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Abstract: Due to the rapid increase in urbanization and population, crowd
gatherings are frequently observed in the form of concerts, political, and
religious meetings. HAJJ is one of the well-known crowding events that takes
place every year in Makkah, Saudi Arabia. Crowd density estimation and
crowd monitoring are significant research areas in Artificial Intelligence (AI)
applications. The current research study develops a new Sparrow Search
Optimization with Deep Transfer Learning based Crowd Density Detection
and Classification (SSODTL-CD2C) model. The presented SSODTL-CD2C
technique majorly focuses on the identification and classification of crowd
densities. To attain this, SSODTL-CD2C technique exploits Oppositional
Salp Swarm Optimization Algorithm (OSSA) with EfficientNet model to
derive the feature vectors. At the same time, Stacked Sparse Auto Encoder
(SSAE) model is utilized for the classification of crowd densities. Finally, SSO
algorithm is employed for optimal fine-tuning of the parameters involved
in SSAE mechanism. The performance of the proposed SSODTL-CD2C
technique was validated using a dataset with four different kinds of crowd
densities. The obtained results demonstrated that the proposed SSODTL-
CD2C methodology accomplished an excellent crowd classification perfor-
mance with a maximum accuracy of 93.25%. So, the proposed method will be
highly helpful in managing HAJJ and other crowded events.

Keywords: Crowd management; crowd density classification; artificial
intelligence; deep learning; computer vision

1 Introduction

Automatic examination of severely-congested and distinct varieties of crowded scenes is a difficult
task to accomplish due to which the domain has received significant interest among image processing
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and computer vision communities. The exponential rise in the global population in recent times,
especially in urban regions, paved the way for highly-congested crowds. This unprecedented growth in
crowd gatherings poses serious public safety and health issues [1]. Crowd examination and monitoring
is a vital processes in public areas in order to provide a safe environment to the public. In recent years,
various crowd disasters have occurred owing to the absence of crowd control management. Although
crowds comprise of separate individuals, everyone has their own aims and behavioral patterns.
The nature of the crowds and their distinct features are commonly interpreted to get cooperative
characteristics that can be commonly defined [2,3]. Crowd data like density and flow are vital factors
in handling, designing, and managing public places such as political gatherings, temples, etc. [4]. In
recent times, the crowd examination domain has concentrated on the development of task-oriented
systems that carry out processes like crowd density estimation, crowd counting, anomaly detection,
etc. It is reported that the learning of correlated processes, concurrently, can enhance separate task
efficiency [5,6].

The existing mass density estimation algorithm [7] that depends upon regression is not precise for
20–50 people gatherings. In certain outdoor scenes like streets and flyovers, crowd density should
be mastered. The algorithm can offer data on abnormal crowd flow and crowd distribution on a
timely basis [8]. Crowd density assessment, for sparse scenes, is a significant topic and is challenging
to accomplish. A Convolution Neural Network (CNN) is nothing but a plain Neural Network (NN)
but consists of receptive fields or neurons that possess learnable biases and weights [9]. Every receptive
field receives a batch input and implements a convolutional function, after which the outcome is fed
into a non-linearity function [10].

Zhu et al. [11] proposed a solution for crowd density estimation problems in sparse or dense
conditions. The proposed method has two contributions to the research community; (i) Classification
Activation Map (CAM) approach is followed that can offer personal place data and guide in
the creation of a whole density map from the last phase (ii) and a network termed ‘Patch Scale
Discriminant Regression Network (PSDR)’ can be utilized to validate the model. In order to provide
input crowd images, the proposed algorithm separates the images into patches and sends those image
patches, of various density levels, to distinct regression systems in order to obtain the equivalent density
map. Fitwi et al. [12] examined a new solution that evaluates interpersonal distance between a couple
of dynamic human objects, in the region employed with dynamic density, and the crowd with the help
of an edge camera.

Saleem et al. [13] presented a computationally economical and fine-tuned ensemble regression-
based Machine Learning (ML) approach to estimate the crowd density. The proposed approach
extracted various texture-based features like Grey Level Co-occurrence Matrix (GLCM), Local Binary
Patterns (LBP), and Histogram Of Gradients (HOG) and structural features like perimeter of the
pixels and its location. Ding et al. [14] examined a new encoding-decoding CNN that combines the
feature map with either encoder or decoder sub-networks to generate a further reasonable density
map and estimate the count of people accurately. The proposed model has the ability to establish a
novel estimation approach called Patch Absolute Error (PAE) which can measure the accuracy of the
density maps. In literature [15], a novel testing process was proposed based on the Features from the
Accelerated Segment Test (FAST) technique to detect the crowd features using aerial images captured
from different camera locations and directions.

Though HAJJ is a regular and well-organized event, thousands of people perished in HAJJ
stampedes too, like other crowded events. Indeed, crowded event managers around the globe are
continuously looking for technology-driven improved management of crowded events. HAJJ normally
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attracts about 2.5 million pilgrims to Makkah, Saudi Arabia. It also comprises of a set of highly
complex rituals that require en masse participation of all the pilgrims in tight deadlines. For example,
all the pilgrims are required to travel from Makkah to Arafat valley which is about 20 km away, and
return on the same day. It is extremely challenging to organize transportation facilities for 2.5 million
people, for the upward and downward journeys on the same day. Further, all the pilgrims are expected
to take part in some other similar activities on the same day or in daylight period. Hectic activities
and frequent movement of people en masse caused stampedes and other hazards, historically. So, the
current research work outcomes will be highly helpful in addressing some of the issues faced by HAJJ
pilgrims and participants of other such crowded events. More information on HAJJ and related issues
can be found in literature.

The current research study develops a new Sparrow Search Optimization with Deep Transfer
Learning based Crowd Density Detection and Classification (SSODTL-CD2C) methodology. The
presented SSODTL-CD2C technique exploits the Oppositional Salp Swarm Optimization algorithm
(OSSA) with EfficientNet model to derive the feature vectors. At the same time, Stacked Sparse
Auto Encoder (SSAE) model is utilized for the classification of crowd densities. Finally, the SSO
algorithm is employed for optimal fine-tuning of the parameters involved in the SSAE mechanism.
The performance of the proposed SSODTL-CD2C system was validated using a dataset with four
different kinds of crowd densities. In short, the contributions of the current study are summarized
herewith.

• An intelligent SSODTL-CD2C model consisting of EfficientNet, OSSA-based hyperparameter
tuning, and SSO with SSAE classification is presented. To the best of the authors’ knowledge,
no studies published earlier presented SSODTL-CD2C model

• A novel OSSA-based hyperparameter selection technique is introduced in this study by inte-
grating the concepts of OBL and SSA.

• SSO algorithm is used to optimize the parameters involved in SSAE model using cross-
validation. This process helps in increasing the predictive outcomes of the proposed model for
unseen data.

2 The Proposed Model

In this study, a novel SSODTL-CD2C methodology has been proposed for the identification and
classification of crowd densities. Primarily, the proposed SSODTL-CD2C approach exploits OSSA
with EfficientNet model to derive the feature vectors. Followed by, SSAE mechanism is utilized for the
classification of crowd densities. Eventually, SSO mechanism is employed for optimal fine-tuning of
the parameters related to SSAE model. Fig. 1 demonstrates the overall processes involved in SSODTL-
CD2C approach.

2.1 Feature Extraction

In this stage, the presented SSODTL-CD2C technique exploits EfficientNet model to derive the
feature vectors. EfficientNet is a novel scaling methodology that was recently launched by Google team
[16] to scale-up the CNN outcomes. It employs simple and highly-efficient compound coefficients.
EfficientNet works differently compared to conventional techniques and scale-up the dimensions of
the network including resolution, width, and depth. Further, it also scales up all the dimensions in
the network data, using a certain set of scaling coefficients. Practically, the efficiency of the module
can be enhanced by scaling up single dimensions. However, balancing each dimension of the network,
in terms of accessible resources, increases the whole efficiency of the process. The efficiency of the
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scaled-up model strongly depends upon the standard network. It is constructed through AutoML
architecture that in turn enhances the effectiveness and precision for the implementation of a neural
structure search. Like MnasNet and MobileNetV2, EfficientNet employs mobile inverted bottleneck
convolution (MBConv) as its key component. In addition, this system also employs a novel activation
function named ‘swish’ rather than Rectified Linear Unit (ReLU) function. Here, the baseline structure
of EfficientNet-B0 and its deep version i.e., EfficientNet-B3 are presented.

Figure 1: The overall process of SSODTL-CD2C approach

2.2 Hyperparameter Tuning Using OSSA

For optimal fine-tuning of the parameters involved in EfficientNet architecture, OSSA is utilized.
SSA simulates the swarming performance of Salps. With a transparent body, SSA is simulated by the
activities of Salp Swarming in water. Salp swarm is nothing but a chain of salps that use this formation
for locomotion during foraging process [17]. For the purpose of modelling the Salps mathematically,
the population is separated into two groups such as the leader that lies in front of the chains and its
followers i.e., the rest of the salps. In order to update the position of the leader, the subsequent formula
is utilized.

x1
j =

{
Fj + c1((ubj − lbj)c2 + lbj)c3 ≥ 0.5

Fj − c1((ubj − lbj)c2 + lbj)c3 < 0.5
(1)

here, x1
j implies the location of the leader from jth dimension and ubj, lbj signify the upper and lower

bounds of jth dimension correspondingly, Fj implies the place of food sources from jth dimension and
c1, c2, and c3 are arbitrarily selected in the interval of 0 and1. In order to achieve a balance between
exploration and exploitation, the following control co-efficient c1 is used.

c1 = 2e−( 4l
L ) (2)
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here, l, L refers to the present iteration and the maximal amount of iterations correspondingly. The
subsequent formula is established to update the location of the followers. An improved OSSA is derived
in this study.

xi
j = 1

2

(
xi

j + xi−1
j

)
(3)

The opposite solution is achieved after relating both the solutions. Fig. 2 depicts the flowchart
of SSA.

Figure 2: Flowchart of SSA

Definition: An opposite number if x is a real number ∈ [lb, ub], then x is provided as follows.

x = ub + lb − x (4)

here, lb refers to lower bound and ub signifies the upper bound of the searching space.

Definition: Opposite Vector, if x refers to multi-dimensional vector, then, x is generalized as
follows.

xj = ubj + lbj − xj (5)

here, lbj, ubj denote the lower and upper boundaries to jth element of x.

2.3 Crowd Density Classification Using SSAE Model

Afterwards, SSAE model is utilized for the classification of crowd densities. Auto Encoder (AE)
is an unsupervised learning network structure in which the output and input parameters are similar.
Further, the node count in the middle layer is usually lesser than that of the node count on right
and left sides. It works with Deep Learning (DL) technique to identify the effective depiction of the
input dataset, without any data loss [18]. Briefly, it compresses the new information using encoder
to achieve a low dimension that is recreated later into a new information with the help of decoder.
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In this algorithm, a trainable encoder can be utilized as a tool to reduce the data dimensionality
issues. In comparison with conventional PCA data dimension reduction technique, AE achieves non-
linear variations that facilitate the learning of prediction dataset. Even though AE has the ability
to accomplish improved data dimensionality reduction compared to other techniques, an AE that is
capable of performing dimensionality reduction and increasing the robustness of the data is proposed
in this study to adapt for a complex network scenario. Dropout allows every neuron with a probability
p to get rejected during network training iteration. Due to this mechanism, every neuron is not reliant
completely on other neurons in such a way that the phenomenon of overfitting gets reduced and the
generalization capability of a model gets increased to a certain range. By integrating two concepts,
a low-latitude representation is attained with the help of dropout and SAE after the reduction of
dimensionality. Meanwhile, every dimension has a probability of getting rejected. After dimensionality
reduction, the dataset of every dimension is broader than the conventional AE. This phenomenon
simplifies the learning process of the model.

Amongst the types of AE, sparse is the most applied type for handling classification problems.
In SSAE, all the hidden states are made up of independently-trained SSAEs. Every Stacked Auto
Encoder (SAE) considers the output of the hidden state of the preceding SSAE as its own input, so
that the features of the input dataset are extracted alongside the hidden layer. This scenario enables
the output neuron to implement the classifier after supervised training. Here, the training model is
implemented using the above-discussed technique. The presented SSAE structure uses an input layer (P
input dataset), two hidden states as output layer (H outputs), and (M and N inputs). This structure is
characterized by P−M−N−H SSAE. The study focuses on the implementation of SSAE feedforward
stage in which the formula determines the output of i-th neuron from k-th layer, zk

i (n), at n-th instant
as formulated herewith.

zk
i (n) =

∑Ul

j=1
wk

ij(n) × yl
j(n) + wbk

i (n) × b (6)

In Eq. (6), wk
ij(n) represents the weight of j-th input of i-th neuron in k-th layer at n-th instant, yl

j(n)

denotes the j-th input of l-th layer, in which l = k−1, at n-th instant, wbk
i (n) indicates the bias weight

of i-th neuron from k-th layer at n-th instant, b represents the bias valued at one whereas Ul denotes
the input number of l-th layer, in which U 0 = P, U 1 = MeU 2 = N. In the hidden layer, sigmoid
function is applied, hence the output related to the i-th neuron from k-th layer at n-th instant i.e., vk

i (n),
is formulated using the following equation.

vk
i (n) =

(
1

1 + e−zk
i (n)

)
(7)

Here, vk
i (n) represents the value of j-th input that is utilized in the following layer at n-th instant

i.e., yl+1
j (n) as follows.

yl+1
j (n) = vk

i (n) (8)

Now j = i. The softmax activation function is utilized in the output neuron. This function is
adapted in neural classifier network as given below.

si(n) = ezK
i (n)∑H

h=1 ezK
h (n)

(9)

here, si(n) comprises of i-th output of K final layer with H neuron at n-th instant. The H values are
described through the class count of the problem since this function characterizes the likelihood that
every dataset belongs to a certain class.
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2.4 Parameter Tuning Using SSO Algorithm

In this final stage, SSO approach is employed for optimal fine-tuning of the parameters involved in
SSAE mechanism. SSO algorithm is an emergent evolutionary mechanism, inspired by anti-predation
and sparrow foraging behaviours [19]. In comparison with conventional evolutionary algorithms, SSO
algorithm has faster convergence speed and strong global search capability in terms of optimization
issues. In SSO algorithm, the population is classified as producer and scrounger groups. At first, the
producer group executes a large searching step to search for food. Then, the scrounger group follows
the producer to find the food. In this searching method, the scrounger group has a huge probability to
search for food through subsequent behaviour. However, the roles played by producer and scrounger
are dynamically adjusted to search for high quality food sources. Subsequently, SSO algorithm is
mathematically modelled as given herewith.

Step 1: Define the parameters such as maximum iteration (gmax), sparrow count (N), number
of producers (PN) and scroungers (N-PN). The position of the i-th sparrow is determined by xi =
(xi,1, xi,2, . . . , xi,D) whereas f (xi) denotes the fitness value of i-th sparrow. Next, the initialized swarm x
is formulated as given herewith [20].

x =

⎧⎪⎨
⎪⎩

x1,1 · · · x1,d

... xi,j

...
xN,1 . . . xN,D

⎫⎪⎬
⎪⎭ (10)

In Eq. (10), xi,j represents the j-th element value of i-th sparrow. D indicates the decision variable
count.

Step 2: The position of the producer is upgraded as given herewith.

xg+1
i =

{
xg

i · exp
[

−i
α·gmax

]
if (R < ST)

xg
i + Q · L else i ∈ [1, PN],

(11)

In Eq. (11), g denotes the iterative index; a represents a random integer between [0,1]; Q denotes a
uniformly-distributed random number; L indicates a 1×D matrix in which the element is fixed at one.
R ∈ [0, 1] and ST ∈ [0.5, 1.0] signify the alarm value and safety thresholding value correspondingly.
R < ST i.e., the producer implements the general searching mode without the influence of the
predator; In R ≥ ST , the predator is found by the sparrow and each sparrow must fly towards the
safest region [21].

Step 3: The position of the scrounger is upgraded as follows.

xg+1
i =

{
Q. exp

[
Gworst−xg

i
i2

]
if (i > N/2)

Sbest + |xg
i − Sbest| · A+ · L else i ∈ [PN + 1, N],

(12)

In Eq. (12), Sbest represents the well-known position of the producer; GWorst indicates the global
worst known position identified; A symbolizes a 1 × D matrix while each component is arbitrarily
chosen in the range of {1, −1}; as well as A+ = AT(AAT)−1. If i > N/2, the i-th scrounger must find
another area to search for energy; or else, i-th scrounger is foraged in the region nearby Sbest.
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Step 4: In order to prevent potential danger, around 10–20 per cent of sparrows in the swarm are
designated at a random fashion as scouters and their positions are upgraded as follows.

xg+1
i =

{
Gbest + β · |xg

i − Gbest| if (f (xg
i ) > f (Gworst))

xg
i + K·|xg

i −Gworst|
f (xg

i )+f (Gworst)+θ
if (f (xg

i ) = f (Gworst))
(13)

In Eq. (13), β represents a random number that obeys uniform distribution; Gbest indicates the
global well known position; K ∈ [−1, 1] denotes an arbitrary integer which illustrates the searching
step size and θ indicates a smaller constant that is utilized to avoid the denominator being 0. Here,
(xg

i ) > f (Gworst), the i-th sparrow at the edge of the swarm gets easily identified by the predators; or
else, the i-th sparrow at the centre of the swarm must be closer to another sparrow for anti-predation.

Step 5: Upgrade the best and worst fitness values to obtain the novel position of each sparrow.

Step 6: When the end criteria are not satisfied, proceed to Step 2 for the following cycle; or else,
the global better known location is found through sparrow population and is processed as the final
solution for the targeted problem.

3 Experimental Validation

In this section, the crowd classification performance of the proposed SSODTL-CD2C method was
validated using a dataset of 2,000 samples under four classes. Each class holds a set of 500 samples.
Since no benchmark dataset is available in the literature, the current study authors have collected their
own dataset. Table 1 depicts the details of the datasets.

Table 1: Dataset details

Labels Description No. of samples

Class1 Dense crowd 500
Class2 Medium dense crowd 500
Class3 Sparse crowd 500
Class4 No crowd 500

Total No. of samples 2000

Fig. 3 reports the confusion matrices generated by the proposed SSODTL-CD2C model with
70:30 of TR/TS datasets. With 70% of training (TR) data, the proposed SSODTL-CD2C model
recognized 270 samples as class 1, 244 samples as class 2, 313 samples as class 3 and 309 samples
as class 4. Moreover, in 30% of testing (TS) dataset, the presented SSODTL-CD2C method classified
122 samples under class 1, 121 samples under class 2, 119 samples under class 3, and 139 samples
under class 4.

Table 2 provides the overall crowd classification outcomes achieved by the proposed SSODTL-
CD2C method on 70:30 of TR/TS datasets.
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Figure 3: Confusion matrices of SSODTL-CD2C approach (a) 70% of TR data and (b) 30% of TS
data

Table 2: Results of the analysis of SSODTL-CD2C methodology on 70:30 of TR/TS datasets under
different measures

Labels Accuracy Precision Recall F-Score G-Mean

Training phase (70%)

Class-1 88.79 76.70 78.26 77.47 84.96
Class-2 90.00 84.43 71.98 77.71 83.02
Class-3 92.79 86.94 85.29 86.11 90.23
Class-4 90.71 77.44 88.54 82.62 89.98

Average 90.57 81.38 81.02 80.98 87.04

Testing phase (30%)

Class-1 89.17 79.22 78.71 78.96 85.47
Class-2 90.67 88.32 75.16 81.21 85.10
Class-3 94.83 87.50 89.47 88.48 92.85
Class-4 92.33 80.35 92.05 85.80 92.24

Average 91.75 83.85 83.85 83.61 88.91

Fig. 4 exhibits the classification performance of the presented SSODTL-CD2C method on 70% of
TR data. The figure shows that SSODTL-CD2C technique obtained effective outcomes under all the
classes. For example, in class 1, the presented SSODTL-CD2C approach reached an accuy of 88.79%,
precn of 76.70%, recal of 78.26%, Fscore of 77.47%, and a Gmean of 84.96%. Eventually, in class 3, the
proposed SSODTL-CD2C method obtained an accuy of 92.79%, precn of 86.94%, recal of 85.29%,
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Fscore of 86.11%, and a Gmean of 90.23%. Meanwhile, in class 4, the presented SSODTL-CD2C approach
attained an accuy of 90.71%, precn of 77.44%, recal of 88.54%, Fscore of 82.62%, and a Gmean of 89.98%.

Figure 4: Results of the analysis of SSODTL-CD2C method under 70% of TR dataset

Fig. 5 displays the classification performance of the proposed SSODTL-CD2C approach on 30%
of TS data. The figure shows that the presented SSODTL-CD2C approach achieved effective results
under each class. For example, in class 1, the proposed SSODTL-CD2C method attained an accuy of
89.17%, precn of 79.22%, recal of 78.71%, Fscore of 78.96%, and a Gmean of 85.47%. Eventually, in class 3,
the proposed SSODTL-CD2C technique attained an accuy of 94.83%, precn of 87.50%, recal of 89.47%,
Fscore of 88.48%, and a Gmean of 92.85%. Meanwhile, in class 4, the proposed SSODTL-CD2C system
obtained an accuy of 92.33%, precn of 80.35%, recal of 92.05%, Fscore of 85.80%, and a Gmean of 92.24%.

Figure 5: Results of the analysis of SSODTL-CD2C system under 30% of TS dataset
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Fig. 6 demonstrates the confusion matrices generated by the proposed SSODTL-CD2C method
with 80:20 of TR/TS datasets. With 80% of TR data, SSODTL-CD2C technique recognized 325
samples under class 1, 388 samples under class 2, 368 samples under class 3, and 342 samples under
class 4. Furthermore, in 20% of TS data, the presented SSODTL-CD2C approach categorized 93
samples under class 1, 87 samples under class 2, 82 samples under class 3, and 84 samples under
class 4.

Figure 6: Confusion matrices of SSODTL-CD2C approach (a) 80% of TR data and (b) 20% of TS
data

Table 3 offers the overall crowd classification results accomplished by the proposed SSODTL-
CD2C method on 80:20 of TR/TS datasets.

Table 3: Results of the analysis of SSODTL-CD2C methodology on 80:20 of TR/TS datasets under
different measures

Labels Accuracy Precision Recall F-Score G-Mean

Training phase (80%)

Class-1 92.13 84.42 83.12 83.76 88.88
Class-2 97.25 93.72 95.57 94.63 96.69
Class-3 96.19 93.16 91.54 92.35 94.59
Class-4 92.31 84.24 85.29 84.76 89.85

Average 94.47 88.88 88.88 88.88 92.50

Testing phase (20%)

Class-1 91.25 83.04 85.32 84.16 89.30
Class-2 95.00 87.00 92.55 89.69 94.14
Class-3 93.75 90.11 83.67 86.77 90.10
Class-4 93.00 86.60 84.85 85.71 90.10

Average 93.25 86.69 86.60 86.59 90.91
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Fig. 7 demonstrates the classification performance of the presented SSODTL-CD2C method on
80% of TR data. The figure shows that SSODTL-CD2C method attained effective results under
each class. For example, in class 1, the proposed SSODTL-CD2C technique produced an accuy of
92.13%, precn of 84.42%, recal of 83.12%, Fscore of 83.76%, and a Gmean of 88.88%. Eventually, in class
3, SSODTL-CD2C technique obtained an accuy of 96.19%, precn of 93.16%, recal of 91.54%, Fscore of
92.35%, and a Gmean of 94.59%. Meanwhile, in class 4, the proposed SSODTL-CD2C approach attained
an accuy of 92.31%, precn of 84.24%, recal of 85.29%, Fscore of 84.76%, and a Gmean of 89.85%.

Figure 7: Results of the analysis of SSODTL-CD2C methodology under 80% of TR dataset

Fig. 8 displays the classification performance achieved by the proposed SSODTL-CD2C system
on 20% of TS dataset. The figure shows that SSODTL-CD2C technique attained effective results under
each class. For example, in class 1, the proposed SSODTL-CD2C method attained an accuy of 91.25%,
precn of 83.04%, recal of 85.32%, Fscore of 84.16%, and a Gmean of 89.30%. Eventually, in class 3, the
proposed SSODTL-CD2C method attained an accuy of 93.75%, precn of 90.11%, recal of 83.67%, Fscore

of 86.77%, and a Gmean of 90.10%. Meanwhile, in class 4, the proposed SSODTL-CD2C approach
attained an accuy of 93%, precn of 86.60%, recal of 84.85%, Fscore of 85.71%, and a Gmean of 90.10%.

Both Training Accuracy (TA) and Validation Accuracy (VA) values, achieved by the proposed
SSODTL-CD2C methodology on testing data, are illustrated in Fig. 9. The experimental result
indicate that the proposed SSODTL-CD2C approach accomplished the maximal TA and VA values
while VA values were higher than TA.

Both Training Loss (TL) and Validation Loss (VL) values, accomplished by the proposed
SSODTL-CD2C methodology on testing data, are demonstrated in Fig. 10. The experimental out-
comes infer that the proposed SSODTL-CD2C approach obtained minimal TL and VL values whereas
VL values were lower than TL.
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Figure 8: Results of the analysis of SSODTL-CD2C method under 20% of TS dataset

Figure 9: TA and VA analyses results of SSODTL-CD2C methodology



4978 CMC, 2023, vol.74, no.3

Figure 10: TL and VL analyses results of SSODTL-CD2C method

A clear precision-recall examination was conducted upon SSODTL-CD2C system using testing
dataset and the results are shown in Fig. 11. The figure specifies that the proposed SSODTL-CD2C
process produced improved precision-recall values under each class.

Figure 11: Precision-recall curve analysis results of SSODTL-CD2C methodology
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A brief Receiver Operating Characteristic (ROC) analysis was conducted upon SSODTL-CD2C
methodology on testing dataset and the results are portrayed in Fig. 12. The results denote that the
proposed SSODTL-CD2C method demonstrated its capability in classifying the testing dataset under
different classes.

Figure 12: ROC curve analysis of SSODTL-CD2C method

To assure the enhanced performance of the proposed SSODTL-CD2C model, a detailed com-
parative study was conducted and the results are shown in Table 4 [22,23]. The experimental values
highlight that the proposed SSODTL-CD2C technique produced high accuy values over other models,
under all classes. For example, in class 1, the proposed SSODTL-CD2C method achieved a high
accuy of 91.25%, whereas Gabor, Bag–of–words with SRP (BoWSRP), BowLBP, GLCM with Support
Vector Machine (GLCMSVM), and VGG-Net models reported the least accuy values such as 55.22%,
80.48%, 90.95%, 72.95%, and 87.20% respectively. Meanwhile, in class 2, the proposed SSODTL-
CD2C method achieved increased accuy values such as 95%, while Gabor, BoWSRP, BowLBP,
GLCMSVM, and VGG-Net models produced low accuy values such as 80.95%, 86.98%, 80.39%,
82.23%, and 82.47% correspondingly. Eventually, in class 3, the proposed SSODTL-CD2C model
offered a high accuy of 93%, whereas Gabor, BoWSRP, BowLBP, GLCMSVM, and VGG-Net models
achieved low accuy values such as 85.64%, 83.82%, 89.16%, 92%, and 90.03% correspondingly.

Table 4: Comparative accuracy analysis results of SSODTL-CD2C approach and other recent methods

Accuracy (%)

Methods Class 1 Class 2 Class 3 Class 4 Average

Gabor 55.22 80.95 66.06 85.64 71.97
BoWSRP 80.48 86.98 71.15 83.82 80.61

(Continued)
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Table 4: Continued
Accuracy (%)

BowLBP 90.95 80.39 77.28 89.16 84.45
GLCMSVM 72.95 82.23 71.33 92.00 79.63
VGG-Net 87.20 82.47 79.45 90.03 84.79
SSODTL-CD2C 91.25 95.00 93.75 93.00 93.25

4 Conclusion

In this study, the SSODTL-CD2C approach has been presented for the identification and
classification of crowd densities. Primarily, the SSODTL-CD2C technique exploited the OSSA with
EfficientNet model to derive the feature vectors. Followed by, the SSAE model is utilized for the
classification of the crowd densities. Eventually, the SSO technique is employed for the optimal fine-
tuning of the parameters based on the SSAE method. The performance of the proposed SSODTL-
CD2C technique was validated using the dataset with four different kinds of crowd densities. The
obtained outcomes inferred the superior performance of SSODTL-CD2C approach with maximal
crowd classification performance. As a part of the future scope, a new crowd counting approach should
be derived to estimate the number of people. As commented earlier, the current research would help
in achieving better crowd management for all the events globally.
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