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Abstract: In recent years, the need for a fast, efficient and a reliable wireless
network has increased dramatically. Numerous 5G networks have already
been tested while a few are in the early stages of deployment. In non-
cooperative communication scenarios, the recognition of digital signal modu-
lations assists people in identifying the communication targets and ensures an
effective management over them. The recent advancements in both Machine
Learning (ML) and Deep Learning (DL) models demand the development
of effective modulation recognition models with self-learning capability. In
this background, the current research article designs a Deep Learning enabled
Intelligent Modulation Recognition of Communication Signal (DLIMR-CS)
technique for next-generation networks. The aim of the proposed DLIMR-CS
technique is to classify different kinds of digitally-modulated signals. In addi-
tion, the fractal feature extraction process is applied with the help of the Sevcik
Fractal Dimension (SFD) approach. Then, the extracted features are fed into
the Deep Variational Autoencoder (DVAE) model for the classification of
the modulated signals. In order to improve the classification performance of
the DVAE model, the Tunicate Swarm Algorithm (TSA) is used to fine-
tune the hyperparameters involved in DVAE model. A wide range of sim-
ulations was conducted to establish the enhanced performance of the pro-
posed DLIMR-CS model. The experimental outcomes confirmed the superior
recognition rate of the DLIMR-CS model over recent state-of-the-art meth-
ods under different evaluation parameters.

Keywords: 6G networks; communication signal; modulation recognition; deep
learning; machine learning; parameter optimization

1 Introduction

The next-generation wireless communication networks thrive to gain the capability with which
voice calls, video streams, website visits, data services, etc. can be delivered via identical devices on
transparent networks [1]. With the deployment of 5G and 6G communication networks at the primary
level, the relevant features can be extensively improved [2]. So, there is a need exists to consistently fix
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the communication needs for the upcoming data-reliant society. In this background, theoretical and
the real-world projects have been initiated to generate the next-gen wireless systems. On the other
hand, Artificial Intelligence (AI), one of the hottest research topics in recent times, has received
significant attention among the research communities [3,4]. Both businesses and the governments
have already started leveraging Artificial Intelligence (AI) techniques in their day-to-day activities
[5]. The AI-driven wireless communication network has become a predictable trend [6]. Though the
researchers attempted to exploit AI for 5G systems in recent years, it is only applied in the optimization
of traditional networks based on AI [7,8].

Modulation Recognition (MR) is a technology that judges the modulations of the received signal,
if the content of the modulation data cannot be identified [9]. This technology is commonly applied in
intelligence communication, radio signal monitoring, electronic countermeasures and in other fields
[10]. In real-time scenarios, if the received signal has some blurred features due to the interference
of non-cooperative communication and background noise, it affects the detection outcomes [5]. To
overcome this issue, a minimal Signal to Noise Ratio (SNR) can be applied as it is one of the viable
solutions with which superior detection accuracy can be achieved for modulation processes [11].
Automatic MR is an essential MR model in wireless communications. The MR process is extensively
applied on the communication signals, especially in modern wireless communication systems [12]. In
non-cooperative communication environment, since the receiver does not know the communication
parameters of the senders, particularly modulation method, they cannot apply subsequent functions
like demodulation in an efficient manner.

As mentioned earlier, the MR of the communication signal is extensively applied in non-
cooperative communication conditions such as signal detection, electronic countermeasures, electronic
supervision and communication reconnaissance. In the Cognitive Radio (CR) model, the aim of the
communication receiver is to become a universal receiver to receive the data from the sender with
high accuracy [13]. The identification of the modulated signals is the main outcome expected, when
designing a universal receiver. It is possible to evaluate both carrier frequency bandwidth and other
data of the signals correctly only if the modulation method of the signal is correctly identified. This
scenario is crucial to enable the demodulation and the decoding of the signals [14]. Thus, it is important
to study the MR of the communication signals. The existing wireless communication environment is a
challenging one, whereas the electromagnetic signal space is even more complicated. On the other
hand, the broadcasted data is huge in size with rapidly-changing signals [15]. Thus, the research
investigations conducted upon the automatic and maximum speed modulation pattern detection of
multi-class communication modulation signals are extremely valued.

In this background, the current research article designs a Deep Learning-enabled Intelligent
Modulation Recognition of Communication Signal (DLIMR-CS) technique for next-generation
networks. The aim of the proposed DLIMR-CS technique is to classify different kinds of digitally-
modulated signals. In addition, the fractal feature extraction process is applied with the help of
the Sevcik Fractal Dimension (SFD) approach. Then, the extracted features are fed into the Deep
Variational Autoencoder (DVAE) model for the classification of the modulated signals. Then, the
Tunicate Swarm Algorithm (TSA) is used for fine-tuning the hyperparameters involved in the DVAE
model so that its classification performance gets increased. A wide range of simulations was conducted
to establish the enhanced performance of the proposed DLIMR-CS model.
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2 Related Works

In the study conducted earlier [16], a Multi-Task Learning (MTL)-based Deep Neural Network
(MLDNN) was presented by efficiently integrating the I/Q and A/P models. The proposed MLDNN
backbone had a total of three blocks for the extraction of the discriminative features such as the
Convolutional Neural Network (CNN) block, the Bidirectional Gated Recurrent Unit (BiGRU) block
and the Step Attention Fusion Network (SAFN) block. Jiang et al. [17] presented a varied features-
based MR technique to improve the instantaneous features and higher-order cumulative features.
In this study, the Backpropagation Neural Network (BPNN) approach was implemented for the
purpose of classification. Chen et al. [18] presented a model based on the intrapulse signatures of the
radar signals utilizing both Adaptive Singular Value Reconstruction (ASVR) as well as deep residual
learning. Primarily, the time-frequency spectrum of the radar signals, in minimal SNRs, has increased
the denoising processes of the ASVR model. Secondarily, a sequence of the image processing methods
that contain binarizing and morphologic filters was executed to mitigate the background noise from
Time-Frequency Distribution Image (TFDI) approach.

Liu et al. [19] presented a Deep Complex Network (DCN) in which a Bidirectional Long Short
Term Memory (BiLSTM) network was cascaded for modulation recognition process. Primarily, the
DCN method was executed in this study for the extraction of the modulated signals which had both
stage as well as amplitude data. Then, it was cascaded as a BiLSTM layer to create the BiLSTM
technique based on the extracted features. Chen et al. [20] presented a Feature Extraction and Mapping
(FEM) technique for both extraction and mapping of the radio signals to images so as to attain
an accurate classification. In detail, a Long Short Term Memory (LSTM)-based feature extraction
network was presented for the extraction of the radio features from radio signals that are mapped
to distinct types of images, using a feature mapping network. In literature [21], a novel end-to-end
sequence-based network was proposed with a shallow CNN, Bi-LSTM network-strengthened with
self-attention process and a Dense Neural Network (NN) method to recognize eight different varieties
of the intrapulse-modulated radar signals. Njoku et al. [22] presented CGDNet, a cost-efficient hybrid
NN with shallow convolutional network, Gated Recurrent Unit (GRU) and a Deep Neural Network
(DNN) layer for robust automatic MR in cognitive radio service of the modern communication system.

The authors in the study conducted earlier [23] exploited the potentials of DNNs in conjunction
with MTL structure for concurrent learning modulation and signal classification tasks. The presented
MTL structure had numerous advantages in terms of mutual relation between the tasks right starting
from enhancing the accuracy of the classification process to increasing the learning efficacy of the
lightweight NN method. In literature [24], a smoothened pseudo Wigner–Ville distribution was utilized
to convert the 1D signals to images. For this purpose, a CNN method was utilized to extract the image
features. The image feature extraction process by CNN and artificial feature were put together to make
a feature fusion together.

3 The Proposed Model

In the current study, a novel DLIMR-CS model has been developed for modulation recognition
in next-generation networks. The presented DLIMR-CS model primarily utilizes the SFD model for
the extraction of the fractal features. Then, the extracted features are passed onto the DVAE model
for proficient recognition of the modulated signals. Finally, the TSA is employed for fine-tuning the
parameters involved in the DVAE model. Fig. 1 demonstrates the overall processes involved in the
proposed DLIMR-CS technique.
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Figure 1: Overall process of the DLIMR-CS technique

3.1 Feature Extraction Using SFD Approach

At first, a set of fractal features is derived from the communication signal using the SFD model.
These self-similar dimensions find it difficult to employ the objects that are highly self-similar. So, the
box dimensions are utilized to overcome this issue. In a metric space (X , d) , A belongs to M non-
empty emergency cluster, X . To utilize the box side length of ε, a minimal value N (A, ε) is required
for the boxes to cover A as defined below.

N (A, ε) =
{

M : A ⊂
∑M

i=1
N (xi, ε)

}
(1)

where x1, x2, . . . xM signify the diverse points of X . When ε moves towards 0, the box dimensions are
rewritten as follows.

Db = lim
ε→0

InN (A, ε)
In (1/ε)

(2)

Consider a signal with a series of points (xi, yi) and the length of the signal is considered to be N.
In this case, the standardization of the signals takes place using Eq. (3) [25]:

x∗
i = xi − xmin

xmax − xmin

, y∗
i = yi − min

ymax − ymin

(3)

xmin, ymin represent the minimal values between xj and yj. xmax, ymax represent the maximal values
between xj and yj. Then, a Sevcik fractal dimension D is defined herewith.

D = 1 + ln (L) + ln (2)

ln [2 × (N − 1)]
(4)

where L indicates the length of the waveform provided below.

L =
∑N−2

i=0

√(
y∗

i+1 − y∗
i

)2 + (
x∗

i+1 − x∗
i

)2
(5)

3.2 Modulation Recognition Using DVAE Model

In this stage, the extracted features are fed into the DVAE model for the classification of different
kinds of digitally-modulated signals [26]. With regards to low-dimension embedding achieved by
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the autoencoder (AE) method, the DVAE network establishes a probabilistic take from the Hidden
Variable (HV) space that is optimum to define the salient features of the multi-variate geochemical
information. The basic drive of the DVAE model is to utilize the HV z for characterizing the
distribution of the original dataset, X = {xi}N

i=1. It can be considered that the conditional distribution
of HVs z is focused on the Gaussian distribution. As per this model, HV z that fulfills the Gaussian
distribution, creates the data and fulfills some of the distribution with NN.

Through the optimization of the created parameter θ , HV z creates a data set X̂ = {x̂i}N
i=1 which is

similar to that of the original data, X = {xi}N
i=1. This determines the value that is required to maximize

the marginal likelihood, pθ (x):

pθ (x) =
∫

pθ (z) pθ (x|z) dz, with z ∼ N (0, I) (6)

Since the true posterior density pθ (z|x) cannot be tracked, the DVAE model presents a detection
process qφ(z|x) to resolve this issue and approximate the undefined true posterior pθ (z|x). The DVAE
model measures the similarity between the detection process qφ(z|x) and the true posterior distribution
pθ (z|x) with the help of Kullback-Leibler (KL) divergence.

log pθ

(
x(i)

) = DKL(qφ(z|x(i))||pθ (z|x(i))) + L
(
ϑ ,∅; x(i)

)
(7)

Since KL divergence is continuously superior to 0, log pθ

(
x(i)

) ≥ L
(
θ , p; x(i)

)
.

This equation L(θ ,
(
p; x(i)

)
denotes the (variational) Lower Bound (LB) on the marginal probabil-

ity of the data point i which is formulated as follows.

L(θ ,
(
φ; x(i)

) = −DKL(qφ(z|x(i))‖pθ (z)) + Eq
φ(z|(i))

[log pθ (x(i)|z)] (8)

For the optimization of log pθ (x), the variational LB on the marginal likelihood finds the entirely-
optimized objective of the DVAE model. The primary term, on the right side of the Eq. (8), is
equivalent to the regularized term, whereas the secondary term is a negative reconstruction error
in AE parlance. Thus, qφ(z|x(i)) is signified as a probabilistic encoder with a variational parameter
(φ, andpθ (x(i)|z) and is defined as probabilistic decoding with a generation parameter, φ. The
conditional distribution pθ (x(i)|z) is usually separated into two cases such as Bernoulli and Gaussian
distributions. In this case, the input data of the networks are multi-variate geochemical data in nature
compared to the binary data, the distribution of pθ (x(i)|z) is considered to be Gaussian.

Then, it can compute the stochastic gradient variational Bayes estimator of the variational LB
L

(
θ , φ, x(i)

)
. Then, the detection process qφ(z|x(i)) is presented based on the re-parameterization

approach. Assume z as a continuous arbitrary variable and z ∼ qφ(z|x(i)) as a conditional distribution
function with an overview of an auxiliary noise variable ε ∼ p (ε). p (ε) is a known marginal probability
distribution. Then, the distribution transformation is executed on qφ(z|x(i)) outcomes from z̃ =
gφ

(
ε, x(i)

)
. While it can be assumed that qφ(z|x(i)) fulfills a Gaussian distribution and p (z) = N (z; 0, I),

if the calculation is qφ(z|x(i)) = N
(
z; u, σ 2I

)
, then the regularization term is calculated as follows.

− DKL

(
qφ

(
z|x(i)

) ||p (z)
) = 1

2

∑j

j=1

(
1 + log

(
σ (i)2

)
− u(i)2 − σ (i)2

)
(9)

whereas j refers to the dimension of z. If Monte Carlo estimation is used to resolve the reconstruction
team, then the following equation is attained.
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Eq
φ(z|(i))x

[
log pθ

(
x(i)|z) = 1

L

∑L

l=1
log

(
p

(
x(i)|z(i,j)

)))
(10)

Based on the rule of DVAE model, the data reconstruction gets reduced and the root cause of the
exceptions is evaluated.

The whole method is trained using normal instances (non-deposits data). So, if the method receives
a geochemical anomaly instance in testing data, both encoding as well as decoding of the method depict
a superior reconstruction probability between the recreated data of the z and its original data.

3.3 Parameter Optimization Using TSA

Finally, the TSA model is employed for fine-tuning the parameters involved in the DVAE
model which consequently results in the enhanced recognition performance. TSA is a bio-inspired
optimization technique. It was originally inspired from the swarming nature of the marine tunicates
and its respective jet propulsion during navigation and foraging processes [27]. In TSA, the Tunicate
Population (PT) swarming is employed to identify an optimal Food Source (FS) i.e., fitness function.
At the time of swarming, a tunicate updates its location based on the initial optimal tunicate position
which is saved and updated during all the iterations. The TSA method starts, when the tunicate
population undergoes random initialization by considering the permissible limits of the control
parameters. The control parameter dimensions contain a tunicate (T), which is primarily generated
using Eq. (11):

Tn (m) = Tmin
n + r.

(
Tmax

n − Tmin
n

)∀m ∈ PTsize&n ∈ Dim (11)

Here, T (m) represents the location of the tunicate (m); n denotes every control parameter; r
indicates an arbitrary number in the interval of [0, 1]; PTsize implies the number of tunicates in a
population; and Dim indicates the control variable dimensions. The upgrade procedure of the tunicate
location is represented in Eq. (12):

Tn (m) = T ∗
n (m) + Tn (m − 1)

2 + c1

, ∀m ∈ PTsize&n ∈ Dim (12)

where, T ∗ indicates the upgraded location of the mth tunicate using Eq. (13); T(m − l) implies the
neighboring tunicate; and c1 represents an arbitrary number in the interval of [0, 1] .

T ∗
n (m) =

{
SF + A. |SF − rand.Tn (m)| if rand ≥ 0.5

SF − A. |SF − rand.Tn (m)| if rand < 0.5
(13)

Here, SF denotes the location of the optimal tunicate in the entire population; A denotes an
arbitrary vector that is used to avoid conflict among the tunicates as defined below [28].

A = c2 + c3 − 2c1

VTmṁ + c1 (VT max − VTmṁ)
(14)

Here, c1, c2 and c3 denote the arbitrary numbers in the interval of [0, 1]; VTmṁ and VTax represent
the premier and subordinate speeds in the production of social interactivity. Fig. 2 shows the flowchart
of the TSA procedure.

The TSA system develops a Fitness Function (FF) to achieve enhanced classification outcomes.
It defines a positive integer to demonstrate the optimum performance of the candidate results. In this
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case, a minimum classifier error rate is regarded as the FF as provided in Eq. (15).

fitness (xi) = Classifier Error Rate (xi)

= number of misclassified modulation signals
Total number of modulation signals

∗ 100 (15)

Algorithm 1: Pseudocode of TSA
While
Determine the fitness values of all searching tunicates
T = optimal searching solution
Upgrade every solution
For every tunicate
Upgrade the location of all tunicates
Else
Upgrade the location of every follower
End if
End for
Ensure the location of tunicate depending upon minimum and maximum limits
End while
Return T

Figure 2: Flowchart of TSA

4 Performance Validation

In this section, the proposed DLIMR-CS model was experimentally validated in terms of modu-
lation recognition. Table 1 and Fig. 3 illustrate the fractal features offered by distinct communication
signals.
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Table 1: Fractal features of various communication signals

Sevcik dimension

SNR/dB 2ASK 4ASK 2FSK 4FSK 8FSK BPSK 16QAM 32QAM

−5 1.73 1.69 1.66 1.71 1.69 1.82 1.74 1.75
−4 1.76 1.76 1.76 1.76 1.74 1.76 1.74 1.84
−3 1.67 1.67 1.66 1.77 1.77 1.65 1.71 1.83
−2 1.70 1.70 1.70 1.74 1.67 1.72 1.73 1.77
−1 1.63 1.80 1.74 1.65 1.63 1.72 1.76 1.77
0 1.67 1.75 1.62 1.70 1.66 1.61 1.83 1.87
1 1.73 1.74 1.66 1.71 1.70 1.73 1.75 1.80
2 1.68 1.67 1.57 1.61 1.65 1.60 1.75 1.87
3 1.56 1.70 1.64 1.64 1.63 1.63 1.78 1.81
4 1.54 1.70 1.65 1.61 1.59 1.64 1.82 1.86
5 1.58 1.68 1.62 1.69 1.59 1.68 1.83 1.84
6 1.60 1.77 1.62 1.61 1.57 1.66 1.76 1.86
7 1.53 1.76 1.52 1.67 1.58 1.57 1.67 1.85
8 1.52 1.78 1.57 1.53 1.69 1.64 1.70 1.82
9 1.56 1.70 1.55 1.58 1.58 1.70 1.82 1.80
10 1.62 1.71 1.52 1.59 1.61 1.69 1.70 1.84

Figure 3: Fractal features of various communication signals
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Fig. 4 demonstrates the confusion matrix generated by the DVAE model on 70% training (TRS)
dataset under different classes such as Amplitude-shift keying (ASK), frequency-shift keying (FSK)
and Quadrature Amplitude Modulation (QAM). The figure indicates that the DVAE model recognized
141 samples as 2ASK, 131 samples as 4ASK, 139 samples as 2FSK, 139 samples as 4FSK, 140 samples
as BFSK, 138 samples as BPSK, 138 samples as 16QAM and 135 samples as 32QAM respectively.

Figure 4: Confusion matrix of the DVAE technique on 70% of TRS dataset

Fig. 5 depicts the confusion matrix of the DVAE technique on 30% of testing (TSS) dataset. The
figure infers that the DVAE model classified 53 samples under 2ASK, 64 samples under 4ASK, 58
samples under 2FSK, 57 samples under 4FSK, 58 samples under BFSK, 62 samples under BPSK, 61
samples under 16QAM and 63 samples under 32QAM respectively.

Table 2 reports the MR outcomes achieved by the DVAE model on 70% of TRS and 30% of TSS
datasets. The experimental values highlight that the DVAE model achieved effectual MR outcomes.
For instance, with 70% of TRS, the DVAE model offered an average accuy of 99.58%, precn of 98.31%,
recal of 98.31%, Fscore of 98.31% and a kappa of 98.06%. Besides, with 30% of TSS, the DVAE approach
achieved an average accuy of 99.79%, precn of 99.18%, recal of 99.15%, Fscore of 99.16% and a kappa of
99.05%.

Both Training Accuracy (TA) and Validation Accuracy (VA) values, attained by the DVAE model
on test data, are illustrated in Fig. 6. The experimental outcomes imply that the DVAE model gained
the maximum TA and VA values, whereas VA values were higher than TA values.

Both Training Loss (TL) and Validation Loss (VL) values, achieved by the DVAE approach on test
data, are established in Fig. 7. The experimental outcomes infer that the DVAE model accomplished
the least TL and VL values, while the VL values were lesser compared to TL values.
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Figure 5: Confusion matrix of the DVAE technique on 30% of TSS dataset

Table 2: Results of the analysis of the DVAE method on 70% of TRS and 30% of TSS datasets

Training set (70%)
Class labels Accuracy Precision Recall F-score Kappa score

2ASK 99.20 97.24 96.58 96.91 -
4ASK 99.46 98.50 97.04 97.76 -
2FSK 99.55 98.58 97.89 98.23 -
4FSK 99.46 97.20 98.58 97.89 -
8FSK 99.73 99.29 98.59 98.94 -
BPSK 99.82 98.57 100.00 99.28 -
16QAM 99.73 98.57 99.28 98.92 -
32QAM 99.64 98.54 98.54 98.54 -
Average 99.58 98.31 98.31 98.31 98.06

Testing set (30%)
Class labels Accuracy Precision Recall F-score Kappa score
2ASK 99.79 100.00 98.15 99.07 -
4ASK 99.58 98.46 98.46 98.46 -
2FSK 99.79 98.31 100.00 99.15 -
4FSK 99.58 100.00 96.61 98.28 -
8FSK 99.79 98.31 100.00 99.15 -
BPSK 100.00 100.00 100.00 100.00 -
16QAM 99.79 98.39 100.00 99.19 -
32QAM 100.00 100.00 100.00 100.00 -
Average 99.79 99.18 99.15 99.16 99.05
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Figure 6: TA and VA analyses results of the DVAE technique

Figure 7: TL and VL analyses results of the DVAE technique
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Fig. 8 showcases the confusion matrix of the proposed DLIMR-CS model on 70% of TRS dataset.
The figure exposes that the proposed DLIMR-CS model recognized 142 samples as 2ASK, 132
samples as 4ASK, 142 samples as 2FSK, 140 samples as 4FSK, 142 samples as BFSK, 138 samples as
BPSK, 139 samples as 16QAM and 134 samples as 32QAM respectively.

Figure 8: Confusion matrix of the proposed DLIMR-CS technique on 70% of TRS dataset

Fig. 9 portrays the confusion matrix of the proposed DLIMR-CS model on 30% of TSS. The
figure indicates that the proposed DLIMR-CS technique classified 54 samples under 2ASK, 64
samples under 4ASK, 58 samples under 2FSK, 59 samples under 4FSK, 58 samples under BFSK,
62 samples under BPSK, 61 samples under 16QAM and 62 samples under 32QAM respectively.

Figure 9: Confusion matrix of the DLIMR-CS technique on 30% of TSS dataset
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Table 3 portrays the MR outcomes of the proposed DLIMR-CS model on 70% of TRS and 30%
of TSS datasets. The experimental values highlight that the proposed DLIMR-CS model achieved
effectual MR outcomes on both the aspects. For instance, with 70% of TRS, the DLIMR-CS technique
achieved an average accuy of 99.75%, precn of 99.03%, recal of 99.02%, Fscore of 99.88% and a kappa of
98.06%. At last, with 30% of TSS, the proposed DLIMR-CS approach obtained an average accuy of
99.90%, precn of 99.58%, recal of 99.61%, Fscore of 99.59% and a kappa of 99.52%.

Table 3: Results of the analysis of the DLIMR-CS method on 70% of TRS and 30% of TSS datasets

Training set (70%)

Class labels Accuracy Precision Recall F-score Kappa score

2ASK 99.46 98.61 97.26 97.93 -
4ASK 99.73 100.00 97.78 98.88 -
2FSK 99.73 97.93 100.00 98.95 -
4FSK 99.91 100.00 99.29 99.64 -
8FSK 99.91 99.30 100.00 99.65 -
BPSK 99.82 98.57 100.00 99.28 -
16QAM 99.82 98.58 100.00 99.29 -
32QAM 99.64 99.26 97.81 98.53 -

Average 99.75 99.03 99.02 99.02 98.88

Testing set (30%)

Class labels Accuracy Precision Recall F-score Kappa score

2ASK 100.00 100.00 100.00 100.00 -
4ASK 99.79 100.00 98.46 99.22 -
2FSK 100.00 100.00 100.00 100.00 -
4FSK 100.00 100.00 100.00 100.00 -
8FSK 99.58 96.67 100.00 98.31 -
BPSK 100.00 100.00 100.00 100.00 -
16QAM 100.00 100.00 100.00 100.00 -
32QAM 99.79 100.00 98.41 99.20 -

Average 99.90 99.58 99.61 99.59 99.52

Both TA and VA values, attained by the proposed DLIMR-CS approach on test data, are shown
in Fig. 10. The experimental outcomes imply that the proposed DLIMR-CS technique gained the
maximal TA and VA values, whereas VA values were higher than the TA values.

Both TL and VL values, achieved by the proposed DLIMR-CS system on test data, are established
in Fig. 11. The experimental outcomes infer that the proposed DLIMR-CS technique accomplished
the least TL and VL values, whereas VL values were lesser than the TL values.
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Figure 10: TA and VA analyses results of the DLIMR-CS technique

Figure 11: TA and VA analyses results of the DLIMR-CS technique
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Finally, a detailed comparative examination was conducted between the proposed DLIMR-CS
model and other recent models in terms of Recognition Rate (RR) and the results are provided in
Fig. 13 [29]. The experimental results indicate that both KNN and GR models achieved the least
performance with minimal RR values. Followed by, the NN model attempted to yield a slightly
enhanced RR.

Figure 12: Average analysis results of the DLIMR-CS technique under different measures

In line with this, the RF model managed to exhibit a reasonable RR. Though the DVAE model
produced a considerable performance, the presented DLIMR-CS model achieved a maximum RR
under distinct SNR levels. Therefore, the presented DLIMR-CS model is found to be superior to
other models on MR performance under varying SNR levels.

Table 4 and Fig. 12 report the overall MR outcomes of DVAE and DLIMR-CS models. The
experimental outcomes infer that the DVAE model gained an average accuy of 99.79%, precn of 99.18%,
recal of 99.15%, Fscore of 99.16% and a kappa of 99.05%. Also, the proposed DLIMR-CS model
accomplished an average accuy of 99.90%, precn of 99.58%, recal of 99.61%, Fscore of 99.59% and a
kappa of 99.52%.

Table 4: Average analysis of the proposed DLIMR-CS model under different measures

Methods Accuracy Precision Recall F-score Kappa score

DVAE model 99.79 99.18 99.15 99.16 99.05
DLIMR-CS 99.90 99.58 99.61 99.59 99.52
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Figure 13: Recognition rate under various SNRs

5 Conclusion

In this study, a novel DLIMR-CS model has been developed for modulation recognition in next-
generation networks. The presented DLIMR-CS model primarily utilizes the SFD model for the
extraction of the fractal features. In addition, the extracted features are fed into the DVAE model
for proficient recognition of the modulated signals. Finally, the TSA approach is employed for the
parameter optimization of the DVAE model. A wide range of simulations was conducted to highlight
the enhanced performance of the proposed DLIMR-CS model. The experimental outcomes infer the
superior recognition rate of the DLIMR-CS model over other state-of-the-art methods under different
evaluation parameters. Therefore, the presented DLIMR-CS model can be employed for effective
detection and classification of the modulated signals. In the future, hybrid DL models can be involved
to improve the overall modulation recognition performance.
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