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Abstract: Machine learning (ML) practices such as classification have played
a very important role in classifying diseases in medical science. Since med-
ical science is a sensitive field, the pre-processing of medical data requires
careful handling to make quality clinical decisions. Generally, medical data is
considered high-dimensional and complex data that contains many irrelevant
and redundant features. These factors indirectly upset the disease prediction
and classification accuracy of any ML model. To address this issue, various
data pre-processing methods called Feature Selection (FS) techniques have
been presented in the literature. However, the majority of such techniques
frequently suffer from local minima issues due to large solution space. Thus,
this study has proposed a novel wrapper-based Sand Cat Swarm Optimization
(SCSO) technique as an FS approach to find optimum features from ten
benchmark medical datasets. The SCSO algorithm replicates the hunting and
searching strategies of the sand cat while having the advantage of avoiding
local optima and finding the ideal solution with minimal control variables.
Moreover, K-Nearest Neighbor (KNN) classifier was used to evaluate the
effectiveness of the features identified by the proposed SCSO algorithm.
The performance of the proposed SCSO algorithm was compared with six
state-of-the-art and recent wrapper-based optimization algorithms using the
validation metrics of classification accuracy, optimum feature size, and com-
putational cost in seconds. The simulation results on the benchmark medical
datasets revealed that the proposed SCSO-KNN approach has outperformed
comparative algorithms with an average classification accuracy of 93.96%
by selecting 14.2 features within 1.91 s. Additionally, the Wilcoxon rank test
was used to perform the significance analysis between the proposed SCSO-
KNN method and six other algorithms for a p-value less than 5.00E-02. The
findings revealed that the proposed algorithm produces better outcomes with
an average p-value of 1.82E-02. Moreover, potential future directions are also
suggested as a result of the study’s promising findings.
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1 Introduction

Machine Learning (ML) is an interdisciplinary field that relies on ideologies across computer
science, stats, cognitive neuroscience, engineering, and a range of other fields. The approaches such as
clustering, regression, and classification are well-known ML approaches, however, the classification
methods are the most widely used for solving various real-world tasks [1]. Classification falls under the
data mining methods that help in extracting meaningful data from datasets and providing classification
results. Generally, a classification technique uses the training data to train the developed model. Once
the model is well-trained, the testing data is utilized to generate the classification results [2]. Various
classifiers such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and hybrid deep
neuro-fuzzy classifiers [3] have shown a prominent performance for the applications of time-series
classification [4], facial expression classification [5], image classification [6], and social media such as
Twitter data classification [7].

Even though these algorithms have been effectively used for a range of classification-related tasks,
their performance suffers significantly when applied to high-dimensional data. In general, for every n
original feature in a dataset, 2n potential feature subset combinations are produced and assessed at a
high computing cost [8]. Similarly, when we talk about medical data, it is the most sensitive data that
contain numerous aspects linked to disease, and it must be handled with extreme caution to provide
the correct diagnosis of disease for quality services. Hence, managing such data is a critical job in the
medical industry. Owing to many features, there is always a strong possibility of data having missing
values and repetitive and distinct features. Generally, medical data experiences two challenging issues;
(i) owing to many features, there is always a strong possibility of data having missing values and
repetitive and distinct features, (ii) the majority of the medical datasets contain ultrasound images
and various types of lab results. The number of features in such datasets might range between two
and thousands. Due to the high dimensionality, processing such datasets on a system with lower
specifications is typically a challenging and time-consuming task. These two factors often disturb the
results of classification accuracy in the field of medical science. Therefore, before using the data for
disease classification in the medical system, it is important to use effective data preparation and data
reduction techniques to find the most relevant risk factors [9].

Hence, to address the data high-dimensionality problem in medical data, literature has proposed
various feature selection (FS) techniques that help in reducing the feature size [10]. Integrating FS
approaches with classification methods doesn’t only assist in enhancing the classification accuracy but
also aids in minimizing the computing cost. Generally, the FS practices are classified into filter and
wrapper methods. The filter method doesn’t use any classification algorithm. Moreover, it overlooks
classification accuracy and instead concentrates on the characteristics of the data such as input and
output variables. Wrapper methods, on the other hand, employ classifiers and are tied directly to
the data features. However, wrapper methods are known to be computationally intensive, yet they
outperform filter approaches in terms of the quality of output [11,12]. Therefore, wrapper methods
also known as metaheuristic techniques, are widely used to evaluate the effectiveness of selected
features [13]. Metaheuristics use a derivative-free approach, which simplifies implementation while
escaping the algorithm from being caught in local optima [14]. Literature regarding metaheuristic
optimization algorithms offers a wide variety of methods. Because medical data is classified as complex
data, performing data pre-processing using standard metaheuristics as FS techniques reduce the
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classification accuracy. Moreover, the capacity of any metaheuristic algorithm to locate the best
solution is determined by its exploration and exploitation abilities. The proper stability between
explorative and exploitative search aids in the achievement of the desired result. Therefore, a growing
number of novel metaheuristic techniques with better and enhanced search algorithms are published
every year.

Similarly, a novel swarm intelligence-based metaheuristics algorithm called Sand Cat Swarm
Optimization (SCSO) has been proposed in 2022 [15]. To validate the efficiency of the algorithm, the
original study of SCSO tested the algorithm on various benchmark functions where the algorithm has
outperformed by generating effective outcomes compared to well-known metaheuristics algorithms.
Moreover, the SCSO algorithm has been successfully implemented on several engineering design
problems including welded beam design, tension/compression spring design, pressure vessel design,
and three-bar truss design. Besides, the algorithm has also been used to compute the minimum
safety factor for earth slopes under static and earthquake situations in [16]. Inspired by the effec-
tiveness of this novel technique for solving high-dimensional global optimization problems, the main
goal of the study is to propose the SCSO approach as an FS technique to find out the optimum
features from the high-dimensional medical data to generate quality outcomes with high classification
accuracy. To the best of our knowledge, this study is the first effort on implementing the novel SCSO
algorithm for the task of FS. Moreover, the study’s main contributions are presented as follows:

• At first, the novel and efficient metaheuristic approach with better search capabilities named
SCSO algorithm is proposed to perform FS-related tasks to identify the best features from the
complex and high-dimensional medical data.

• The efficiency of the selected feature subset obtained from the SCSO algorithm is evaluated,
classified, and validated using a KNN classifier.

• The performance of the proposed SCSO-KNN approach is compared with six recent state-of-
the-art algorithms using the common evaluation metrics of average feature size, classification
accuracy, and computational cost.

• Additionally, non-parametric statistical tests using Wilcoxon signed-rank test are done to
examine the significant difference between the outcomes obtained by the proposed SCSO
technique and the compared algorithms.

The remaining study is structured as follows: Section 2 discusses the related works and Section 3
explains the working mechanism of the proposed SCSO method. Section 4 delivers an explanation of
the proposed methodology for the task of FS using a novel SCSO technique. Section 5 discusses the
obtained results. Finally, Section 6 summarizes the conclusions and provides a future recommendation
in the field of optimization.

2 Related Works

Metaheuristics are used to find the best solutions to a given problem of interest. These algorithms
are remarkably effective for averting the algorithms from premature convergence and can be easily
tailored to the specific problem [17]. A metaheuristic algorithm, in general, employs a number of agents
in the search process to build a dynamic system of solutions using a set of rules or mathematical
models over multiple iterations until the identified solution fulfills a given criterion [18]. During the
search process, the mathematical modeling of a metaheuristic algorithm uses two key components
of exploration and exploitation. The effectiveness of an algorithm completely depends on these two
search phrases. During the phase of exploitation search, an algorithm broadens its scope to include
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previously unexplored regions. Whereas, in the exploitation search phase, an algorithm focuses on
promising regions to identify a potential solution.

Over the past decades, various metaheuristic algorithms have been introduced in the literature
by either improving existing methods, enhancing the performance of one method by hybridizing it
with another method, or proposing novel algorithms [14]. Besides, before optimizing a problem, the
literature advises selecting a metaheuristic algorithm based on their search mechanisms such as single
solution-based algorithms and population-based algorithms. Single solution-based algorithms follow
exploitative search mechanisms, while population-based algorithms employ more effective explorative
search mechanisms. Moreover, as the name indicates, single solution-based algorithms use one solution
on each iteration. The algorithms in this category often fail to explore the solution in a wider search
space, therefore, have the probability of falling in local minima. Comparatively, population-based
algorithms offer excellent exploratory searches using the number of solutions over several iterations,
which protects the algorithms from being stuck in local minima. Hence, the majority of the studies
can be witnessed in literature employing population-based algorithms for solving non-linear complex
real-world problems [17].

The popular techniques in the category of single solution-based are Tabu Search Algorithm (TSA)
[19], Simulated Annealing Algorithm (SAA) [20], Hill Climbing Algorithm (HCA) [21], and Guided
Local Search Algorithm (GLSA) [22]. The population-based algorithms are further subdivided into
four categories; (i) Swarm intelligence methods replicate the swarm hunting strategy of living species
such as insects, fishes, or animals. Although each member of the swarm intelligence method has their
own intellect and behavior, the collaboration between the members increases the ability to address
highly non-linear problems. (ii) Evolutionary methods are impacted by biological and evolutionary
processes. These algorithms use the parameters of mutation, crossover, and selection to produce new
solutions by combining the optimum solutions. (iii) Physics-based methods are derived from actual
physical laws and usually refer to the conveyance of search solutions based on governing principles
inherent in physical practices. Whereas, (iv) Human behavior-based methods are purely inspired by
human behavior and the way human interacts with other humans to solve an optimization problem
[14]. The following Table 1 summarizes the recent population-based metaheuristic techniques from
each category from the year 2019 to the year 2022.

Table 1: Recent population-based metaheuristic optimization techniques (2019–2022)

Algorithm category Algorithm offered Year of Invention Reference

Swarm intelligence Harris Hawks Optimization (HHO) 2019 [23]
methods Fitness Dependent Optimizer (FDO) 2019 [24]

Pigeon-Inspired Optimization (PIO) 2019 [25]
Pathfinder Algorithm (PFA) 2019 [26]
Sparrow Search Algorithm (SSA) 2020 [27]
Marine Predators Algorithm (MPA) 2020 [28]
Bald Eagle Search (BES) 2020 [29]
Tuna Swarm Optimization (TSO) 2021 [30]
Aquila Optimizer (AO) 2021 [31]
Chameleon Swarm Algorithm (CSA) 2021 [32]
Jellyfish Search (JS) 2021 [33]
Fire Hawk Optimizer (FHO) 2022 [34]

(Continued)
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Table 1: Continued
Algorithm category Algorithm offered Year of Invention Reference

Pelican Optimization Algorithm (POA) 2022 [35]
Evolutionary methods Find-Fix-Finish-Exploit-Analyze

(F3EA)
2019 [36]

Wildebeests Herd Optimization (WHO) 2019 [37]
Time Evolutionary Optimization
(TEO)

2019 [38]

Triple Distinct Search Dynamics
(TDSD)

2020 [39]

Multivariable Grey Prediction
Evolution Algorithm (MGPEA)

2020 [40]

Cooperation Search Algorithm (CSA) 2021 [41]
Learner Performance-based Behavior
(LPB)

2021 [42]

Physics-based Atom Search Optimization (ASO) 2019 [43]
methods Henry Gas Solubility Optimization

(HGSO)
2019 [44]

Black Hole Mechanics Optimization 2020 [45]
Chaos Game Optimization (CGO) 2021 [46]
Archimedes Optimization Algorithm
(AOA)

2021 [47]

Material Generation Algorithm
(MGA)

2021 [48]

Crystal Structure Algorithm (CryStAl) 2021 [49]
Special Relativity Search (SRS) 2022 [50]

Human behavior-based Social Mimic Optimization (SMO) 2019 [51]
methods Monarchy Metaheuristic (MN) 2019 [52]

Human Urbanization Algorithm
(HUA)

2020 [53]

Gaining Sharing Knowledge-based
Algorithm (GSK)

2020 [14]

Football Game-Based Optimization
(FGO)

2020 [54]

Tiki-Taka Algorithm (TTA) 2021 [55]
Coronavirus Herd Immunity Optimizer
(CHIO)

2021 [56]

War Strategy Optimization (WSA) 2022 [57]
Ali Baba and the Forty Thieves (AFT) 2022 [58]

2.1 Metaheuristics for Feature Selection in Medical Sciences

In contrast to other domains, datasets in the field of medical sciences typically contain a greater
number of features. The majority of the features in such data are essential for comprehending the illness
and guide in developing a machine learning-based prediction model. Generally, a machine learning
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model needs a substantial amount of data to prevent the risk of over-fitting. The massive amounts
of features, however, greatly undermine the efforts of building an effective model due to the curse
of dimensionality. Besides, when a dataset’s dimensionality grows significantly, the amount of useful
information decreases due to an increase in data sparsity. Likewise, noise is another factor that affects
the performance of machine learning and adds to its complexity [59].

To overcome such issues, various metaheuristic-based FS approaches have been introduced in the
literature. These techniques primarily work for dimensionality reduction by identifying only relevant
features and removing the irrelevant and redundant features from the given dataset. An FS technique
requires searching the complete feature space by identifying distinct candidates for feature subsets.
This search can be performed in one of three ways: completely, sequentially, or randomly. In the first
approach, an extensive search is done to cover all of the feature space and ensures the best solution
depending on the chosen evaluation metric. But it has the drawback of being computationally costly
when used across a wide feature space. Comparatively, sequential search has a lower computational
cost than complete search but it doesn’t guarantee finding the optimum solution because it uses the
prior rankings produced by other approaches. Similarly, the random search activates with a random
subset of feature space, therefore this approach also does not provide the best solution. The subsequent
subset is created at random, and the procedure is repeated until the threshold value is met [60]. All
these methods are effective in one way or another way to find the suitable and reduced feature subset
from high-dimensional data. Therefore, a decrease in data dimensionality enhances the effectiveness
of many machine learning models by lowering the complexity and computational cost. Moreover, a
good FS approach helps in increasing the model’s interpretability and classification accuracy [60].

Owing to such advantages, FS approaches have been widely used to solve real-world problems with
high data dimensionalities such as image, text, and video classification, image processing, clustering,
and industrial applications such as fault detection. In medical science, the goal of FS is to produce
a smaller feature subset while still producing higher classification and disease prediction accuracy.
Hence, the effectiveness of the FS approaches has been tested in the field of medical science for the
applications of medical image processing, biomedical signal processing, and early diagnosis of disease.
Table 2 summarizes the most recent metaheuristic algorithms from the literature that has been used in
the field of medical sciences for the task of FS.

Table 2: Summary of the recent literature for the task of FS in medical sciences

Study, year Algorithm Application Major contributions Outcomes

[61], 2019 Crow-Search
Algorithm (CSO)

Lung cancer
detection

• Lungs modality is determined
using computed tomography (CT)
imaging, and classification is done
using Probabilistic Neural
Networks (PNN).
• Feature extraction is done using
the gray-level co-occurrence
matrix.
• CSO is used for the task of FS

The findings show that
the CSO-based FS
technique successfully
delivered 90% accuracy.

(Continued)
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Table 2: Continued
Study, year Algorithm Application Major contributions Outcomes

[62], 2020 Two-stage
Genetic Algorithm-
feature Transformation
(2-Tra-GA)

Hepatitis
prediction

• A 2-Tra-GA-based feature
transformation is proposed with
two phases of FS and
augmentation
• The lagrangian SVM (LSVM)
approach is used to predict the
hepatitis

The novel
2-Tra-GA-LSVM
technique showed faster
convergence with 90.32%
accuracy in
distinguishing between
survived and deceased
patients with hepatitis.

[63], 2021 Krill Herd Algorithm
(KHA)

Brain epilepsy
seizure detection

• The EEG data is used to
identify epileptic seizures using a
deep learning approach.
• KHA identifies the most
optimal features from the brain
signal data.
• General Adversarial Networks
classify the selected features.

The KNN classifier
detects the seizure with
99.25% when compared
to the baseline method
owing to the efficient FS
mechanisms of the KHA
algorithm.

[64], 2021 Grasshopper
Optimization
Algorithm (GOA)

Diabetes disease
diagnosis

• GOA is used to select the key
features from diabetes type II
data.
• Three classifiers including SVM,
NB, and Tree are used to classify
the features of the diabetes data.

Compared to the NB
and Tree classifier,
SVM-GOA showed the
best results having the
least mean squared error
of 3.0351.

[65], 2021 Aquila Optimizer
(Aqu)

COVID-19 image
classification

• A MobileNetV3-based deep
learning model is employed to
extract important representations
from the image.
To decrease the dimensionality of
the image data and increase
classification accuracy, Aqu
algorithm is used as an FS
algorithm to identify the best
features.

COVID-CT,
COVID-XRay-6432, and
COVID-19 datasets are
used for experiments.
The Aqu-based FS has
shown better accuracy
with 78% for
COVID-CT, 97% for
COVID-XRay-6432, and
92% for the COVID-19
dataset.

[66], 2022 Coronavirus Herd
Immunity Optimizer
(CHIO)

COVID-19
detection

• CHIO is applied in two distinct
ways to choose the best features
from benchmark medical datasets,
and the COVID-19 dataset: (i)
CHIO alone and (ii) by combining
it with the greedy crossover (GC)
operator technique to improve the
exploration search capabilities of
the algorithm.
• KNN is used as a classifier.

The proposed CHIO-GC
was compared against
hyper learning binary
dragonfly algorithm
(HLBDA), binary moth
flame optimization with
Lévy flight (LBMFO
V3), Chi-square, Relief,
and information gain.
CHIO-GC
outperformed other
methods with 79%
accuracy.

(Continued)
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Table 2: Continued
Study, year Algorithm Application Major contributions Outcomes

[67], 2022 Chaos Game
Optimization (CGO)

Medical image
classification

The methodology’s design is
divided into two phases:
• At first, the feature extraction
approach was implemented on
MobileNetV3.
• Secondly, for FS, CGO is
proposed to remove irrelevant
features and enhance efficiency,
which is essential in IoMT.

ISIC-2016, PH2, and
Blood-Cell datasets were
used for the simulation.
According to the results,
the proposed technique
achieved an accuracy of
88.39% on the
ISIC-2016, 97.52% on
the PH2, and 88.79% on
the Blood-cell datasets.

[68], 2022 Dipper Throated
Algorithm (DTA)

Chest X-rays
diagnosis

• To extract the key
characteristics of pneumonia
patients and healthy patients,
three pre-trained deep learning
techniques GoogLeNet,
ResNet18, and DenseNet121 are
modeled. Binary DTA is used for
FS, and a KNN classifier is used
for the classification.

Using different test
scenarios, the minimum
accuracy attained by the
proposed DTA
algorithm is 98.5%, and
the highest accuracy is
99.8%.

On the one hand, the algorithm mentioned in Table 2 has demonstrated satisfactory performance.
On the other hand, most of the algorithms possess serious drawbacks. For example, CSO, GOA, and
DTA suffer from slow convergence with being stuck in the local optimum [69,70]. The performance of
KHA, CHIO, and Aqu gets disturbed by their poor exploitation search mechanism which prevents the
algorithm from reaching the global optimum solution [71,72]. Whereas, GAs are viewed as extremely
slow, expensive to implement, and time-consuming [73].

Therefore, this study has proposed a novel SCSO metaheuristic algorithm due to its excellent
tradeoff between exploration and exploitation search strategies. The SCSO method aids in finding the
direction to the best solution with a faster convergence speed. The next section (Section 3) explains
the working mechanism of the proposed SCSO algorithm along with its mathematical modeling.

3 Sand Cat Swarm Optimization Algorithm (SCSO)

Sand Cat Swarm Optimization is a novel nature-inspired algorithm recently introduced by
Seyyedabbasi et al. [15]. Sand cats are members of the Felis family of mammals that live in deserts
such as Central Asia, Africa, and the Arabian Peninsula Sahara. The sand cat has a hard time
finding food in the desert because of the harsh weather. As a result, they prefer to hunt at night
with their remarkable ability to sense food using their hearing and detecting low-frequency noises
to locate prey moving underground. These distinct qualities assist the sand cat in sensing movement
and successfully following and attacking prey. According to the sand cat’s behavior, there are two main
steps to hunting: seeking prey and attacking it. Therefore, the original study of the SCSO algorithm has
highlighted these steps for solving optimization problems. Furthermore, the SCSO algorithm possesses
an excellent explorative and exploitative search mechanism.

Since the SCSO is a population-based technique, the first step is to identify the problem by
generating an initial population with the number of sand cats. A sand cat is a 1× d array that represents
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the answer to a d dimensional optimization problem where x1, x2, . . . xd are the variables with floating-
point numbers and the values for every x need to be assigned among lower bound (LB) and upper
bound (UB) such as (∀xi ∈ [LB, UB]). A candidate matrix containing the sand cat population (s)
based on the problem size Ms × Md with s = 1, . . . n is established initially to begin the SCSO process.
Furthermore, each sand cat’s fitness cost is determined by calculating a specific objective function
to get optimal values of the SCSO algorithm that helps in defining the problem’s most important
parameters. To find the optimum solution, the sand cat with the lowest cost is picked as the best
solution when the iteration is completed. Following that, in the next iteration, other cats strive to
approach the best solution/chosen cat. However, if a fine solution is not discovered in the subsequent
iterations, the algorithm ensures memory efficiency by not storing it in the memory unnecessarily.

Exploration strategy in SCSO algorithm: The solutions for every single cat in SCSO are denoted
as Xi = (

xi
1, xi

2, xi
3, . . . . xi

d

)
. Surprisingly, the sand cat can detect frequencies below 2 kHz. As the

iterations proceed, the 2 kHz value (
−→
kG) will decline linearly from two to zero. To locate prey, it is

believed that the sensitivity range of sand cats begins at 2 kHz and ends at 0 kHz, where the algorithm
utilizes the value of SCh = 2 (sand cat hearing) to search for prey as shown in the following Eq. (1):
−→
kG = SCh −

(
2 × SCh × Ci

Mi + Mi

)
(1)

where Ci and Mi defines the current and maximum iterations.

The value of SCh which is set at two, however, can be adjusted to determine the speed of actions
in search agents when dealing with different problems. Apart from that, the T vector shown in Eq. (2)
is the most important parameter that helps in determining the shift from exploration to exploitation.
−→
T = 2 ×

−→
kG × rnd (0, 1) −

−→
kG,

−→
K =

−→
kG × rand (0, 1) (2)

According to Eq. (2), to avoid the local optimum, each sand cat’s sensitivity range is defined with

different values. Therefore, the overall sensitivity range
−→
kG is reduced from two to zero. The range of

sensitivity in cats is depicted as
−→
K which is used in global and local search stages and

−→
kG is used to

guide the parameter T for transition control during these two phases.

In SCSO, each sand cat’s position is adjusted depending on the three parameters such as the

position of the best candidate
( −→

Pbest_c

)
, the current position of the candidate

( −→
Pcurrent

)
, and the range of

sensitivity (
−→
K ). As a result, the sand cats are able to locate another location of the potential optimal

prey as in Eq. (3):
−→
P (i + 1) = −→

K .
( −→

Pbest_c (i) − rnd (0, 1) . i)
)

(3)

Exploitation strategy in SCSO algorithm: During the phase of exploitation in SCSO, the distance

between the sand cat’s best position
−→

Pbest and current position
−→

Cbest is determined using Eq. (4):
−→

Prnd =
∣∣∣rnd (0, 1) .

−→
Pbest (i) − −→

Cbest (i)
∣∣∣

−→
P (i + 1) = −→

Pbest (i) − −→
Prnd. cos (θ) (4)

Besides that, because the sensitivity range of a sand cat is assumed to be a circle, the movement
direction is decided by the θ (arbitrary angle) on the circle with its values from −1 and 1. The SCSO uses
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the Roulette Wheel selection method to choose an arbitrary angle for every sand cat while determining
the hunting position. With each iteration, the random location Prnd make certain that the cats are close
by their target to help them to approaching the hunt. Moreover, Eq. (5) looks after the location update
for all cats during the exploration and exploitation search phases as follows:

−→
X (t + 1) =

⎧⎨
⎩

−→
Pbest (i) − −→

Prnd. cos (θ) .
−→
r |T | ≤ 1; exploitation

−→
K .

( −→
Cbest(i)

)
− rnd (0, 1) .

−→
Pcurrent (i) |T | > 1; exploration

(5)

According to the SCSO method, when |T| is less than or equal to 1, the cats are trained to approach
the target (exploitation). But when |T| is greater than 1 they will search for a new viable solution in the
broad region (exploration). The proposed SCSO algorithm is beneficial for tackling high-dimensional
problems due to its efficiency in finding promising regions in the global search area with a fast rate of
convergence. Following Algorithm 1 shows the pseudo-code of the proposed SCSO algorithm [15].

Algorithm 1: Pseudo-code of Sand Car Swarm Optimization (SCSO)
Set the initial population x1, x2, . . . xd and determine fitness function using the objective function

Set
−→
K ,

−→
kG,

−→
T

while (i ≤ Mi)
for each search agent

Get an arbitrary angle based on Roulette Wheel Selection (0◦ ≤ θ ≤ 360◦)
if |R| ≤ 1

Update the search agent using Eq. (6):
−→
P (i + 1) = −→

Pbest (i) − −→
Prnd. cos (θ)

else
Update the search agent using Eq. (3):

−→
P (i + 1) = −→

K .
( −→

Pbest_c (i) − rnd (0, 1) . i
))

end if
end for

i = i + 1
end while

4 Research Methodology

This study has proposed a novel FS technique based on the recently introduced SCSO and KNN
classifier for the classification of medical data. Since the algorithm is relatively new, to the best of the
authors’ knowledge, this study is the first effort to implement the SCSO algorithm as an FS approach
for dimensionality reduction and classification of medical data, specifically. Generally, the FS process
involves finding the optimum feature subset from the overall features in the dataset. Fig. 1 illustrates
the flow of the complete FS and classification process.

The proposed approach presented in Fig. 1 of FS using SCSO and KNN classifier starts by
collecting the ten benchmark medical dataset from the well-known UCI repository of machine learning
[74]. The details regarding ten datasets are as; (i) DapF: This dataset was recorded in a laboratory with
an emphasis on inducing freeze events by observing daily activities like people fetching coffee and
opening doors of different rooms. This dataset includes three acceleration sensor observations from
Parkinson’s disease patients who suffer freezing gait problems while engaging in walking activities.
The sensors are located at the hip and legs of the patients. (ii) EEGeS: This dataset is comprised of
EEG values, each of which represents the eye state determined by a camera during the EEG test. The
eye state detected by the camera is manually added to the dataset file after reviewing the 117-s video
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frames, where values of one and zero denote an open or closed eye, respectively. (iii) SpctH: The dataset
provides the diagnosis of cardiac Single Proton Emission Computed Tomography (SPECT) pictures
where the patients are divided into two groups normal and abnormal. The dataset contains 267 patient
images (SPECT) records in total, and for each patient, 44 discrete feature patterns are generated.
Moreover, 22 binary feature patterns were created after the pattern underwent additional processing.
(iv) ParkN: This dataset includes several biological voice measures taken from 31 individuals, 23 of
whom have Parkinson’s disease. The primary objective of the records is to distinguish between healthy
individuals (indicated as 0) and PD patients (indicated as 1). (v) KidD: This dataset relates to a growing
medical condition that impairs kidney function by reducing renal capacity production. (vi) BreT: In
this dataset, a breast mass digital image of a fine needle aspirate (FNA) is used to compute features that
define the properties of the cell nuclei present in the image and classifies between benign or malignant
tumors. (vii) CervC: This dataset focuses on predicting cervical cancer using characteristics from
past medical records, behaviors, and demographic data. (viii) LungC: No description is available. (ix)
HeartD: This dataset reveals whether a patient has cardiac disease using four classes of no presence,
mild, severe, or presence of cardiac disease. The names and identification numbers of the patients
have been substituted with dummy values to standardize the data. (x) McardF: This dataset solves
the important problems of predicting complications of myocardial infarction, phenotyping of disease,
dynamic phenotyping, and visualization. There are two types of myocardial infarction: those with or
without consequences that do not impact the long-term diagnosis. In addition, 50% of patients in the
acute and sub-acute phases experience complications that can exacerbate the condition or possibly
result in death. Table 3 summarizes the information regarding features and instances of each dataset.

Figure 1: Proposed FS approach based on SCSO and KNN

Table 3: Summary of benchmark medical dataset

Dataset Features Instances Output Classes names

DapF 9 237 Multi-class Not a part of the experiment,
experiment, no freeze, and
freeze

(Continued)
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Table 3: Continued
Dataset Features Instances Output Classes names

EEGeS 15 14980 Binary Eye-closed and the eye-open
state

SpctH 22 267 Binary Normal and abnormal
ParkN 23 197 Binary Healthy and Parkinson’s

disease
KidD 29 202 Binary Presence of kidney disease and

no kidney disease
BreT 30 567 Binary Benign and malignant tumors
CervC 36 858 Multi-class Hinselmann, schiller, cytology,

and biopsy
LungC 56 32 Multi-class Classes name N/A
HeartD 75 303 Multi-class No presence, mild, severe and

presence of heart disease
McardF 124 1700 Multi-class Unknown, cardiogenic shock,

pulmonary, edema, myocardial
rupture, the progress of
congestive heart failure,
thromboembolism, asystole,
and ventricular fibrillation

Before implementing the collected data into the proposed approach, the study has gone through a
data preparation stage where the missing values are replaced with mode values. Afterward, 70% of data
is used in the training process while the reaming 30% is used to test the performance of the classifier.
Next, the data is loaded into the SCSO algorithm to choose the best possible solution/feature from the
large collection of features in the medical dataset. Initially, the SCSO algorithm generates a number of
random populations as p. The fitness function is used to determine the fitness value of each population.
Moreover, the Roulette wheel approach is applied to find the random angle to evaluate the |R| ≤ 1.
In the SCSO algorithm, the value of R is used to decide whether the algorithm needs to perform an
explorative search or an exploitative search. Once the algorithm meets maximum iteration, the KNN
classifier with k = 5 and Euclidean distance is used to determine the effectiveness of the selected feature
subset using the following metrics:

The average features size: The proportion of the average size of the features extracted to the entire
amount of features is computed after the algorithm runs R times using Eq. (6):

AFS = 1
R

∑R

r=1

ASF

AF
(6)

In above Eq. (4), AF represents the all features in a medical dataset. The average size of picked
features obtained at the r-th run out of a total R runs is presented as ASF .

Average classification accuracy: This score measures how well the classifier selects the most
significant features using the following Eq. (7), where BSr refers to the best solution found at the r-th
run among the R runs.
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ACA = 1
R

∑R

r=1
BSr (7)

Average computation cost (seconds): Here, when the algorithm runs R times, its computational
cost in average is calculated using Eq. (8) where CTr represents the average computational cost spent
at r-th run.

ACT =
∑R

r=1
CTr (8)

The effectiveness of the SCSO method is compared with GA [75], Equilibrium Optimization
(EBO) [76], Grey Wolf Optimization (GWO) [77], Atom Search Optimization (ASO) [43], Marine
Predators Algorithm (MPA) [28], and Henry Gas Solubility Optimization (HGSO) [78]. Every
algorithm is run 30 times with a total of 200 iterations to calculate the average performance metrics
presented in Eqs. (6)–(8). The parameters of each algorithm are summarized in the following Table 4.

Table 4: Parameter settings of each algorithm

Algorithm Parameters Values

SCSO kG, T [2, 0], [−2kG, 2kG]
GA Type, Selection, Crossover Real coded, Roulette wheel, P = 0.8,

α = [−0.5, 1.5]
EBO A and β 0.99, 0.01
GWO a (area vector), A, C [2, 0], [2, 0], random (0, 1)
ASO Depth weight, Multiplier weight 50, 0.2
MPA FADs, P, β 0.2, 0.5, 1.5
HGSO Number of gas types, α, β, l1, l2, l3 [2–6], 1, 1, 5E–03, 1E + 02, 1E–02

Furthermore, the results of statistical analysis have been performed using a Wilcoxon signed-rank
test between the proposed SCSO algorithm and comparative algorithms. When the p-value of the test
is less than 5.00E-02, it is considered that the results between the proposed and compared algorithms
are statistically significant. Otherwise, the results are deliberated insignificant.

5 Results and Discussion

This section has carefully analyzed and discussed the simulation results of the proposed SCSO
algorithm and six comparative algorithms of GA, EBO, GWO, ASO, MPA, and HGSO algorithms.
From the results presented in Table 5, it is evident that the proposed novel SCSO has successfully
selected an overall 14.22 average features on 30 runs for ten medical datasets which are less than
all six comparative algorithms. This is due to the SCSO’s effective and balanced explorative and
exploitative search mechanism. After SCSO, MPA demonstrated the second-best outcome by selecting
the smallest size of features with 18.81 average features on ten medical datasets. The ASO and EBO
have selected almost the same size of features as 19.16 and 19.24, hence, becoming the third and fourth
best algorithms in this study for selecting less number of features. Whereas, unlike SCSO, ASO, and
EBO, HGSO, GA, and GWO have selected more than twenty features with an average feature size of
20.03, 21.17, and 21.83, respectively.
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Table 5: Results of average selected features on ten medical datasets

Dataset SCSO GA EBO GWO ASO MPA HGSO

DapF 3 4.6 5.2 4 3 5 6
EEGeS 4.6 7.6 7.6 10.2 7 7.5 8.4
SpctH 9.4 12.8 11.8 10.9 10.9 11.4 13.2
ParkN 9.6 12 12 12 12.6 11.1 14.9
KidD 11.6 13.6 14.6 13.4 12.5 13.7 12.1
BreT 12.6 15.4 13.6 19.1 17.1 17 19
CervC 13.8 15.2 14.6 18.2 18.6 20.8 15.3
LungC 15.1 31.7 22.9 25.9 20.9 18.4 19.3
HeartD 19.3 36 31.1 32.6 33 30.2 32.9
McardF 43.2 62.8 59 72 56 53 59.2
Average 14.22 21.17 19.24 21.83 19.16 18.81 20.03

Other than the average selected features, this study has performed a comparative analysis of the
proposed SCSO algorithm with GA, EBO, GWO, ASO, MPA, and HGSO algorithms for observing
the average classification accuracy obtained by all algorithms. According to the results exhibited
in Table 6, we can see that the average classification accuracy produced by the SCSO algorithm
outperforms the other methods by securing the first position with the highest classification accuracy
of 93.96%. Next, EBO has shown better results following SCSO with 91.79% of classification accuracy.
Therefore, EBO appeared to be the second-best algorithm in our study by selecting the least features
with best the accuracy. Whereas, GA, GWO, and HGSO have achieved the accuracy of 91.38%,
90.43%, and 89.65%, respectively. Moreover, the MPA and ASO algorithms were successful in getting
the least optimum features but the classification accuracy observed by the two algorithms was 89.02%
and 88.47% which is very less compared to other algorithms. This finding concludes that the algorithm
selecting the least amount of features on the given dataset is not necessarily the best; rather, the
potential of an algorithm is defined by the most important factor of classification accuracy on
generated feature subset.

Table 6: Results of average classification on ten medical datasets

Dataset SCSO GA EBO GWO ASO MPA HGSO

DapF 100 98.23 96.17 98.01 98.25 97.21 99.85
EEGeS 99.88 97.98 97.88 90.11 98.40 95.40 95.39
SpctH 89.99 80.75 83.63 79.81 69.81 71.69 81.13
ParkN 89.10 89.23 89.39 87.17 82.05 87.17 92.30
KidD 91.25 87.50 85.66 80.00 80.69 86.50 77.50
BreT 95.11 90.46 91.41 94.69 93.34 92.03 94.23
CervC 93.56 91.92 93.76 92.32 90.90 91.56 92.05
LungC 96.15 93.25 95.61 94.02 92.91 93.12 95.16
HeartD 95.36 93.13 93.69 92.15 91.03 90.02 92.33

(Continued)
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Table 6: Continued
Dataset SCSO GA EBO GWO ASO MPA HGSO

McardF 89.28 91.36 90.70 88.23 87.35 85.52 84.41
Average 93.96 91.38 91.79 89.65 88.47 89.02 90.43

The average computational cost in seconds is the third evaluation metric used in this study to
perform the analysis of outcomes generated by each algorithm on ten medical datasets. The following
Table 7 provides the obtained results, where surprisingly GWO has outperformed the SCSO algorithm
with the least computation cost of 1.15 s on average for all medical datasets. Nevertheless, the proposed
SCSO algorithm has shown the highest accuracy with less number of features and the second-best
average computational cost of 1.91 s. Just like classification accuracy and selected features, the EBO
algorithm remains in the top three algorithms by showing satisfactory accuracy and fewer feature size
with a computational cost of 2.24 s. This proves the consistency of the EBO algorithm’s performance
on ten medical datasets. Besides, MPA and ASO algorithms showed an average computation cost of
3.56 and 4.02 s. Whereas, HGSO showed satisfactory results in terms of accuracy and selected feature
but with the highest computation cost of 12.06 s compared to other algorithms.

Table 7: Results of average computational cost (in seconds) on ten medical datasets

Dataset SCSO GA EBO GWO ASO MPA HGSO

DapF 1.76 1.41 1.66 1.10 5.08 1.72 3.00
EEGeS 1.77 2.54 1.67 1.01 2.03 2.75 3.69
SpctH 1.93 2.27 2.69 1.06 2.70 3.85 3.81
ParkN 1.77 2.20 3.05 1.57 4.12 3.84 4.90
KidD 1.77 3.08 2.22 1.21 3.81 4.22 3.03
BreT 1.94 8.50 2.13 1.07 3.87 4.75 5.16
CervC 1.83 9.10 2.12 1.12 5.94 3.22 9.55
LungC 2.02 8.15 2.20 1.27 3.35 3.44 8.25
HeartD 2.25 9.12 2.12 1.08 5.67 3.56 8.74
McardF 2.06 9.09 2.52 1.02 3.68 4.23 9.46

Average 1.91 5.55 2.24 1.15 4.02 3.56 12.06

The classification accuracy determines the better performance of the algorithm, however, its
effectiveness is highly dependent on convergence. Therefore, in addition to the results in Tables. 5–7,
the convergence behavior of the proposed technique and six comparative metaheuristic algorithms
for all datasets are presented in Fig. 2. Observing the convergence curves in Fig. 2, it can be seen
that the proposed SCSO algorithm provides a fast convergence compared to GA, EBO, GWO,
ASO, MPA, and HGSO algorithms for the seven datasets except ParkN, CervC, McardF. This
convergence pattern shows that the algorithm’s performance precisely aligns with the optimal accuracy.
Thus, it is demonstrated that the SCSO achieves a successful balance between exploration and
exploitation search. Moreover, the EBO algorithm has shown better convergence behavior after the
SCSO algorithm compared to GA, GWO, ASO, MPA, and HGSO. Besides, Table 8 presents the
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significance analysis using the Wilcoxon signed-rank test between the proposed approach of SCSO
and comparative algorithms using important metrics of classification accuracy.

Figure 2: (Continued)
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Figure 2: Convergence curve of the proposed SCSO and comparative algorithms on ten dataset

According to the results in terms of the p-value presented in Table 8, the proposed SCSO algorithm
has achieved significant improvement over the GWO, ASO, and MPA algorithms with a p-value of
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5.12E-03. Whereas the SCSO algorithm compared to GA and HGSO archived the p-values are 2.85E-
02. The comparison between SCSO and EBO showed a p-value of 3.66E-02. All of these values are less
than our threshold p-value which is set as 5.00E-02. This highlights the significance of the distinctions
between the proposed new SCSO algorithm and comparative algorithms in terms of classification
accuracy.

Table 8: p-value by wilcoxon test for the average classification accuracy

Comparison p-value Comparison p-value Comparison p-value

SCSO vs. GA 2.85E-02 SCSO vs. GWO 5.12E-03 SCSO vs. MPA 5.12E-03
SCSO vs. EBO 3.66E-02 SCSO vs. ASO 5.12E-03 SCSO vs.

HGSO
2.85E-02

6 Conclusion and Future Works

In this study, a novel metaheuristics method called the Sand Cat Swarm Optimization algorithm
was proposed as an FS technique to obtain the best optimum features from ten benchmark medical
datasets. Later, the KNN classifier have been used to confirm the efficacy of the selected feature
subset. A comparison of results was conducted between the proposed SCSO algorithm and six well-
known algorithms of GA, EBO, GWO, ASO, MPA, and HGSO using the evaluation metrics of
selected features, classification accuracy, and computational cost on average. The findings indicated
that, compared to other algorithms, the novel SCSO has achieved a higher classification accuracy of
93.96% by selecting the fewest features of 14.2 in the least computational time of 14.2 s, respectively.
Moreover, the statistical analysis using Wilcoxon signed-rank test for obtained p-value (5.00E-02)
using classification accuracy proved that the results achieved by SCSO and comparative algorithms
are significantly different.

In the future, the SCSO algorithm can be hybridized with other metaheuristic algorithms to
enhance their performance while solving optimization problems. The SCSO algorithm also can be
used for effective training and parameter tuning of various machine learning such as neural networks,
convolutional neural networks, and hybrid techniques of neuro-fuzzy systems.
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