functionality. Fig. 1 describes the association among new and previously defined requirements.

Figure 1: Associations of new requirements with existing requirements

• Degree of Association or Affectivity of Requirements
The degree of association or affectivity of requirements among new and existing requirements
is concerned with modules and views of the system. The degree of association is represented
by ‘da’. The value of ‘da’ may vary based on the associations. Its value may be zero or ‘n’. Let
suppose, there are n number of newly added requirements or rectifications based on the reported
bugs in the sprint.

• Degree of Association among New Requirements
The internal association of new requirements are extremely important. As it shows the worth of
a requirement to be tested on a priority basis based on its inner degree of association with peer
requirements. The inner degree of association among newly added requirements is represented
by ‘di’.

Step 3: Rectification of the Bugs in Modules

Moreover, the degree of bugs that are rectified in a particular module or web page adds more
worth in defining priorities of the test cases that may help in minimization of test cases. The degree of
bugs rectification is denoted by ‘dr’.

Step 4: Degree of Association of Rectified Modules

Step 4 is about the degree of association among rectified modules with other modules of the
system. If the module is independent, then it can be tested with less effort as it does not affect
other modules during the integration of system modules. However, in the case of association with
other modules the rectification results in the ripple effect. To mitigate the ripple effect, the degree
of association of rectified modules with other modules is highly vital and is considered as an input
variable in this technique. It is denoted by ‘dm’.
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Step 5: Derived Objective Function

Objective function has key importance as test case prioritization is based on its value. The objective
function used in this research is a problem of combinatorics and is shown in Eq. (1).

f
(
p, da, di,, dr, dm

) = (p + da + di + dr + dm) − 5 (1)

Step 6: Application of Genetic Algorithm

GA is a search-based approach used to solve optimization problems to find out the most optimal
set of TCs for a system. GA comprises steps like seed population to generate the required number of
individuals. In the next step, score or fitness values are assigned to the generated individuals. In the next
step, parents are selected for crossover to produce offspring. The newly born off-springs are assigned
scores or fitness values. After finishing crossover, the next step is based on the selection of offspring
for mutation. The result of mutation is a new offspring or mutated offspring. The next step is scoring
or assigning fitness values to mutated offspring. After mutation, there comes the step of survival of the
fittest. The new individuals are seeded to the population and if the convergence criterion is met then
GA ends in an optimized result otherwise the generated offspring is fed back to the population. This
process continues until the GA is converged to an optimal solution. The chromosomes in this research
are based on values of ‘p’, ‘da’, ‘di’, ‘dr’, and ‘dm’.

• Initialization of population
First, many more independent solutions are incidentally generated to form the initialization of
the population. The size of the population depends upon the nature of the problems and these
problems have many suitable solutions.

• Fitness Function
In which independents are decided for mating from a population dependent on their fitness.
Fitness is characterized as a trademark and capacity of an independent to endure and recreate
in a situation. Determination produces the new population from the former one, in this manner
beginning another age. The fitness estimation of every chromosome in the present age is dictated
by a suitable assessment. Along these lines, the fitness esteem is utilized to choose a set of better
chromosomes from the population for the later breeding.

• Crossover
After the fitness function, the crossover activity is connected to the chromosomes chosen from
the population. The crossover includes swapping of the succession of bits or qualities in the
string between two independents. This procedure of swapping is done and rehashed every time
with various parent independent until the later breeding has ideal independents.

• Mutation
After the crossover procedure, the change activity is connected to an incidental selected subset
of the population. Mutation prompts an adjustment of chromosomes in little better approaches
to present great qualities. The primary point of change is to get a decent variety of population.
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5 Experimentation and Results

In this research for experimental purposes Learning Management System (LMS) is used as a case
study. The test cases are derived from existing requirements and evolved requirements of the LMS.
There was a total of 55 test cases. The test cases from T1 to T39 are from existing requirements and
test cases from T40-T55 are from evolved requirements. Then 100-dollar prioritization technique was
applied by the three experts from industry to define the priority of test cases. The higher priority of the
test cases was defined by using 100-dollar technique. The higher priority is denoted by ‘p’. Requirement
Prioritization values are shown in Fig. 2. It is the prioritization of existing requirements that contains
old test cases. Requirement prioritization values of the new requirements that contain new test cases
are shown in Fig. 3.

Figure 2: Requirement prioritization of old test cases

Figure 3: Requirement prioritization of new test cases

In the second step, the association among old and new test cases was defined. First one is the
degree of association that is used to define the association among new and old requirements that have
all test cases. It is denoted by ‘da’. The highest degree of association is shown in Fig. 4. Second is
the degree of association among new requirements that are used to define the association among new
requirements only that have new test cases. It is denoted by ‘di’ and is shown in Fig. 5.
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Figure 4: Degree of association

Figure 5: Degree of association among new requirements

In the third step, the degree of rectification among existing and evolved requirements is defined
that contains all test cases. The rectification of old test cases is associated with the non-rectification of
new test cases. This association changes the non-rectification of new test cases into the rectification.
It is denoted by ‘dr’ and is shown in Fig. 6. In the fourth step, the degree of association of rectified
modules is defined among existing and evolved modules that contains all test cases. It is denoted by
‘dm’ and is shown in Fig. 7.
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Figure 6: Degree of rectification of bugs

Figure 7: Degree of association of rectified modules
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In the fifth step, the objective function is derived in which all above parameters (p, da, di, dr, dm)
are used in the equation. The Eq. (1) is given below:

f
(
p, da, di,, dr, dm

) = (p + da + di + dr + dm) − 5 (1)

In the above Eq. (1), 5 is the hypothetical constant value best suited for the said problem of
software test case minimization.

p: The prioritized value of a requirement

da: The degree of association

di: The inner degree of association among newly added requirements

dr: The degree of rectific ation of bugs

dm: The degree of association of rectified module

The test case significance values are obtained by using derived objective function and are given in
Table 1.

Table 1: Test case significance values using derived objective function

T. no. (p + da + di + Dr + dm) – 5 = Ans

1 100 + 2 + 0 + 2 + 2 – 5 = 101
2 80 + 2 + 0 + 2 + 2 – 5 = 81
3 80 + 2 + 0 + 2 + 2 – 5 = 81
4 90 + 13 + 0 + 13 + 3 – 5 = 114
5 96.6 + 1 + 0 + 1 + 2 – 5 = 95.6
6 90 + 2 + 0 + 2 + 3 – 5 = 92
7 56.6 + 0 + 0 + 0 + 1 – 5 = 52.6
8 70 + 3 + 0 + 3 + 3 – 5 = 74
9 80 + 1 + 0 + 1 + 2 – 5 = 79
10 100 + 0 + 0 + 0 + 1 – 5 = 96
11 86.6 + 0 + 0 + 0 + 1 – 5 = 82.6
12 86.6 + 1 + 0 + 1 + 2 – 5 = 85.6
13 76.6 + 0 + 0 + 0 + 1 – 5 = 72.6
14 100 + 0 + 0 + 0 + 1 – 5 = 96
15 100 + 1 + 0 + 1 + 2 – 5 = 99
16 86.6 + 1 + 0 + 1 + 2 – 5 = 85.6
17 91.6 + 0 + 0 + 0 + 1 – 5 = 87.6
18 90 + 0 + 0 + 0 + 1 – 5 = 86
19 95 + 1 + 0 + 1 + 2 – 5 = 94
20 91.6 + 1 + 0 + 1 + 2 – 5 = 90.6
21 85 + 1 + 0 + 1 + 2 – 5 = 84
22 83.3 + 1 + 0 + 1 + 2 – 5 = 82.3
23 91.6 + 1 + 0 + 1 + 2 – 5 = 90.6
24 85 + 0 + 0 + 0 + 1 – 5 = 81
25 88.3 + 0 + 0 + 0 + 1 – 5 = 84.3
26 91.6 + 2 + 0 + 2 + 2 – 5 = 92.6

(Continued)
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Table 1: Continued
T. no. (p + da + di + Dr + dm) – 5 = Ans

27 90 + 0 + 0 + 0 + 1 – 5 = 86
28 95 + 1 + 0 + 1 + 2 – 5 = 94
29 98.3 + 1 + 0 + 1 + 2 – 5 = 97.3
30 88.3 + 2 + 0 + 2 + 2 – 5 = 89.3
31 71.6 + 0 + 0 + 0 + 1 – 5 = 67.6
32 85 + 0 + 0 + 0 + 1 – 5 = 81
33 91.6 + 0 + 0 + 0 + 1 – 5 = 87.6
34 100 + 1 + 0 + 1 + 2 – 5 = 99
35 100 + 1 + 0 + 1 + 2 – 5 = 99
36 95 + 1 + 0 + 1 + 2 – 5 = 94
37 93.3 + 1 + 0 + 1 + 2 – 5 = 92.3
38 83.3 + 0 + 0 + 0 + 1 – 5 = 79.3
39 95 + 1 + 0 + 1 + 2 – 5 = 94
40 100 + 4 + 13 + 4 + 3 – 5 = 119
41 96.6 + 3 + 11 + 3 + 2 – 5 = 110.6
42 93.3 + 2 + 11 + 2 + 3 – 5 = 106.3
43 95 + 2 + 11 + 2 + 3 – 5 = 108
44 95 + 3 + 11 + 3 + 3 – 5 = 110
45 93.3 + 2 + 11 + 2 + 3 – 5 = 106.3
46 100 + 7 + 12 + 7 + 4 – 5 = 125
47 93.3 + 4 + 11 + 4 + 3 – 5 = 110.3
48 95 + 4 + 12 + 4 + 4 – 5 = 114
49 100 + 2 + 11 + 2 + 3 – 5 = 113
50 93.3 + 3 + 11 + 3 + 3 – 5 = 108.3
51 100 + 2 + 5 + 2 + 3 – 5 = 107
52 96.6 + 3 + 5 + 3 + 2 – 5 = 104.6
53 95 + 2 + 5 + 2 + 2 – 5 = 101
54 100 + 1 + 6 + 1 + 2 – 5 = 105
55 96.6 + 1 + 6 + 1 + 2 – 5 = 101.6

A test case is selected for regression analysis:

if da or di or dr or dm > 2.

Hence, the minimized set of test cases is shown in the Table 2.

Table 2: Selected test cases by testreduce

T. no. (p + da + di + Dr + dm) – 5 = Ans

4 90 + 13 + 0 + 13 + 3 – 5 = 114
6 90 + 2 + 0 + 2 + 3 – 5 = 92
8 70 + 3 + 0 + 3 + 3 – 5 = 74
40 100 + 4 + 13 + 4 + 3 – 5 = 119

(Continued)
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Table 2: Continued
T. no. (p + da + di + Dr + dm) – 5 = Ans

41 96.6 + 3 + 11 + 3 + 2 – 5 = 110.6
42 93.3 + 2 + 11 + 2 + 3 – 5 = 106.3
43 95 + 2 + 11 + 2 + 3 – 5 = 108
44 95 + 3 + 11 + 3 + 3 – 5 = 110
45 93.3 + 2 + 11 + 2 + 3 – 5 = 106.3
46 100 + 7 + 12 + 7 + 4 – 5 = 125
47 93.3 + 4 + 11 + 4 + 3 – 5 = 110.3
48 95 + 4 + 12 + 4 + 4 – 5 = 114
49 100 + 2 + 11 + 2 + 3 – 5 = 113
50 93.3 + 3 + 11 + 3 + 3 – 5 = 108.3
51 100 + 2 + 5 + 2 + 3 – 5 = 107
52 96.6 + 3 + 5 + 3 + 2 – 5 = 104.6
53 95 + 2 + 5 + 2 + 2 – 5 = 101
54 100 + 1 + 6 + 1 + 2 – 5 = 105
55 96.6 + 1 + 6 + 1 + 2 – 5 = 101.6

Let’s suppose

(dp + da + di + dr + dm) =
∑n

i=1
d

if

D =
∑n

i=1
d

Then

f(dp, da, di, dr, dm) = D – 5

Lastly, GA is applied to get the optimized results in order to minimize the test cases hence in
application of GA

1. “d” is defining the input variables
2. “y=D − 5” is the fitness function and
3. “y” is defining the output variable

The best fitness draws the graph between the fitness value and the generation and shows the best
function value in one-by-one generation.

The best individual draws the graph between the current best individual and the number of variable
and shows the best function value of best individual in one-by-one generation.

The distance draws the graph between the average distance and the generation and shows the best
function value of the average distance between individuals in one-by-one generation.

The expectation draws the graph between the expected values and the raw scores and shows the
best function value of fitness scaling in one-by-one generation.

The genealogy draws the graph between the individuals and the generation and shows the red and
blue lines that represented the mutation and crossover children in one-by-one generation.
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The range draws the graph between the function value and the generation and shows the best,
worst and mean scores in one-by-one generation.

The score diversity draws the graph between the number of individuals and the range that shows
the score histogram at all generation.

The scores draw the graph between the number of individuals and the generation that shows the
fitness value of each individual in one-by-one generation.

The selection graph shows the number of children and the individual. It shows the histogram of
the parents that share properties in every generation as mentioned.

The stopping graph draws the stopping criteria points (among generation, time, stall (G) and stall
(T)) and the % of criteria met that shows the best levels of stopping criteria.

The values of current iteration, objective function and final point of different parameters discussed
in this section are highlighted in Table. 3.

Table 3: GA data

Best
fitness

Best
individual

Distance Expectation Genealogy Range Score
diversity

Fitness
score of
individual

Selection Stopping

Current
iteration

41 36 33 30 42 37 31 40 39 40

Objective
function
value

34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6

Final point 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6

In this research, proposed methodology comprises 6 steps namely requirement prioritization,
requirement associations, rectification of the bugs in modules, their degree of association, derived
objective function and application of GA. Results showed proposed technique is effective to select an
optimal set of test cases. Numerous solutions have been proposed to handle TSM problems. A novel
African Buffalo-Convolution Neural Slicing (AB-CNS) based approach was proposed in [26] where
RT is performed on the identification of faults. The proposed model slices out the retested classes and
the fitness function of AB is defined for the classification layer. Association of requirements and test
cases were not presented in this model. However, the proposed methodology uses defined mechanism
for test case selection association of requirements and degree of associations helps to identify a good
quality test cases and an objective function was derived to minimize the test suit. If the value of da, di,
dm, dr > 2 then it will be selected. Moreover, the degree of bugs rectification adds value to it.

In AB-CNS approach once test cases are minimized, their prioritization depends on the calcula-
tion of the test case size. The performance of the model is calculated on the number of faults detected
using this approach. The model detects the faults based on the fitness function. Whereas in proposed
model GA was used to generate an optimal set of test cases with high priority. Results showed GA
has successfully identified best individuals for regression test analysis and proved an effective solution
for TSM problems in web-based environment. However, some limitations exist, it might be difficult to
follow this approach when there’s time constraint.

Table 4 shows the results of GA and the set of selected test cases that may provide maximum path
coverage and exploration of the bugs. The selected approach has helped to find the test cases and by
executing them maximum number of bugs were found. The bugs captured by each selected test case
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are mentioned in Table 4. The defects were seeded in the code. The minimized set of the test suit was
executed and found the induced defects inside the web-based system. The calculated efficiency of the
technique was acceptable in terms of capturing the defects. However, the key defects were detected by
executing the minimized set of the test cases. The bug detection proved that the proposed technique
is time efficient, cost effective and it reduced the effort being induced. Moreover, GA produced an
optimum set of test cases with a higher accuracy to find out the bugs and to ensure the quality of the
system under test.

Table 4: Selected test cases by GA

T. no. P da di dr dm F() Bugs

4 90 13 0 13 3 114 4
8 70 3 0 3 3 74 1
40 100 4 13 4 3 119 3
41 96.6 3 11 3 2 110.6 2
42 93.3 2 11 2 3 106.3 2
43 95 2 11 2 3 108 3
44 95 3 11 3 3 110 1
45 93.3 2 11 2 3 106.3 1
46 100 7 12 7 4 125 4
47 93.3 4 11 4 3 110.3 3
48 95 4 12 4 4 114 5
49 100 2 11 2 3 113 3
50 93.3 3 11 3 3 108.3 2
51 100 2 5 2 3 107 3
52 96.6 3 5 3 2 104.6 2
53 95 2 5 2 2 101 1

6 Conclusion

Web-based applications play a vital role in gaining market leverage. When new requirements are
added to the existing system the effect of new requirements or functions ripple across other modules or
components of the web application. Hence, regression analysis and testing are significant in software
testing. Most of the RT techniques that have been presented are costly, time-consuming, miss valuable
test cases and error prone. Genetic Algorithm (GA) was used for optimization purposes to find out
the most optimized set of TCs for a given system. The chromosomes in this research are based on
values of ‘p’, ‘da’, ‘di’, ‘dr’ and ‘dm’. The requirement prioritization is important to define the priority
of the regression TCs. Hence, for this purpose 100 Dollar prioritization approach is used to define the
priority of the newly emerged requirements. However, if requirement change is high, then ultimately the
number of requirements will be higher in number. The prioritized value of a requirement is represented
by variable ‘p’. In the case of regression analysis there is a need to redefine the priorities of the new
requirements. Moreover, the associations of with existing and new requirements, is highly vital to define
the priority of TCs in a correct manner. A new regression testing technique ‘TestReduce’ with the use
of GA is proposed to optimize a solution in the form of test cases that may best fit to find out an



6804 CMC, 2023, vol.74, no.3

optimal set of TCs to initiate regression testing. The selected set will help to test the quality of code
and to analyze the ripple effect.
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