
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2023.030814

Article

Salp Swarm Algorithm with Multilevel Thresholding Based Brain Tumor
Segmentation Model

Hanan T. Halawani*

Computer Science Department, College of Computer Science and Information Systems, Najran University,
Najran, 55461, Saudi Arabia

*Corresponding Author: Hanan T. Halawani. Email: hthalawani@nu.edu.sa
Received: 02 April 2022; Accepted: 19 May 2022

Abstract: Biomedical image processing acts as an essential part of several
medical applications in supporting computer aided disease diagnosis. Mag-
netic Resonance Image (MRI) is a commonly utilized imaging tool used to
save glioma for clinical examination. Biomedical image segmentation plays a
vital role in healthcare decision making process which also helps to identify
the affected regions in the MRI. Though numerous segmentation models are
available in the literature, it is still needed to develop effective segmentation
models for BT. This study develops a salp swarm algorithm with multi-level
thresholding based brain tumor segmentation (SSAMLT-BTS) model. The
presented SSAMLT-BTS model initially employs bilateral filtering based on
noise removal and skull stripping as a pre-processing phase. In addition,
Otsu thresholding approach is applied to segment the biomedical images
and the optimum threshold values are chosen by the use of SSA. Finally,
active contour (AC) technique is used to identify the suspicious regions in the
medical image. A comprehensive experimental analysis of the SSAMLT-BTS
model is performed using benchmark dataset and the outcomes are inspected
in many aspects. The simulation outcomes reported the improved outcomes
of the SSAMLT-BTS model over recent approaches with maximum accuracy
of 95.95%.

Keywords: Brain tumor segmentation; noise removal; multilevel thresholding;
healthcare; pre-processing

1 Introduction

Brain tumor (BT) or brain cancer is a group of unusual cells from the human intelligence. There
comes 2 kinds of tumors, such as benign (non-cancerous) and malignant (cancerous) [1]. Medical
images are a significant means for radiologists to correctly diagnose brain diseases namely cancer [2].
High resolution MRI of the brain was required for detecting BTs in a better way. The benefit of MRI
is considered the least risky technique for creating data with spatial resolution from high scale and
non-invasive mode as related with other methods of diagnostic imaging. Manual segmentation of MRI
pictures is time consuming, arduous, and costly and any error is vulnerable because of its indistinctness
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of tissues boundary, low tissue contrast, and bad hand-eye cooperation. Subsequently, dissimilarities
are general amongst radiologists deciding a variability of structural forms [3]. Efficient brain MRI
segmentation could probably enhance the categorization of brain diseases with better preciseness [4,5].

Histogram-related thresholding is a very famous tool from the image segmentation. Bi-level
thresholding (BLT) is also termed a simple issue when compared with multi-level thresholding
(MLT). Fig. 1 illustrates the process in MTL [6]. During the event of multilevel thresholding, it
becomes a challenge to describe a collection of pixels if more facts of segmentation are generated.
Establishing different valleys in a multi-layered histogram is not a simple job. So, the issue of multi-
layered thresholding is grabbed the attention of researchers. Otsu’s technique [7], is also known as
a nonparametric method, chooses optimum thresholds by increasing among-class variance of Gray
level [8]. Gray levels of the picture are generally allocated the above mentioned technique is simple and
robust in BLT. Otsu’s technique could probably be implemented in MLT [9]. But, it can be essentially
formidable in deciding optimum thresholds owing to the exponential advances in computation time,
various procedures for resolving the multi-layered thresholding issue was suggested [10]. MLT-related
meta-heuristics are suggested by the researcher scholars for increasing searching speed as it has been
certified to earn the optimum outcomes in (optimum) threshold.

Figure 1: Process in multilevel thresholding

The authors in [11] intend to classify BTs via DL method of MR image. The UNet structure,
one of the DL techniques is utilized hybrid method using pre-trained DenseNet121 structure for the
classification method. In the testing and training models, the study focused on small sub-region of
tumor that comprises the complicated model. In [12], an automated technique called wider residual
network and pyramid pool network (WRN-PPNet) that could manually classify glioma end to end is
presented. The major concept can be discussed in the following. Initially, WRN is utilized for feature
extraction of multi-modal BT slices that have shown stronger expressive capability. Next, the global
depiction with dissimilar levels attained through PPNet is stacked on the feature from WRN. The
authors in [13] presented a multiple stage method which incorporated the domain knowledge and
information into multi-sequence MR image classification. Next, we separate the presented method
into, (i) visual object extraction, (ii) information modelling, and (iii) information fusion.
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The authors in [14] presented an improved region-growing procedure for initializing the auto-
mated seed point. The presented technique has been compared to the advanced DL approach through
the standard data set, BRATS2015. In the presented technique, the study employed a threshold method
to strip the skull from all the input brain images. Next, estimated the mean intensity and the 5 blocks
with maximal mean intensity have been chosen out of the 8 blocks. The authors in [15] propose a
technique of augmenting a present MRI data set by producing synthetic CT image. Next, deliberate
a procedure of systematic optimization of (CNN model which employs the improved data set for
customizing the task. The authors in [16] introduce a level set technique viz. termed Fuzzy Kernel Level
Set (FKLS) for three dimensional brain cancer classification in MR images. To evade computation
difficulty, faster bounding box based symmetry analysis is utilized for extracting the volume of interest
(VOI) in brain MRI. Next, a level set technique is presented on the basis of kernel mapping and fuzzy
c-means clustering.

This study develops a salp swarm algorithm with multi-level thresholding based brain tumor
segmentation (SSAMLT-BTS) model. The presented SSAMLT-BTS model initially employs bilateral
filtering based on noise removal and skull stripping as a pre-processing phase. In addition, Otsu
thresholding approach is applied to segment the biomedical images and the optimum threshold values
are selected by the use of SSA. Finally, active contour (AC) technique is used to identify the suspicious
regions in the medical image. A comprehensive experimental analysis of the SSAMLT-BTS model is
performed using benchmark dataset and the outcomes are examined in several aspects.

2 The Proposed Model

In this study, a new SSAMLT-BTS model has been developed to segment BT using MRIs. The
presented SSAMLT-BTS model primarily applied BF based noise removal and skull stripping as a
pre-processing phase. In addition, Otsu thresholding approach is applied to segment the biomedical
images and the optimum threshold values are selected by the use of SSA. Finally, AC technique is used
to identify the suspicious regions in the medical image.

2.1 Noise Removal

A primary stage, the BF technique is used to eradicate the presence of noise exist in the MRI. By
combining 2 Gaussian filters, it can be able, during the domain of spatial one of which functions and
intensity domain the other one is functioning. In order to weight, both the intensity as well as spatial
distances were utilized. The bilateral filter outcome at pixel place p is explained as:

F̄ (p) = 1
N

∑
zεS(p)

e
−‖q − p‖2

2ε2
e

−|F (q) − F (p) |2

2E 2
S

F (q) (1)

Whereas S (p) refers the pixel spatial neighbourhood (p), and N denotes the normalized constant,
εe and εr signifies the parameters governing weighted from the domains of intensity as well as spatial
begin with fall off.
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2.2 Skull Stripping

Skull stripping is the preliminary step from the brain MRI segmentation method. It can be
important to discard the skull in the background region from MRI for quantitative study. Generally,
it can be implemented by an image filter that separates the skull and the remaining image section
by covering the pixel having similar intensity level. In MR image, the skull/bone section would have
a maximal threshold value (threshold > 200) than the tumour and other brain parts. Therefore, the
image filter was utilized for separating the brain region according to the selected threshold value.

2.3 SSA with Otsu Thresholding Approach

Next to image pre-processing, the Otsu thresholding technique is applied for segmenation process.
Otsu is the segmentation technique utilized for discovering an optimum thresholding value for the
image according to the maximized between-class variance. This technique is utilized for discovering the
thresholidng best value which split the images into different classifications. The approach recognizes
Lv intensity level of a gray image, also the likelihood distribution can be evaluated as follows. It can be
utilized for color images, in which Otsu is exploited for all the channels [17].

hi = hi

NP
,

NP∑
i=1

Phi = 1 (3)

Now il indicates an intensity level stated within (0 ≤ il ≤ Lv − 1). NP denotes the overall amount
of the pixel image. hj signifies the quantity of the existence of intensity il in the possibility distribution
Phi. Based on the possibility distribution or threshold value (th), the class is described for bi-level
segmentation in the following:

C1 = Ph1

ω0 (th)
, . . . ,

Phth

ω0 (th)
and C2 = Phc

th+1

ω1 (th)
, . . . ,

PhL

ω1 (th)
(4)

Whereas ω0 (th) and ω1 (th) indicates cumulative possibility distribution for C1 and C2, as follows.

ω0 (th) =
th∑

i=1

Phj and ω1 (th) =
L∑

th+1

Phi (5)

It is important to discover the average intensity level μ0 and μ1 by utilizing the below equation
once this value is c, the Otsu based between-class σ 2

B can be determined as follows.

μ0 =
th∑

i=1

iPhi

ω0 (th)
and μ1 =

L∑
i=th+1

iPhi

ω1 (th)
(6)

σ 2
B = σ1 + σ2 (7)

Noted that σ1 and σ2 in Eq. (7) is the variance of C1 and C2 defined in the following:

σ1 = ω0(μ0 + μT)2 and σ2 = ω1(μ1 + μT)2 (8)

In which μT = ω0μ0 + ω1μ1 and ω0 + ω1 = 1 as per the values σ1 and σ2, the below equation
presented the objective function. Consequently, the optimization issue is minimized by discovering
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the intensity level that increases as follows

Fotsu (th) = max
(
σ 2

B (th)
)

where 0 ≤ th ≤ L − 1 (9)

Whereas σ 2
B (th) denotes the Otsu difference for a provided th value. The objective function Fotsu (th)

in Eq. (9) is altered for different thresholding values:

Fotsu (TH) = Max
(
σ 2

B (th)
)

whereas 0 ≤ thi ≤ L − 1 and i = [1, 2, 3, . . . , k] (10)

In the equation, TH = [th1, th2, . . . , thk − 1] indicates a vector comprising thresholding values,
L signifies maximal gray level, in which the variance is estimated as follows.

σ 2
B =

k∑
i=1

σi =
k∑

i=1

ω1(μ1 − μT)2 (11)

Now i indicates a class, ωi, and μj are FO likelihood of presence and the mean of level. For multiple
level thresholds, these values can be obtained by:

ωk−1 (th) =
L∑

i=thk+1

Phi (12)

for mean value:

μk−1 =
L∑

i=thk+1

iPhi

ω1 (thk)
(13)

For optimally choosing the threshold values of the Otsu approach, the SSA is applied. SSA is
determined as a random population technique suggested by [18]. It is applied to speed up the swarming
technique of salps while foraging in waters. Like swarm-relied model, the position of salps can be
determined in s-dimension searching space, in which s indicates the value of variable. Therefore, the
position of salp is stored in 2D matrixes termed as z. Additionally, the food source is characterized
by P in searching region as swarm terminus. The numerical technique for SSA is shown below: The
predominant salps alter the position in following equation:

z1
n =

{
Pn + r1 ((un − ln) r2 + ln) r3 ≥ 0
Pn − r1 ((un − ln) r2 + ln) r3 < 0 (14)

r1 = 2e−
(

−4a
A

)2

(15)

The coefficient r1 is an attribute in SSA then it presents good management between exploration
and exploitation stages. Fig. 2 illustrates the flowchart of SSA. For changing the location of the
follower, below equation is employed:

zm
n = 1

2
ce2 + v0e (16)
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Whereas m ≥ 2, c = νf ′nal

ν0

in which v = z − z0

e
. As a consequence of the time in optimization, the

crisis amongst iterations denotes 1, also assume v0 = 0, as follows:

zm

n = 1
2

(
zm

n + zm−1
n

)
(17)

Figure 2: Flowchart of SSA

A summary of this method is shown below:

i. Upload the parameter of SSA namely optimal fitness value (f (Z∗)), count of salps (S), best
salp position (Z∗), and count of iterations (A).

ii. Uploaded a population of S salp position in random manner.
iii. Assess the fitness of every salp.
iv. Fix amount of iteration (a) to 0.
v. Upgraded r1.

vi. For every salp,
vii. When m == 1, upgrade the position of salp.

viii. Then, upgraded the position of follower salp.
ix. Describe the fitness of every salp.
x. Upgraded Z∗ as they arise the highest solution.

xi. Increment a.
xii. Follow Steps 5 to 7 until a = A is satisfied.

xiii. Present the best solution Z∗ and fitness value f (Z∗).
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2.4 Active Contour Approach

It is applied for deriving the doubtful regions from the input image. Here, the deformable snake
based AC and localized AC are utilized for extracting the affected regions. It involves different
processes like initialization, boundary detection, and extraction. It will track the identical set of pixels
present in the pre-processed images depending on the theory of energy minimization. The energy
function is defined in the following [19]:

min
C

{EGAC (C) = L(C)∫
0

g(|∇I0C (s))|ds} (18)

where ds denotes Euclidean element of length and L (C) implies curve length C that fulfills L (C) =
jL(C)

0 ds. The variable g denotes edge indicator that disappeared depending upon the object boundary
as given below.

g (|∇I0|) = 1
1 + β|∇I0|2

(19)

where I0 signifies input image and β is a random constant. The energy value quickly decreased
depending upon the edge value using gradient descent criteria. It can be defined as follows:

∂tC = (
kg − 〈∇g, N

〉)
N (20)

where ∂rC = ∂C/∂r denotes deformation, t indicates iteration, and N indicates curvature.

3 Results and Discussion

In this section, a detailed experimental validation process is carried out on BRATS dataset [20].
Fig. 3 demonstrates the sample images obtained during the pre-processing stage. The first row indicates
the original MRI and the pre-processed versions are offered in the second row.

Figure 3: Sample pre-processed images
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Tab. 1 and Fig. 4 highlight the results offered by the SSAMLT-BTS model under different slices.
On coronal slice, the SSAMLT-BTS model has offered PSNR, NCC, NAE, and SSIM of 24.65,
0.7886, 0.1935, and 93.49 dB. Moreover, on sagittal slice, the SSAMLT-BTS technique has accessible
PSNR, NCC, NAE, and SSIM of 29.58, 0.8944, 0.1496, and 89.94 dB. Furthermore, on axial slice, the
SSAMLT-BTS approach has obtainable PSNR, NCC, NAE, and SSIM of 31.46, 0.8579, 0.1982, and
87.74 dB.

Table 1: Result analysis of SSAMLT-BTS technique with distinct measures

Slice PSNR (dB) NCC NAE SSIM

Coronal 24.65 0.7886 0.1935 93.49
Sagittal 29.58 0.8944 0.1496 89.94
Axial 31.46 0.8579 0.1982 87.74
Average 28.56 0.8470 0.1804 90.39

Figure 4: Result analysis of SSAMLT-BTS technique with distinct measures
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Fig. 5 reports a brief average result analysis of the SSAMLT-BTS model on BT segmentation. The
results indicated that the SSAMLT-BTS model has resulted in an average PSNR of 28.56 dB, NCC of
0.8470 dB, NAE of 0.1804 dB, and SSIM of 90.39 dB respectively.

Figure 5: Average analysis of SSAMLT-BTS technique with distinct measures

Tab. 2 provides a brief result analysis of the SSAMLT-BTS model on distinct images and slice
numbers. Fig. 6 reports a comprehensive Jaccard index inspection of the SSAMLT-BTS model under
distinct images and slice numbers. The experimental results implied that the SSAMLT-BTS model
has obtained increased values of Jaccard under all aspects. For instance, with Flair MRI image, the
SSAMLT-BTS model has resulted in average Jaccard of 88.09. At the same time, with T1C MRI image,
the SSAMLT-BTS model has resulted in average Jaccard of 91.46. Along with that, with T2 MRI
images, the SSAMLT-BTS model has accomplished average Jaccard of 86.46.

Table 2: Result analysis of SSAMLT-BTS model on distinct images and slice numbers

Images Slice Jaccard Dice FPR FNR

Flair MRI images 100 88.62 90.74 6.12 11.57
110 89.19 92.69 5.96 5.57
120 89.33 94.68 3.56 4.71
130 85.23 95.37 7.84 5.81
Average 88.09 93.37 5.87 6.92

T1C MRI images 100 92.23 88.42 12.48 8.70
110 89.67 93.49 10.24 8.34
120 92.94 94.81 7.02 6.21
130 91.00 93.06 8.73 10.83
Average 91.46 92.45 9.62 8.52

(Continued)
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Table 2: Continued
Images Slice Jaccard Dice FPR FNR

T2 MRI images 100 88.85 90.78 6.07 10.84
110 85.42 91.77 10.66 11.06
120 85.41 89.69 7.22 8.52
130 86.16 93.60 5.45 3.80
Average 86.46 91.46 7.35 8.56

Figure 6: Jaccard index analysis of SSAMLT-BTS technique with distinct images

Fig. 7 demonstrates a comprehensive Dice inspection of the SSAMLT-BTS technique under
distinct images and slice numbers. The experimental outcomes represented that the SSAMLT-BTS
approach has obtained enhanced values of Dice under all aspects. For instance, with Flair MRI image,
the SSAMLT-BTS methodology has resulted in average Dice of 93.37%. Simultaneously, with T1C
MRI image, the SSAMLT-BTS technique has resulted in average Dice of 92.45%. Eventually, with T2
MRI image, the SSAMLT-BTS algorithm has accomplished average Dice of 91.46%.
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Figure 7: Dice analysis of SSAMLT-BTS technique with distinct images

At last, a comparative examination of the SSAMLT-BTS model with other models on BRATS
challenges 2012 Dataset is given in Tab. 3.

Table 3: Comparative analysis of SSAMLT-BTS technique with existing methods

Method Jaccard Dice Sensitivity Specificity Accuracy

SE-LS Model 84.19 93.78 97.56 83.43 94.58
FCM Algorithm 82.32 94.33 96.68 82.07 93.45
PSO-MRF 83.04 93.23 95.45 82.02 94.34
PCA Algorithm 82.24 92.70 97.64 82.61 93.92
SSAMLT-BTS 86.16 95.92 98.78 85.35 95.95

Fig. 8 reports an accuy inspection of the SSAMLT-BTS model with other models. The figure
indicated that the FCM and PCA models have shown worse performance with minimal values of
accuy. In line with, the SE-LS and PSO-MRF models have shown slightly enhanced performance with
moderate values of accuy. However, the SSAMLT-BTS model has accomplished superior outcomes
with maximum accuy of 95.95%.

Fig. 9 defines a Jaccard and Dice analysis of the SSAMLT-BTS method with other techniques.
The figure exposed that the FCM and PCA models have shown worse performance with minimal
values of Jaccard and Dice. Along with that, the SE-LS and PSO-MRF techniques have outperformed
somewhat enhanced performance with moderate values of Jaccard and Dice. Lastly, the SSAMLT-BTS
technique has accomplished superior outcomes with maximal Jaccard and Dice of 86.16% and 95.92.
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Figure 8: Accy analysis of SSAMLT-BTS technique with existing methodologies

Figure 9: Jaccard and Dice analysis of SSAMLT-BTS technique with existing methodologies

Fig. 10 portrays a sensy and specy examination of the SSAMLT-BTS technique with other models.
The figure exposed that the FCM and PCA techniques have demonstrated worse performance with
minimal values of sensy and specy. Besides, the SE-LS and PSO-MRF methods have shown somewhat
enhanced performance with moderate values of sensy and specy. At last, the SSAMLT-BTS technique
has accomplished superior outcomes with higher sensy and specy of 98.78% and 85.35%. After
observing the above-mentioned discussion, it is concluded that the SSAMLT-BTS model is an effective
tool for BT segmentation.



CMC, 2023, vol.74, no.3 6787

Figure 10: Sensy and sepcy analysis of SSAMLT-BTS technique with existing methodologies

4 Conclusion

In this article, an effective SSAMLT-BTS model has been introduced to identify BT using MRIs.
The presented SSAMLT-BTS model primarily applied BF based noise removal and skull stripping as
a pre-processing phase. In addition, Otsu thresholding approach is applied to segment the biomedical
images and the optimal threshold values are selected by the use of SSA. Finally, AC technique is
used to identify the suspicious regions in the medical image. A comprehensive experimental analysis
of the SSAMLT-BTS model is performed using benchmark dataset and the outcomes are inspected
under several aspects. The simulation outcomes reported the improved outcomes of the SSAMLT-BTS
model over recent approaches. Therefore, the SSAMLT-BTS model can be applied as a proficient tool
to segment MRI. In future, deep learning enabled segmentation models can be executed for improving
the performance of the SSAMLT-BTS technique.
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