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Abstract: Mobile edge cloud networks can be used to offload computationally
intensive tasks from Internet of Things (IoT) devices to nearby mobile edge
servers, thereby lowering energy consumption and response time for ground
mobile users or IoT devices. Integration of Unmanned Aerial Vehicles (UAVs)
and the mobile edge computing (MEC) server will significantly benefit small,
battery-powered, and energy-constrained devices in 5G and future wireless
networks. We address the problem of maximising computation efficiency in
U-MEC networks by optimising the user association and offloading indicator
(OI), the computational capacity (CC), the power consumption, the time
duration, and the optimal location planning simultaneously. It is possible to
assign some heavy tasks to the UAV for faster processing and small ones to
the mobile users (MUs) locally. This paper utilizes the k-means clustering
algorithm, the interior point method, and the conjugate gradient method to
iteratively solve the non-convex multi-objective resource allocation problem.
According to simulation results, both local and offloading schemes give
optimal solution.

Keywords: Mobile edge computing; internet of things; UAVs; ground mobile
users

1 Introduction

Smartphones, smart appliances, and sensors are examples of “resource-constrained” IoT [1]
devices due to their small size and limited storage, computational, and energy resources. These
concentrated on-board operations eventually lead to greater energy consumption, which slows down
and introduces latency into devices that are currently utilised for computation-intensive applications
like augmented reality (AR), virtual reality (VR), pattern recognition, and monitoring. Due to limited
resources and the increasing number of applications and volume of mobile traffic on IoT devices
[2], resource allocation is a significant challenge i.e., minimising energy consumption, increasing
computation efficiency, increasing computation bits, decreasing costs, decreasing completion time, etc.
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The unmanned aerial vehicles, also known as remotely piloted drones (automatic or manual),
have a wide variety of applications in both the military and civilian sectors [3,4]. The UAVs are used in
wireless communications because they can adjust their altitude, mobility, and adaptability. By reducing
the shadowing and blockage effects, obstacles can be avoided. Small uncrewed aerial vehicles provide
cost-effective and energy-efficient solutions for mobile ground users spread across a large geographic
area by establishing reliable connections with low transmit power. Due to their portability and ability
to reach areas where traditional wired infrastructure is impractical, UAVs are frequently used for
emergencies. UAV can serve as an aerial base station named a UAV-assisted wireless systemthat can
be used to provide reliable network capacity and communication to ground users. It can also act as
a flying mobile user referred to as a “cellular-connected” UAV, as it enables reliable and low-latency
communication within the cellular network, as in real-time video streaming. Two broad categories
based on their hardware are Fixed and Rotary wings. Fixed-wing unmanned aerial vehicles are small
planes with fixed wings. They are not slowed by heavy weights; they are lightning fast. They cannot
just stand still and stay in the air. They must keep going. Rotary-wing unmanned aerial vehicles are
those that have rotating wings. It is difficult for them to move, and it is quite heavy. They are capable
of both static and free flight in the air [5].

The European Telecommunications Standards Institute’s (ETSI) Industry Specification Group
(ISG) introduced the Mobile Edge Computing (MEC) concept for 5G networks in 2014. The research
carried out in [6] defines MEC as: It provides an IT service environment and cloud computing
capability close to a radio access network (RAN) mobile devices. “Edge Computing” refers to “a
diverse set of techniques for relocating computing and storage tasks away from remote clouds (public
or private) and closer to the data source” [7]. According to this theory, end users’ mobile devices can
access more computing power. MEC is an excellent and promising solution for resource-constrained
mobile devices and heavy computation tasks at the edge nodes, such as base stations (BSs) or user
devices with high computation capabilities. MEC is composed of two components: mobile users and
the server. Mobile devices offload computation tasks to a powerful mobile edge computing cloud
(MEC server/edge server) in order to comply with quality of service (QoS) and quality of experience
(QoE) standards while also conserving energy, reducing latency, and increasing device processing
speed.

In areas where fixed terrestrial MEC networks are unavailable or destroyed by natural disasters,
Intelligence Edge Servers (IESs) can provide mobile edge services and on-demand computation
resources. Utilizing a MEC system equipped with a UAV has several advantages, including the
following: By enabling a broader range of applications, the LoS links in the U-MEC system increase
the system’s flexibility and efficiency [8]. U-MEC enhances computing services by increasing system
capacity and providing high-bandwidth access to users, i.e., wide coverage [9]. It is a low-latency,
low-energy offloading system that significantly improves the overall system’s performance [10]. The
assisted MEC architecture for ground users depicted in Fig. 1, which also functions as an aerial MEC
server-enabled base station enabling the ground users to delegate computationally intensive tasks to
one or more UAVs. Due to unforeseen events or natural disasters, ground-based stations may be unable
to provide services in areas with sparse or non- existent terrestrial infrastructure. Devices that must
comply with QoS requirements can use this to significantly reduce their energy consumption [11].

Mobile devices benefit from increased battery life, lower latency, and improved computational
performance when their radio resources are used efficiently through U-MEC architecture. This is
accomplished by users offloading computationally intensive tasks to a nearby MEC server, thereby
improving the overall computation performance of the system. The MEC server is attached to UAVs,
which offer greater flexibility, are easier to deploy, and are mobile, all of which contribute to increased
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radio coverage. They are frequently used in areas devoid of terrestrial infrastructure. Reduced energy
consumption, increased computation efficiency (measured in computation bits per joule of energy),
increased computational bits, shorter completion time (measured as the difference between local
computing time and offloading computation time), and cost reduction are all achieved in U-MEC
systems through resource management.

Figure 1: UAV equipped with MEC server

Research carried on in [12] suggests that a problem of maximising computational efficiency can
be solved by taking into account central processing unit (CPU) frequencies, the user’s maximum
energy consumption, the position of the UAVs, and the user’s transmit power constraints, and jointly
optimising transmit power and offloading time for users. The Lagrangian Duality Method is used
to calculate the transmitting power and CPU frequency, while the sequential convex approxima-
tion (SCA) technique is used to solve the UAV’s path problem. In [13], energy consumption and
computation bits are increased by optimising user association, trajectory scheduling, and resource
allocation simultaneously to achieve maximum computation efficiency under local CPU frequency
allocation. After that, the optimization problem is solved iteratively using a double loop structure
[14]. discusses a multi-UAV MEC system with multiple ground users. The overall energy consumption
of the system is expected to be significantly reduced. The allocation of resources, task scheduling,
deployment, offloading decision, location, and number of UAVs operating under time constraints are
optimised using a two-layered optimization method. The author of [15] discusses how to extend the
battery life of both users and UAVs by reducing energy consumption during computation tasks. By
considering task offloading, uplink and downlink bit allocation, and trajectory design, it is possible
to formulate a joint optimization problem for the energy budget and latency of a UAV. To solve this
problem, SCA and block coordinate descent (BCD) techniques are combined in a novel optimization
algorithm. Reduced energy consumption and user delay are objectivesof optimising communication
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and computing resources, task di- vision decisions, and UAV placement [16]. An SCA method is used
to solve this non-convex problem. By optimising hover time, resource allocation, and task scheduling
in conjunction with ground users’ QoS requirements and UAV computing resources, UAVs consume
less total energy in [17]. The iterative BCD algorithm is used to find suboptimal solutions to solve this
joint optimization problem. UAVs consume less energy in [18]. This energy consumption includes that
required for communication, computation, and flight. Computational and communication resources
are allocated based on the UAV’s trajectory design and the computation bits allocated within a given
time slot. The issue is resolved using a combination of SCA and the Lagrangian duality method.
In [19], the UAV’s energy consumption optimization within the constraints of computation bit size
and energy harvesting causality is accomplished by jointly considering offloading computation bits,
user CPU frequency, and the UAV’s trajectory. An alternative algorithm based on the SCA method is
proposed for this purpose. Because of the UAV’s limited power, the author describes an energy-efficient
algorithm in [20] that employs a three-layered computation offloading strategy. The position of the
UAVs can be dynamically adjusted using the UAV position optimization algorithm to provide the best
possible service to all users. The tasks that users delegate to UAVs are predicted using an long short-
term memory (LSTM) task prediction algorithm. To maximise energy efficiency, the system employs a
task-offloading strategy. This optimization problem is solved by optimising the frequency, offloading
bits, active user transmit power, and trajectory of UAV to minimise energy consumption is described
in [21]. This problem incorporates constraints on computing tasks, harvesting, and an energy storage
system. This objective is accomplished through the use of SCA and design and artificial intligence
(DAI) algorithms. The objective of [22] is to minimise energy consumed in computation processing
and the time required to complete UAV detection in wind farms. The frequency of UAV computation,
offloading power, modes, and time are all optimised simultaneously while maintaining wind turbine
(WT) accuracy, UAV flight speed and transmission power constraints, and computation frequency
constraints. To mitigate the wind’s effect on WTs, multi- sortie detection trajectory planning and
UAV scheduling (DTPUS) have been proposed. The iterative offloading trajectory and computation
offloading (OTCO) algorithm are then used to optimise both the computation offloading and the
inspection trajectory’s path. When Lagrangian duality is used, the speed of UAV computation,
offloading, and power calculation are all significantly improved.

Research performed in [23] aims to reduce the total amount of energy consumed by users in the
air-ground integrated MEC network due to the limited power capacity of IoT devices. To ensure that
UAV latency and power consumption are limited, as well as bandwidth utilisation and computational
capacity, the author devised an integrated optimization problem involving uplink power control and
channel allocation, user association, and 3D positioning of UAVs. This issue is resolved using an
effective optimization algorithm based on the BCD method. Work performed in [24] proposes a
strategy for users to conserve energy by optimising power allocation, re-source partitioning, uplink,
and downlink bit allocation, the number of processed bits at the user-power UAV’s allocation and
scheduling, the trajectory of the user-UAV subject to resource partitioning fractions, bit causality in
uplink and downlink, and the UAV’s initial/final location and maximum speed. The SCA method
is used to address the issues of power allocation, resource partitioning, bit allocation in the uplink
and downlink, and the trajectory of the UAV. Reference [25] describes a time division multiple access
(TDMA) based MEC server problem of optimising a UAVs trajectory that obtains both local and
global optimal solutions. The global optimum solution is found through a two-dimensional search
of all possible UAV locations. Simultaneous optimization of slot allocation and task partitioning is
performed using an augmented Lagrangian active method. The maximum energy consumption by
users in the NOMA-based UAV-assisted MEC system is minimised by defining a joint optimization
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problem (min-max problem) [26]. By optimising task data, computing resource allocation and UAVs
trajectory under users’ task delays, total task data, mobility, and UAV trajectory constraints, a
comprehensive strategy is used to reduce energy consumption across all ground users. The location of a
fixed point can be optimised and pinpointed with the assistance of the fixed point service (FPS). MEC
equipped with a UAV makes use of a TDMA- based model to increase the UAV’s energy efficiency
and service time in [27]. Energy consumption can be reduced by optimising resource allocation to
users, the duration of UAV hovering, and the order in which users are associated. This issue is
resolved using the BCD method. Author in [28] models enables energy-efficient resource allocation
and trajectory design in UAV-mounted cloudlet. This results in a reduction in energy consumption
and improved computing services. Communication and computation resources, the UAV trajectory,
user transmit power, and computation load allocation are jointly optimised with subject to user
offloading, the UAV’s energy budget for communication, computing capabilities, and mechanical
operations. SCA and Dinkelbach algorithms are used to accomplish the task at hand. Reference [29]
investigates resource allocation in a wirelessly powered MEC system using a UAV. The goal of all
ground users in binary or partial offloading modes is to optimise offloading time, user transmit
power, and CPU frequencies while limiting the UAV’s speed and energy harvest. In both partial
and binary offloading, optimised algorithms are used to maximise the number of computation bits
simultaneously. Reference [30] priorities energy-aware resource allocation in order to maximise utility
across the MEC system’s vehicle social networks (SIoV). Vehicles transmit energy in accordance with
the law of energy consumption evolution at any given point in time. In cooperative and non-cooperative
situations, dynamic programming is used to optimise the dynamic power allocation of vehicles with
fixed UAV trajectory. With acceptable distance of user-UAV and vehicle components that have been
offloaded from the UAV, a search algorithm is used. In this paper, multi-objective resource allocation
problem is formulated by using multiple UAVs to maximise the computation efficiency of ground
mobile users. The individuals listed below made the greatest contributions to the paper’s objectives.

(i) For both local execution and offloading, we defined the computation efficiency maximisation
problem under latency, power and QoS requirements by jointly optimising the offloading/user
association indicator, computation capacity, power consumption, time duration and optimal
location Z.

(ii) This non-linear resource allocation problem can be efficiently solved by combining an
unsupervised learning algorithm with an interior point method, which solves the problem
iteratively and aids in the discovery of the optimal solution to achieve the desired goal.

The rest of the paper is organised as follows: The system model and problem formulation are
introduced in this Sections 2 and 3 respectively. Section 4 delves into the algorithm that was used to
solve the problem at hand. Section 5 summarizes and discusses the simulation results. The paper is
finally concluded in Section 6.

2 System Model

System model is depicted in Fig. 2. In 3D euclidean coordinates, an U-MEC network is taken
into consideration with ‘B’ multiple mobile ground users (GUs) and ‘A’ rotary-winged multiple UAVs,
hovering at fixed altitude ‘H’. The whole process is categorized into three steps. In first step, heavy
tasks like face recognition, live video streaming, traffic or environment monitoring, augmented/virtual
reality that are to be executed are offloaded by the GUs to at least one and only one unique UAV
flying above the GU at a specific distance. Executing the GU’s task by the UAV-MEC server having
sufficient computation capability and resources takes place in the second step. For a predetermined
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period of time, the UAV remains connected to the offloading GU within its coverage area. The third
step involves the processed GU tasks’ results like face identification, rendering the video streams, traffic
or environment analysis which are sent back to the GUs. In the end, GUs download those results.

Figure 2: UAV-MEC network

Line-of-sight (LoS) paths between UAVs and GUs are considered because UAVs fly higher than
MUs and have a low probability of encountering scatterers. While small MUs tasks are performed
locally, larger and more complex tasks are delegated to the UAV, resulting in a more efficient system.
While offloading computation tasks, the TDMA scheme is used to avoid co-channel interference. For
example, UAVs and other radio users can share a frequency channel due to the TDMA protocol,
which divides signals into time slots to minimise interference. Numerous GUs can share a single radio
frequency channel by utilising only a fraction of its capacity. Tab. 1 depicts inputs and symbols used
in the this paper.
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Table 1: Notations used

Symbol Definition Symbol Definition

A No. of a UAVs i.e., 20 Cb, max Max. battery consumed by GU
B No. of b GUs i.e., 150 Cmax Max. energy available i.e., 20 dBm
A Set of UAVs {1, 2, . . . ,A} tab Offloading transmission rate of

UAV assigned to the GU
B Set of GUs {1, 2, . . . ,B} (xb, yb, 0) Coordinates of GUs
uab Offloading indicator/User

association variable of GU i.e., 0 or
1

(Xa, Ya, Ha) Coordinates of UAVs with fixed
altitude Ha

W System’s Bandwidth i.e., 1 MHz Ha UAVs Altitude i.e., min = 10,
max = 20

l Same time block ‘l’ required for the
executable tasks i.e., 6 ms

θ a UAVs antenna half power
beamwidth i.e., min = π /6, π /3

Qb Min. data bits transferred i.e., 50 Hatanθ a Coverage region of UAV
cb GUs Computation Capacity sab Horizontal distance between the

GU and UAV i.e., 500 m
cj, max Max. computation capacity of GU

i.e., 1 GHz
d Channel power gain outside the

antenna’s bandwidth
cab Maximum computational capacity

of UAV to the associated GU
do Channel power gain at 1 m reference

distance i.e., 1.42e−4

Lab Time duration between the UAV
and GU

dab Uplink channel gain between GU
and UAV

Pt
ab Transmission/Execution power of

the GU assigned to the UAV
βb, vb, w CPU model positive constants i.e.,

10 − 2e9 + 1, 1e3, 2
Cb Constant energy consumed by the

GU i.e., 0.00001W
Kb, max Max. allowed GUs associated to the

UAV

3 Mathematical Model

The model in Fig. 2 is considered that shows clusters of A UAVs: A = {1, 2, . . . , A} and B GUs:
B = {1,2, . . . ,B}. The ground user performs smaller tasks locally, while larger tasks are delegated to a
nearby UAV. This decision is made by the offloading/user association indicator variable uab:

uab = {0, 1} , ∀b ∈ B, ∀a ∈ Auab = {0, 1} , ∀b ∈ B, ∀a ∈ A (1)

• If user b conducts the task locally, then local execution takes place : uab/u0b = 1, ∀a = 0.
• If user b does not upload the task to the UAV a: uab = 0, ∀a = 0
• If the user uploads the task to the UAV, offloading takes place: uab = 1, ∀a �= 0
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The downloading time for results from the UAV to the GU is so smallthat it is negligible. The
transmission power pt

ab is:

pt
ab = The total CPU task/cycles

Computational capacity of the GU cb

(2)

The horizontal distance between the GU and the UAV is:

sab =
√

(xb − xa)
2 + (yb − ya)

2, ∀b ∈ B, ∀a ∈ A (3)

Data rate during offloading from the GU to the UAV is:

tab = W log2

(
1 + dabpt

ab

θ 2
a

(
H2

a + s2
ab

)
)

, ∀b ∈ B, ∀a ∈ A (4)

During offloading, the time duration allotted to the GU with UAV is denoted by Lab.. The
coordinates of UAVs (Xa, Ya, Ha) at elevated angle θa are set close to the coordinates of GUs (xb, yb, 0)

with horizontal spacing sab between the UAV and the GUs, for the optima location Z. Each UAV is
deployed with a directional antenna whose beamwidth can be adjusted accordingly. With both the
azimuth θ and elevation ψ angles, the antenna gain can be calculated as:

D =
⎧⎨
⎩

do

θ 2
a

if 0 ≤ θ ≤ θaand0 ≤ ψ ≤ θa

d ≈ 0 otherwise,
(5)

d can be set to 0 for simplicity. If the GUs are assumed to be located outdoors, then LoS link will
be made between the GU and UAV, but in urban areas, due to the presence of obstacles, a probabilistic
LOS channel model is used, which is given by:

pLOS = 1
1 + ie(−j[θa−i])

(6)

where i and j are the environmental-dependent channel parameters. For the channel model, TDMA
and block fading models are assumed. Each time slot has the same channel in the block fading model.
All-time slots of length ‘l’ are faded in the same way. While in the TDMA model, multiple GUs share
the same frequency channel, which is divided into distinct time slots to minimise interference between
both the GUs and UAVs.

3.1 Problem Statement

A metric known as computational efficiency is used to measure the U-MEC system’s energy
efficiency in bits/Joule, which is given by:

Computational Efficiency = Total Computed Bits
Consumed Energy

(7)

Calculating the number of computed bits per Joule allows one to determine the efficiency of a
system. This paper uses the least amount of energy and more computed bits possible as computation
efficiency is a trade-off between computed bits achieved and energy consumption. An efficient
algorithm is used to maximise the number of computed bits per Joule of energy consumed. Joint
optimization of decision variables such as offloading/user association indicator uab, computation
capacity cb, power consumption pt

ab, time duration Lab and optimized location Z (Xa, Ya, Ha, θa) takes
place under latency and QoS constraints for both local execution (no offloading) and offloading.
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3.2 Objective Function

max
U ,C,P,L,Z

∑B

b=1

(
lcb
vb

+ ∑A

a=1 uabW log2 (1 + sabpt
ab

θ2(H2
a +s2

ab)
Lab

)
∑B

b=1

(
Cb,max + βbcw

j t + ∑A

a=1 pt
abLij

) (8)

constrained by:

C0 : uab ≤ 1, ∀b (9)

C1 :
∑B

b=1
uab ≤ Kb,max, ∀b (10)

C2 : lcbvb +
∑A

a=1
uabW log2 (1 + sabpt

ab

θ 2
(
H2

a + s2
ab

)Lab ≥ Qb, ∀b (11)

C3 : Cb + βbcw
b l +

∑A

a=1
pt

abLab ≤ Cmax, ∀b (12)

C4 : cb ≤ cb,max, ∀b (13)

C5 :
∑B

b=1
Lab ≤ l, ∀a (14)

C6 : Lab ≤ uabl, ∀a, b (15)

C7 : pt
ab ≤ uabCb,max, ∀a, b (16)

C8 : uabsab ≤ Hatanθa, ∀a, b (17)

C9 : uab = {0, 1} , ∀a, b (18)

X min
a ≤ Xa ≤ X max

a , ∀a (19)

Y min
a ≤ Ya ≤ Y max

a , ∀a (20)

Hmin
a ≤ Ha ≤ Hmax

a , ∀a (21)

θmin
a ≤ θa ≤ θmax

a , ∀a (22)

The numerator of the objective function comprises of the computation efficiency while the energy
consumption during no offloading and offloading is the denominator, where U = {uab}b∈B,a∈A,, C =
{cab}b∈B,a∈A,, P = {pt

ab}b∈B,a∈A,, L = {Lab}b∈B,a∈A,, Z = {Xa, Ya, Ha, θa}a∈A. To ensure that each task is only
performed once, C0 specifies that the MU either completes it locally or offloads it to a specific UAV.
In C1, a single UAV cannot have more than the maximum number of GUs connected to it. C2 is a
QoS constraint that applies when the total number of data bits used (for both local execution and
offloading) exceeds the minimum number of data bits required to complete the task. The total energy
consumption by the GU is less than or equal to the maximum amount of energy that can be used to
complete the task, as specified in C3. In C4, GU’s computation capacity must be less than or equal to
the allowed maximum computation capacity of the GU. When a task is offloaded and then executed, its
duration must be less than or equal to that of the ‘l’ time block. C6 denotes the amount of time it takes
to from the UAV and MU to establish communication i.e., oij = 1. C7 is total GUs power consumption,
which should always be less than or equal to the GUs maximum available power. UAVs must be within
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the coverage area of the GU to whom the GU has delegated the task, according to C8. C9 is a binary
offloading indicator variable i.e., 0 or 1. Execution is performed locally if the uab = 0 is zero. There
is an offloading procedure if the uab = 1, When uab = {0, 1}, the min. and max. limit for the UAVs
horizontal coordinates (X), vertical coordinates (Y), altitude (H) and the half beamwidth/elevation
angle (θ) of antenna must lie in the feasible region.

4 Proposed Algorithm

The given non-linear and non-convex multi-objective resource allocation complex problem con-
strained by non-linear constraints is solved by utilizing efficient algorithm which involves unsupervised
learning algorithm and interior point method. It eventually helps in finding the optimal solution by
decreasing the complexity of the system. The proposed algorithm’s pseudocode is elaborated in Fig. 3
and it consists of three stages.

Figure 3: Pseudocode for proposed algorithm

The K-means Clustering Algorithm is used in the first stage. At this point, the UAVs coordinates
are calculated using known GUs coordinates. Clusters of GU coordinates, the number of GUs and
the optimal UAV positions Z are optimised based on the number of known GUs. As a result, the UAV
coordinates are calculated using this algorithm. The altitude of the UAVs is then adjusted to match the
heights of the obstacles. User identification, authentication, connection, and offloading are all part
of the second stage. The connectivity of GUs and UAVs is limited by the max. number of allowable
connections

(
Kb,max

)
between the GU and the UAV. In this stage,

(
Kb,max

)
is used as the input for each

GU and UAV coordinate. A distance matrix S (a, b) is generated for each UAV. Specific UAVs are
assigned to specific GUs, and offloading occurs at the shortest possible distance between the UAV
and the GU (uab = 1). This means that if there are more connections than allowed, no link between
the GU and UAV is established, and local execution takes place instead (uab = 0). The Interior Point
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Method is used in the third stage to transform non-linear constraints into linear ones. Following the
establishment of the GU and UAV link, the interior point method can be used to find a linear solution
to a given multi-objective problem function. Both linear and non-linear constraints can be used as
inputs

(
x0, A, Aeq, beq, lb, ub

)
are introduced. Following the above procedure, further three steps take

place: Step I: si slack variables are derived from given non-linear constraints, which means non-linear
constraints are converted into linear ones. Step II: Barrier function is introduced, which provides the
approximation of a given objective function. Step III: If the approximated objective function is not
locally convex and has not yet converged, the conjugate gradient method is then used to meet the
convergence criteria. It is possible to maintain positive slack variables and thus adjust the radius and
decision variables of the trusted region. This is accomplished by solving the approximated converged
multi-objective resource allocation problem function using quadratic computations in conjunction
with linear constraints.

5 Simulation Results

A UAV-MEC network is taken into consideration with A = 20 UAVs and B = 150 GUs. The
network’s bandwidth is set as W = 1 Mhz with channel power gain at 1 m reference distance as do =
1.42e−4, and range as 500 m. The time block length set for all the tasks is l = 6 ms and min. data bits
conveyed as Qb = 50. The max. computation capacity available for the GU is set as cb,max = 1 Ghz. The
constant energy consumption of the GU during no offloading is set to be Cb = 0.00001W and max.
available energy as Cmax = 20 dBm. The max. GUs associated with the UAV is given as Kb,max = 15.
The height interval for UAV is set as Hmin

a = 10, Hmax
a = 20 and elevation angle/half beamwidth interval

for the antenna is θmin
a = π/6, θmax

a = π/3. The CPU model’s positive constants are set as βb, vb, w =
10−2e9+1, 1e3, 2.

Five different scenarios (1–5) were considered in this study, and the simulation results are depicted
in Fig. 4. In each scenario, number of GUs are varied by deploying different number of UAVs for both
no offloading and offloading conditions. Graph 1 shows the computation efficiency (utility function),
graph 2 is for the number of computed bits, while energy consumption is depicted in graph 3.

As shown in Fig. 4, computation efficiency is composed of the number of computed bits by the
energy consumed. In Scenario 1, by varying different GUs i.e., 25, 50, 75, 100, 125, 150, and deploying
4 UAVs for all those GUs are considered.For Scenarios 2, 25, 50, 75, 100, 125, 150 GUs are varied
by deploying 8 UAVs. In case of Scenario 3, GUs i.e., 25, 50, 75, 100, 125, 150 are varied with 12
associated UAVs. 16 UAVs are linked with GUs 25, 50, 75, 100, 125, 150 in Scenario 4. In last Scenario
5, by different varying users 25, 50, 75, 100, 125, 150 by deploying 20 UAVs, results are calculated for
both no offloading (local execution) and offloading cases.

Graph 1: Computation Efficiency Scenario 1 employs 4 UAVs by varying 25, 50, 75, 100, 125,
150 GUs. During local execution (no offloading) case, The computational efficiency of GUs is nearly
constant when executed locally but significantly increases when the tasks are offloaded. In Scenario
2, where 8 UAVs are used for GUs 25, 50, 75, 100, 125, 150, offloading improves the computational
efficiency of Scenario 2 slightly when compared to Scenario 1. Offloading gives better results as the
number of GUs increases, which increases computation efficiency. Similarly, in the Scenario 3, 4, 5,
the computation efficiency keeps on increasing during offloading but remains almost still during local
execution.
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Figure 4: Simulation results

Graph 2: Number of Computed Bits Scenario 1 employs four UAVs while changing the no. of GUs,
namely 25, 50, 75, 100, 125, 150. Scenarios 2, 3, 4 and 5 each employ eight, twelve, sixteen, and twenty
UAVs.Each scenario shows a constant number of computed bits for local execution, but as the no. of
GUs increases, the amount of offloading increases, as a result, number of computed bits increases for
offloading case. Computed bits increases linearly with the number of GUs and UAVs.

Graph 3: Consumed Energy For Scenarios 1, 2, 3, 4, 5, MUs are varied i.e., 25, 50, 75, 100, 125,
150 by deploying 4, 8, 12, 16, 20 UAVs respectively. The third graph shows that when no offloading
occurs, MUs consume less energy, which is not required for sure. But as the number of GUs and
UAVs increases, the tasks are automatically start offloading to the UAVs. As the offloading increases,
energy consumed during data transmission and reception between MU and UAV increases. However,
it is shown in the graph that energy consumed during offloading is nearly equal to the local execution
which means less energy is consumed during offloading, and it gives better results.

It is possible to assert that overall system performance has improved due to the increased number
of computed bits and decreased energy consumption. In addition, offloading outperforms local
execution, i.e., offloading improves computation efficiency more.

6 Conclusion

This paper investigates the computational efficiency for mobile IoT ground users by employing a
UAV-MEC network with multiple rotary-winged UAVs and multiple users. In order to maximise the
given objective function, which is constrained by latency, power, and quality of service requirements, we
employ the K-means clustering algorithm and the interior point method, which are both implemented
in MATLAB. Iterations are used to solve the problem that has been formulated. Specifically, small
tasks (less data size) are completed locally by the ground user, whereas high computation tasks (large
data size), are offloaded to the UAVs in order to improve the overall performance of the U-MEC
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system. Simulation Results show that offloading gives better results than the local execution. Non-
Orthogonal Multiple Access (NOMA) is one technique that can further be used in future works.
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