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Abstract: The novel Software Defined Networking (SDN) architecture poten-
tially resolves specific challenges arising from rapid internet growth of and
the static nature of conventional networks to manage organizational business
requirements with distinctive features. Nevertheless, such benefits lead to a
more adverse environment entailing network breakdown, systems paralysis,
and online banking fraudulence and robbery. As one of the most common
and dangerous threats in SDN, probe attack occurs when the attacker scans
SDN devices to collect the necessary knowledge on system susceptibilities,
which is then manipulated to undermine the entire system. Precision, high per-
formance, and real-time systems prove pivotal in successful goal attainment
through feature selection to minimize computation time, optimize prediction
performance, and provide a holistic understanding of machine learning data.
As the extension of astute machine learning algorithms into an Intrusion
Detection System (IDS) through SDN has garnered much scholarly attention
within the past decade, this study recommended an effective IDS under the
Grey-wolf optimizer (GWO) and Light Gradient Boosting Machine (Light-
GBM) classifier for probe attack identification. The InSDN dataset was
employed to train and test the proposed IDS, which is deemed to be a novel
benchmarking dataset in SDN. The proposed IDS assessment demonstrated
an optimized performance against that of peer IDSs in probe attack detection
within SDN. The results revealed that the proposed IDS outperforms the
state-of-the-art IDSs, as it achieved 99.8% accuracy, 99.7% recall, 99.99%
precision, and 99.8% F-measure.
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1 Introduction

Advancements of Internet-based technologies constitutes a set of many networking devices with
integrated circuits and electronic chips for high throughput attainment towards hardware-oriented
networking. Regardless, the present infrastructure depicts specific drawbacks involving manageability,
versatility, and extensibility. Network controllers and administrators are restricted to a group of pre-
identified commands although it might be handy, simpler, and more effective to complement increased
internet protocols and applications through network control programming in responsive and flexible
ways as networking devices typically support commands and configurations following a specified
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embedded Operating System (OS). Additionally, scholars are bound to create their own experimental
environments or incorporate simulations rather than conducting experiments on real ones for idea
manifestation. By way of explanation, cutting edge and research are costly under present hardware-
centric networking conditions.

The Software Defined Networking (SDN) concept was recommended with three primary layers
to alleviate such shortcomings (see Fig. 1). As ‘‘an emerging network architecture where the network
control is decoupled and separated from the forwarding mechanism and is directly programmable’’
[1]. SDN constitutes a logically-centralized controller with a network-wide view that controls many
interface-configured (ForCES [2] and OpenFlow [3]) packet-forwarding devices (switches). The SDN
could emerge as a novel networking advancement that unwrap current network operation and control
and facilitates network advancements and novel network designs following its decoupled nature. The
potential SDN advantages in current and future Internet architectures, such as information-based
networking [4] has garnered much interest from the society at large.

Figure 1: SDN components

Notably, SDN is exposed to probe attacks where unprotected network resources would be targeted
for network damage. Following Fig. 2 [5], probe attacks attempt to gather the necessary data (IP
Address, service name, operating system application, and host name) and detect network susceptibility.
The attacker would employ common scanning instruments from the Internet to gather network data
(nmap, satan, and mscan), which could also be utilized to instigate other attacks (Denial-of-Service
(DoS), Root to Local attacks (R2L), User to Root (U2R)) beyond their essential purpose [5]. The
primary idea underlying the attack originates from the perception that all rule types are only pushed
from the controller to the switches, when necessary, in an SDN network. As such, a robust mechanism
(automatic Intrusion Detection System (IDS)) should be provided by the network administrator for
early attack detection and alleviate the risks resulting from such instances.

Figure 2: Probe attack scenario
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The IDS is operated by monitoring and inspecting client device or network traffic behavior and
serves to ascertain intrusions and suspicious activities [6]. This system issues an alarm to alert the
security team and register malicious network activities into a log file for further investigation [7].
The IDS performance could be enhanced with Feature Selection (FS) to minimize computation time
and intricacies through optimum feature subset selection, Microsoft proposed LightGBM in 2017
[8], a unique boosting framework that is deemed to be faster and more powerful than Xgboost
[8]. The LightGBM model functioned as a classifier in the recommended IDS given its extensively
acknowledged performance in resolving specific data mining and Machine Learning (ML) intricacies.

FS serves to determine a subset of features and choose the most pivotal counterpart for a classifier.
As network traffic entails a substantial number of features, classifiers could yield higher precision with
optimal attribute selection compared to one that is developed with a complete set of characteristics.
FS could also mitigate the training dataset size given its reliable processing time and tests. Based on
most empirical comparisons and demonstrations, the presence of repetitive and irrelevant features
adversely affected learning model accuracy [9]. The security mechanism performance significantly
relies on a subset of features chosen to be employed in optimal IDS development. As one of the
extensively utilized and robust FS algorithms incorporated into various fields (IDSs), GWO selects
the most crucial features that could enhance classification accuracy and intrusion detection rate.

The current study proposed an optimal IDS under GWO and the LightGBM classifier for efficient
probe attack detection in SDN. The contributions of the proposed article are as follows: (i) An
enhanced GWO by proposing a modified change position technique, (ii) A multi-objective fitness
function to enhance performance of feature selection and classification process by selecting the most
important features, and (iii) A LightGBM-based model for probe attack detection.

The remaining sections are presented as follows: Section 2 reviews relevant literature to highlight
current knowledge gaps; Section 3 elaborates on the recommended IDS stages; Section 4 highlights
the proposed IDS efficiency by discussing the empirical outcomes and concludes the study.

2 Related Works

Numerous attack detection methods are currently based on benchmark dataset, attack types, and
simulating SDN scenarios. Robust attack detection techniques distinguish pernicious network traffic
and patterns from legitimate counterparts [10]. Such techniques are extensively deployed in traditional
networks and ML-assisted SDNs. For example, ML-based IDS of DDoS flooding attacks on SDNs
was presented in [11]. The common principle is depicted using a case study where experimental data
(jitter, throughput, and response time metrics) from a representative SDN environment, which proves
adequate for typical mid-sized and enterprise-wide networks, is employed to structure classification
models that precisely determine and categorize DDoS flooding attacks. The incorporated SDN
model was emulated in Mininet and DDoS flooding attacks (hypertext transfer protocol or HTTP),
transmission control protocol (TCP), and user datagram protocol or UDP attacks) that were launched
on the SDN model with Low Orbit Ion Cannon (LOIC). On average, Classification and Regression
Tree (CART) reflected the most optimal performance regarding prediction accuracy (98%), and
robustness although all the examined ML techniques demonstrated high efficacy in Distributed
Denial-of-Service (DDoS) flooding attack detection and classification.

A versatile modular architecture was recommended in [12] to facilitate Low-Rate Denial-of-
Service (LR-DDoS) attack identification and alleviation in SDN contexts. The IDS in this study
architecture was trained through six ML models. Their performance was assessed with the Canadian
Institute of Cybersecurity (CIC) DoS dataset. Resultantly, the current study approach attained a 95%
detection rate despite LR-DoS attack identification complexities. Regarding deployment, the open
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network OS controller operating on the Mininet VM employed for the simulated context for close
proximity to real-world production networks. The intrusion prevention detection system alleviated all
the attacks previously identified by IDS in testing topology, thus depicting the architecture utility to
detect and alleviate LR-DDoS attacks.

A new DDoS attack alleviation approach in SDN-related Internet Service Provider (ISP) networks
for TCP-SYN and Internet Control Message Protocol (ICMP) flood attacks employed the ML
method (k-Nearest Neighbors (KNN) and Extreme Gradient Boosting (XGBoost)) following [13]. The
recommended algorithms were implemented, and their accuracy evaluated to overcome the trade-off
between accuracy and detection effectiveness through testbed deployment. Based on the experimental
outcomes, the algorithms could effectively perform attack mitigation by over 98.0% while benign
traffic proved to be unaffected. The DDoS attacks in SDN were identified with ML-oriented models
parallel to [14]. Under DDoS attack traffic, particular features were first derived from SDN for the
dataset in normal conditions. A novel dataset was subsequently developed with FS approaches on
the present dataset for model simplification, interpretation catalyzation, and minimal training time.
Both datasets that were developed with and without FS techniques were trained and tested with
several ML and deep learning classifiers. Resultantly, the wrapper FS was integrated with a KNN
classifier to attain the highest precision rate (98.3%) in DDoS attack identification. In this vein, ML
and FS algorithms could demonstrate optimal results involving DDoS attack detection in SDN with
the potential decrease of processing load and time.

Meanwhile, a learning-oriented mechanism was suggested in [15] to identify the low-rate DDoS
on SDN controller and switch nodes. The proposed technique constitutes two main feature groups,
namely (i) stateless group, and (ii) stateful group, elicited from the Openflow package. The IDS
utilizes ML to develop classifiers and distinguish normal stream from abnormal one. The experimental
environment was developed and implemented to assess the research method, which encompasses
the low-rate DDoS attack module under Internet of Things (IoT) devices, the physical and virtual
heterogeneous SDN network, and the data flow capture and feature extraction model. The prediction
outcomes were validated from various learning algorithms and the dissemination of each raw data
feature for the outcomes to be compared against conventional IP packet classification solution for the
DDoS attack in IoT networks following the suggested platform. Overall, the experimental outcomes
demonstrated the recommended method effectiveness.

A trigger-based IDS to detect of DDoS on data plane was recommended to detect abnormal
traffic flow based on [16]. An integrated ML algorithm entailing K-Means and KNN was employed to
manipulate the rate and asymmetry attributes of the flows and detect the malicious flow ascertained
by the trigger-based IDS. The controller would then undertake the necessary actions to self-defend
against the attacks. The recommended cooperative detection method framework involving control
plane and data plane significantly enhanced detection accuracy and effectiveness and deterred DDoS
attacks on SDN.

3 Proposed IDS

This section discusses the methodological stages followed to achieve the main objective of this
article, namely: (i) preprocessing, (ii) GWO-based FS, and (ii) LightGBM-based attack detection.

3.1 Preprocessing

This stage strived towards data preparation for the subsequent phases (FS and detection) of the
recommended IDS by converting the InSDN dataset network traffic into a more meaningful form.
This stage encompasses the following components:
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3.1.1 Cleansing

A significant step towards data quality and reliability reinforcement by omitting and rectifying
dataset errors. Cleansing also includes managing missing, inaccurate, and noisy data that undermines
model performance.

3.1.2 Transformation

Data conversion from symbolic feature values to numerical counterparts.

3.1.3 Mapping

The InSDN dataset involves specific attack types that should first be classified accordingly. As
such, a mapping approach was employed to map every attack into its corresponding attack category
(See Fig. 3), then each feature is indexed by integer number starting with 0, and the results is as listed
in Table 1 below.

Figure 3: Attack mapping

Table 1: Features indexing

Index Feature Index Feature Index Feature

0 Src Port 23 Fwd IAT Mean 46 PSH Flag Cnt
1 Dst Port 24 Fwd IAT Std 47 ACK Flag Cnt
2 Protocol 25 Fwd IAT Max 48 URG Flag Cnt
3 Flow Duration 26 Fwd IAT Min 49 Down/Up Ratio
4 Tot Fwd Pkts 27 Bwd IAT Tot 50 Pkt Size Avg
5 Tot Bwd Pkts 28 Bwd IAT Mean 51 Fwd Seg Size Avg
6 TotLen Fwd Pkts 29 Bwd IAT Std 52 Bwd Seg Size Avg
7 TotLen Bwd Pkts 30 Bwd IAT Max 53 Subflow Fwd Pkts
8 Fwd Pkt Len Max 31 Bwd IAT Min 54 Subflow Fwd Byts
9 Fwd Pkt Len Min 32 Bwd PSH Flags 55 Subflow Bwd Pkts
10 Fwd Pkt Len Mean 33 Bwd URG Flags 56 Subflow Bwd Byts
11 Fwd Pkt Len Std 34 Fwd Header Len 57 Init Bwd Win Byts
12 Bwd Pkt Len Max 35 Bwd Header Len 58 Fwd Act Data Pkts
13 Bwd Pkt Len Min 36 Fwd Pkts/s 59 Active Mean
14 Bwd Pkt Len Mean 37 Bwd Pkts/s 60 Active Std
15 Bwd Pkt Len Std 38 Pkt Len Min 61 Active Max
16 Flow Byts/s 39 Pkt Len Max 62 Active Min

(Continued)
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Table 1: Continued
Index Feature Index Feature Index Feature

17 Flow Pkts/s 40 Pkt Len Mean 63 Idle Mean
18 Flow IAT Mean 41 Pkt Len Std 64 Idle Std
19 Flow IAT Std 42 Pkt Len Var 65 Idle Max
20 Flow IAT Max 43 FIN Flag Cnt 66 Idle Min
21 Flow IAT Min 44 SYN Flag Cnt 67 Label
22 Fwd IAT Tot 45 RST Flag Cnt

3.1.4 Normalization

This process denotes calibrating a range of feature values into a well-proportioned counterpart.
Normalizing values range between Ymin and Ymax, which are the minimum and maximum values for
feature Y with Eq. (1) and extensively utilized in recent IDS research [17].

Ynew = Ycurrent − Ymin

Ymax − Ymin

(1)

Specifically, the numerical feature values are depicted by Y. A minimal feature Y value is denoted
by Ymin while Ymax demonstrates the maximum value of the same feature. The original feature Y value
is indicated by Ycurrent, whereas the normalized feature value is denoted by Xnew. The final dataset is as
represented in Fig. 4 below.

Figure 4: Snapshot of dataset after preprocessing
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3.2 GWO-Based Feature Selection

The GWO denotes a Swarm Intelligence Optimization algorithm inspired by the social hierarchy
and hunting behavior of grey wolves. Four grey wolf types were defined to simulate the leadership
hierarchy: alpha, beta, delta, and omega. The pseudocode of GWO is illustrated in Fig. 5 below.

Figure 5: Pseudocode of GWO [18]

The increased engagement of wolves in GWO would result in highly precise decisions and mitigate
decision dependency. The refined GWO necessitates an additional wolf: omega wolf (ω) to reduce
the impact rate of any wolf decision as thoroughly elaborated in Eqs. (2)–(9). The central updating
equation is developed in Eq. (2) below [18,19]:

W t+1
i = “Crossover

‘‘

(w1. w2. w3. w4 ) (2)

Specifically, the modified bGWO is based on this concept by adding one more wolf, called omega
wolf (ω). The increase in the number of wolves that participated in the decision led to a reduction in
the impact rate of any wolf’s decision from 0.33% to 0.25%. Where w1, w2, w3, and w4 are binary
vectors that represent the wolf move impact on alpha, beta, delta, and omega grey wolves in sequence.
The w1, w2, w3, and w4 were mathematically determined in Eqs. (3)–(6), respectively.

wd
w =

{
1 if

(
wd

ω
+ stepbd

ω

) ≥ 1
0 otherwise

(3)

Specifically, wd
ω

denotes the location vector of the omega wolf in d while stepbd
ω

indicates a binary
step in dimension d determined by Eq. (3).

stepbd
ω

=
{

1 if stepcd
ω

rand
0 otherwise

(4)

Specifically, rand implies an arbitrarily selected number from uniform distribution ∈ [0. 1] while
stepcd

ω
denotes the continuous valued step size for dimension d. Eq. (5) below is employed for sigmoidal

function computation:

stepcd
ω

= 1

1 + e−10(Ad
4 Didω−0.5)

(5)
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Specifically, Ad
4, and Dd

iω were mathematically determined by Eqs. (6) and (7) in dimension d,
respectively.

A = 2b. r1 − b (6)

Dd
iω = |C1.Wα − W | (7)

A simple random probability distribution crossover strategy was implemented per dimension to
crossover w1, w2, w3, and w4 outcomes following Eq. (8).

wd =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wd
1 if rand <

1
4

wd
2 if

1
4

≤ rand <
2
4

wd
3 if

2
4

≤ rand <
3
4

wd
4 otherwise

(8)

Specifically, W1, W2, and W3 denote the weights for every objective (
∑n

1 xn = 1), acc implies
accuracy, miss indicates the misclassification rate, and Nfeatures represents the selected number of
features. On another note, TP implies true positive, TN denotes true negative, FP indicates false
positive, and FN represents false negative.

Regardless, the current GWO-oriented IDS employed one objective function that induced a
substantial number of utilized features, thus requiring additional network overhead, computation time,
and inadequate FS. Alternatively, a multi-objective function was incorporated as a fitness function in
the recommended IDS to mitigate current IDS complexities. As the study fitness assessment method,
the recommended multi-objective function or weighted sum fitness function strived to minimize the
number of selected features and misclassification rates and achieve high classification accuracy rates
with Eq. (9). The fitness value for the recommended multi-objective function was computed with the
following formula:

F (x) = −
(

v∗accuracy + (1 − v)
∗ 1

No_of _features

)
(9)

where v is a weighting number ∈ [0, 1], accuracy denotes detection accuracy computed by Eq. (10),
and No_of_features denotes the number of features selected in such iteration.

3.3 LightGBM-Based Attack Detection

As aforementioned, LightGBM is an enhanced version of the Gradient Boosting Decision Tree
algorithm. The LightGBM integrates the capability of multiple decision trees in predicting/classifying
classes, in order to provide the final optimal predicting/classifying generalizes. Basically, The Light-
GBM combines manifold “weak” learners into “strong” learners. However, there are two main causes
for designing ML depending on this conception, (i) easiness in acquiring “weak” learners, and (ii)
integrating more than one learner usually has superior generalization performance than utilizing one
learner. Many modern studies have revealed the preponderance of LightGBM in solving many ML
tasks, for instance, prediction of air quality [20] and disease detection and classification [21]. To clearly
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illustrate the training process of LightGBM, we take a model consisting of M trees [22], as an example
described in Algorithm 1 (See Fig. 6).

Figure 6: LightGBM algorithm [22]

The main contribution of this article is a modified GWO that provides better performance; thus,
adding one more wolf in GWO provided high performance with reduction of decision dependency.
Therefore, GWO is not further vulnerable to feature selection problem. In addition, the second
contribution of this article is a proposed multi-objective function, which in result leads to an
appropriate selection of a subset of features.

4 Results and Discussion

This section discusses the details of benchmark dataset and evaluation metrics used to assess the
performance of the proposed IDS, then, results and findings are presented in detail.

4.1 Benchmark Dataset and Evaluation Metrics

A new benchmark dataset, called InSDN [23] using Mininet simulation/SDN approaches [24,25],
is utilized to assess the effectiveness of the proposed IDS. InSDN is a public attack-specific SDN
dataset. It is considered the first comprehensive dataset for the SDN environment, which is used to
assess the performance of IDS. InSDN contains the various attack classes that might happen in the
different SDN elements. Fig. 7 illustrates the logical network topology used as a testbed to generate
the InSDN dataset.

On the other hand, common evaluation metrics are used to demonstrate its performance. In order
to calculate theses performance metrics, a confusion matrix is used [24,25], which is presented Table 2.
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Figure 7: Logical network topology

Table 2: Confusion matrix

Predicted

Actual Attack Non-attack

Attack TP TN
Non-attack FP FN

The equations below are used to evaluate the accuracy, recall, precision, and F-measure [26,27],
respectively of the proposed IDS:

Accuracy = TP + TN
TP + TN + FP + FN

(10)

Recall = TP
TP + FN

(11)

Precision = TP
TP + FP

(12)

F − measure = 2 ∗ Precision ∗ Recall
Precision + Recall

(13)

TP indicates the number of true positives, FN indicates the number of false negatives, TN indicates
the number of true negatives, and FP indicates the number of false positives.
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4.2 Experimental Setup

The proposed IDS is implemented in Python programming language. Experiments are conducted
on a personal computer PC with the following hardware and software specifications, a presented in
Table 3 below:

Table 3: Setup specifications

Item Details

RAM 8 GB, DDR 4
CPU Core i7, 10th generation
HDD 512 GB SSD
GPU Radeon Pro 5500 XT
OS Mac OS, OS X
Python 3.9

Configuration parameters-Mininet and OVS switch

Hosts interfaces Four virtual hosts (h1 to h4).
Remote controller Four adapters in the OVS-VM, ens38, ens39, ens40, and ens41. Open

flow controller ONOS.
Protocols UDP, TCP, and ICMP.
Switch Default OVS switch.
Link adjustment Connect the Kali Linux VM with the same adapter of br1, and

Metasploitable2 Server with the same adapter of br2.

4.3 Results and Findings

As previously mentioned, the number of features utilized in intrusion and attack detection denotes
a highly crucial metric as a minimal number of features mitigates detection intricacy and time and
optimizes detection accuracy and overall performance. The utilization of GWO with parameter fine
tuning, as presented in Appendix Table 8, minimized the number of features from 67 to 8 after 20 runs,
as depicted in Table 4. The experiments were performed with different runs to meet the requirements of
computer science’s test [28]. As presented in Table 5, the optimal features subset that selected contains
the features with index [6 11 14 24 45 48 51 55], which are: TotLen Fwd Pkts, Fwd Pkt Len Std, Bwd
Pkt Len Mean, Fwd IAT Std, RST Flag Cnt, URG Flag Cnt, Fwd Seg Size Avg, Subflow Bwd Pkts.

Table 4: Summary of FS experiments

Iteration Best fitness Index of selected features

0 −0.903125 [ 0 2 3 4 5 6 7 11 13 14 16 18 19 20 26 27 28 29 32 34 35 37 39 40 43
45 53 55 57 58 61]

1 −0.903426662 [ 2 3 4 7 9 11 12 13 16 18 19 20 23 24 25 26 27 32 39 40 43 45 49 55
56 58 64 65]

(Continued)
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Table 4: Continued
Iteration Best fitness Index of selected features

2 −0.903928909 [ 0 2 7 9 11 12 13 16 18 19 24 25 26 27 28 34 35 43 45 48 51 55 57 64]
3 −0.904134782 [ 0 6 7 11 12 14 16 22 24 26 27 28 32 35 42 43 45 48 49 55 57 64]
4 −0.905263158 [ 0 7 11 12 13 16 19 24 26 27 32 43 45 48 51 55 59 64]
5 −0.905263158 [ 0 7 11 12 13 16 19 24 26 27 32 43 45 48 51 55 59 64]
6 −0.906666667 [ 5 6 7 11 12 14 16 19 26 27 32 49 55 64]
7 −0.908333333 [ 6 7 11 12 14 16 19 26 27 48 51 59]
8 −0.911111111 [ 6 11 12 14 16 43 45 51 55]
9 −0.911111111 [ 6 11 12 14 16 43 45 51 55]
10 −0.911111111 [ 6 11 12 14 16 43 45 51 55]
11 −0.9125 [ 6 11 14 24 45 48 51 55]
12 −0.9125 [ 6 11 14 24 45 48 51 55]
13 −0.9125 [ 6 11 14 24 45 48 51 55]
14 −0.9125 [ 6 11 14 24 45 48 51 55]
15 −0.9125 [ 6 11 14 24 45 48 51 55]
16 −0.9125 [ 6 11 14 24 45 48 51 55]
17 −0.9125 [ 6 11 14 24 45 48 51 55]
18 −0.9125 [ 6 11 14 24 45 48 51 55]
19 −0.9125 [ 6 11 14 24 45 48 51 55]

Table 5: Details of selected features

Index Feature

6 TotLen Fwd Pkts
11 Fwd Pkt Len Std
14 Bwd Pkt Len Mean
24 Fwd IAT Std
45 RST Flag Cnt
48 URG Flag Cnt
51 Fwd Seg Size Avg
55 Subflow Bwd Pkts

The InSDN dataset with the subset of features mentioned in Table 5 is then divided into training
and testing dataset, where the training dataset contains (133242) rows, and (33311) rows for testing.
The LightGBM with hyperparameter, mentioned in Appendix Table 7, was trained on the training set,
and then tested using the testing dataset. The experimental results obtained showed high performance,
as illustrated in Table 6 below. With the use of the selected features subset, the LightGBM classifier
achieved 99.8% accuracy, 99.7% recall, 99.99% precision, and f1-measure 99.8%. On the other hand,
without the use of the selected features subset (i.e., with the original dataset with 67 features), the
LightGBM classifier achieved 77.3% accuracy, 61.4% recall, 100% precision, and 76.1% f1-measure.
These findings reveal the significant impact of using the FS (based on GWO) on enhancing the IDS
performance significantly.
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Table 6: Results with/without FS

Metric Without FS With FS

%

Accuracy 77.3 99.8
Recall 61.4 99.7
Precision 99.99 99.99
F1-measure 76.1 99.8

Besides, the performance of the proposed IDS was also compared against that of advanced
counterparts mentioned in the literature including [11–15] to identify its efficiency. Although the IDSs
attained comparable outcomes following accuracy, precision, recall, and F-measure, the proposed IDS
outperformed the current IDSs in all evaluation metric as outlined in Fig. 8 below. Attaining a minimal
number of pertinent network traffic elements without adversely impacting detection performance
would significantly improve IDS effectiveness given the essentiality of FS in any IDS. Based on the
compared methods utilizing the InSDN dataset, the proposed IDS maintains the highest performance
among all state-of-the-art IDS that compared with.

Figure 8: Comparison with state-of-the-art IDSs

Conclusively, the proposed IDS depicted a practical means of addressing IDS complexities. The
algorithm capacity to enhance the precision value and minimize the number of features for the
detection process substantially optimized IDS performance. The multi-objective function (fitness
function) incorporated into the fourth grey wolf explicitly affected the next algorithm position
selection process. The derived experimental results reflected that the proposed IDS implied a highly
positive effect on improving IDS performance compared to other current IDS methods. Although the
integration of one more wolf (omega wolf or ω) with GWO offered precise decisions and decreased
decision dependency, the following position in the refined GWO shifted based on the four most optimal
solutions (α, β, δ, and ω) with the crossover technique. The multi-objective function also resulted in the
adequate selection of a set of features that assessed whether the feature subset efficiently complemented
the objectives (high detection accuracy and minimum number of features).
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5 Conclusion

Intrusion detection remains one of the crucial concerns in network security. Network traffic
performance is unpredictable with multiple problematic space features in the non-linear nature of
intrusion attempts. The aforementioned aspects render Intrusion Detection Systems a challenge in
security studies. As such, it is deemed pivotal to select essential intrusion detection components
in information security. An optimal IDS method was proposed in this article following GWO and
LightGBM. Several experiments were performed to reflect the proposed IDS efficiency in terms of
accuracy, precision, recall and f-measures, and subsequently compared against advanced IDSs. Based
on the comparison outcomes, the recommended IDS substantially optimized preliminary-stage attack
detections. Given that the proposed IDS outperformed other advanced IDSs concerning accuracy,
precision, recall, and F-measure, the recommended IDS proved to be more effective in preventing
network attacks within SDN, especially Probe attack, compared to current sophisticated IDSs. The
suggested IDS has also provided useful insights and empirical directions for anomaly identification,
such as improving the next location decision by adapting the velocity parameter of the Particle Swarm
Optimization algorithm.
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Appendix Hyperparameters

Table 7: LightGBM hyperparameters

learning_rate 0.05744
num_leaves 8
max_bin 380
bagging_freq 5
bagging_fraction 0.7003
feature_fraction 0.4800
lambda_l1 2.5
lambda_l2 4.5
min_child_samples 3
bagging_seed 42
metric auc
random_state 451
max_drop 50

Table 8: GWO parameters

Max_iter 20
SearchAgents_no 68
lb lower limit 0
ub upper limit 1
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